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Abstract
Dynamically scheduled high-level synthesis (HLS) automat-
ically translates software code (e.g., C/C++) to dataflow
circuits—networks of compute units that communicate via
handshake signals. These signals schedule the circuit dur-
ing runtime, allowing them to handle irregular control flow
or unpredictable memory accesses efficiently, thus giving
them performance merit over statically scheduled circuits
produced by standard HLS tools.

To make HLS of dataflow circuits attractive and practical,
we need various resource-optimization strategies to com-
plement their performance advantage. A crucial technique
is resource sharing: scarce and expensive resources (e.g.,
floating-point arithmetic units) are shared between multiple
operations. However, this approach faces unique challenges
in dataflow circuits, as an uncareful sharing strategy leads
to performance degradation and circuit deadlock.
This work presents CRUSH, a strategy that enables ef-

ficient functional unit sharing in dynamically scheduled
HLS. CRUSH systematically avoids sharing-introduced dead-
locks: it decouples interactions of operations in the shared
resource to break resource dependencies. CRUSH maintains
the benefit of dynamism: it does not constrain circuit ex-
ecution with a complex deadlock avoidance mechanism
and seizes sharing opportunities enabled by out-of-order
access to the shared unit. CRUSH is practical: it employs
scalable and effective heuristics for sharing decisions. Com-
pared to a prior strategy, CRUSH achieves an average reduc-
tion of 12% DSPs, 15% FFs, and 90% optimization runtime.
CRUSH has been integrated into the Dynamatic HLS com-
piler (https://github.com/EPFL-LAP/dynamatic).

CCS Concepts: • Hardware → Resource binding and
sharing; Datapath optimization; • Computer systems
organization→ Data flow architectures.
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1 Introduction
FPGAs are flexible and energy-efficient computing platforms
that support fine-grained parallelism [8, 39]. Yet, they are
also hard to program: expertise in low-level hardware details
is necessary to achieve high design quality. High-level syn-
thesis (HLS) tools promise to reduce the effort for FPGA de-
sign by automatically compiling software programming lan-
guages like C/C++ to RTL circuit descriptions [6, 19, 24, 45].
However, standard HLS strategies [6, 12, 44, 51] are limited
to particular classes of applications (i.e., regular and pre-
dictable code that the HLS compiler can easily reason about)
and fail in achieving the desired parallelism levels in others
(i.e., code with unpredictable memory or control accesses
that cannot be determined at compile time). In analogy with
the processor world, standard HLS has a strong resemblance
to VLIW processors [36]: to extract parallelism, it relies on
complex compilation and code restructuring techniques that
are successful only in certain situations. Yet, most applica-
tions today require the flexibility of out-of-order superscalar
processors, where execution decisions are dynamically de-
termined at runtime [32].

Dataflow circuits offer this benefit: they allow execution to
progress dynamically as soon as data is available and critical
decisions are resolved, and exploit similar mechanisms to
those of out-of-order processors, such as memory reorder-
ing [28], speculation [30], and multithreaded execution [22].
Thus, recent HLS efforts generate dataflow circuits from soft-
ware code [21, 29] and show impressive results. Yet, this
performance advantage is not for free: dataflow circuits are
also resource-expensive. To ensure that they can implement
relevant large-scale applications on FPGAs, where resources
are limited and, sometimes, scarce, dataflow circuits need
to exploit any available resource optimization opportunity—
from resource sharing [33] to redundant dataflow logic re-
moval [48–50] and strategic buffering [41].
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Resource sharing is a standard HLS optimization: the idea
is to share physical units among multiple operations exe-
cuting at different times [18]. In the context of FPGAs, it is
typically used to share DSP blocks across multiple arithmetic
operations; other sharing forms are also possible (e.g., BRAM
or register sharing). Yet, resource sharing has its unique
challenges in dataflow circuits. When a physical resource is
shared between multiple operations, during circuit execu-
tion, the pending computation of an operation might block
the others that share the same physical resource. This might
create cyclic dependencies among operations, thus causing
deadlock or performance degradation. Thus, producing cor-
rect and performant dataflow circuits with sharing requires
a deadlock avoidance scheme and a systematic strategy to
evaluate the impact of sharing on performance. The former
typically results in complex and resource-expensive ordering
mechanisms and the latter in a time-consuming evaluation
of all sharing decisions [33]; both aspects limit the usability
of sharing in complex HLS applications.

In this work, we present CRUSH, a scalable and effective
sharing strategy in dataflow circuits. Our contributions are
summarized as follows:
• We devise a simple and localized sharing mechanism
for dataflow circuits. In contrast to a prior work [33],
we seize more sharing opportunities by enabling out-
of-order accesses to the shared unit. Our approach
is independent of the control flow mechanism of the
circuit, which makes it suitable for different dataflow
HLS strategies [21, 29].
• We devise scalable and effective heuristics to decide
on sharing schemes and access priorities that maintain
the circuit’s performance before sharing, without re-
quiring an exhaustive and time-consuming evaluation
of the effect of sharing.

We demonstrate the effectiveness of CRUSH on a set of
standard HLS benchmarks and show its practicality in im-
plementing sharing in complex HLS applications.

2 Background and Related Work
This section describes dataflow circuits and recent research
studies addressing resource sharing.

2.1 Dataflow Circuits
Dataflow circuits are built from units that communicate via
channels. A channel consists of data and a pair of valid-ready
handshake signals [3, 7, 14, 20, 29]. The communication be-
tween units is regulated by a handshake protocol: once the
control and memory dependencies have been resolved, units
exchange tokens which encapsulate data. There is no central-
ized scheduler: the units dynamically progress the execution
as soon as all conditions to do so have been met. Many
works study the generation process of dataflow circuits from
high-level code [21, 29]; we focus on HLS approaches that

target C code [21, 29] and the generated circuits implement
single-threaded programs [21, 29, 35]; our solution is equally
applicable to other dataflow HLS strategies.
The dataflow circuits that we consider are built from the

following units [14, 20, 29]: (1) A fork has 1 input andmultiple
outputs; it distributes a copy of the incoming token to each
successor as soon as they are ready to receive it. (2) A join
synchronizes multiple tokens before sending a token to its
successor; it is typically used in arithmetic units to ensure
the presence of all inputs before computing. (3) A merge has
2 inputs and 1 output; it propagates a token to its single
output from one of its inputs. (4) A mux is a merge with
an additional control input to select the input token. (5) A
branch has 1 data input, 1 control input, and 2 outputs; it
propagates the received data token to one of its successors,
depending on the value of the received condition token. (6) A
buffer has 1 input and 1 output; it is used to store tokens,
break combinational paths, and increase throughput; buffers
can be arbitrarily placed on any channel without penalizing
correctness [4, 29, 34].
Dataflow circuits are commonly modeled as a directed

graph, where nodes are units and edges are channels.
Performance optimization is commonly done on choice-
free circuits (CFCs)—subcircuits with no conditional execu-
tion [2, 4, 34, 41]. The initiation interval (II) of the CFC is often
the primary optimization goal, which indicates the distance
between two consecutive loop iterations. A smaller II implies
more loop computations can be done on average and, thus,
higher circuit throughput. The Token occupancy denotes the
number of tokens occupying a channel; it determines how
many buffer slots should be allocated. The occupancy 𝜙op of
a pipelined unit op is calculated as latop/𝐼 𝐼CFC , where latop is
op’s latency (number of cycles for computing the result), and
𝐼 𝐼CFC is the CFC’s II. It is used to identify underutilized units
and where it is advantageous to share them [33].

2.2 Resource Sharing in Dataflow Circuits
Resource sharing is one of the key HLS optimization tech-
niques for generating efficient circuits [5, 6, 16, 44, 51]. Shar-
ing is typically performed heuristically in conjunction with
operation scheduling due to the computational complexity
of this task [5, 18, 51].

Resource sharing in dataflow circuits has been addressed
in limited scope [1, 13, 20, 26, 33, 37]. To the best of our
knowledge, only Josipović et al. [33] present a solution that
addresses both the correctness and performance aspects of
sharing in HLS-produced dataflow circuits: (1) they point out
that naive resource sharing leads to a deadlock, and (2) they
propose a total-token-order-based solution that prevents it.
In the next section, we discuss the challenges of resource
sharing in dataflow circuits, how the problem is addressed in
the prior work, its limitations, and our new solution.
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Figure 1. Naive resource sharing leads to deadlock [33]. Figure 1a describes the circuit before sharing. Figure 1b and Figure 1c
describe why naively sharing cannot prevent a deadlock state caused by head-of-line blocking; we avoid it using credit-based
access control (discussed in Section 4.1). Figure 1d and Figure 1e describe why a fixed order arbitration causes deadlock; we
avoid it using priority-based arbitration (discussed in Section 4.2).

3 The Challenges of Resource Sharing in
Dataflow Circuits

This section describes the challenges of sharing in dataflow
circuits, i.e., the correctness and performance aspects.
Consider Figure 1a. The circuit implements part of the

code above it. A token carrying the value of 𝑖 becomes avail-
able at the circuit’s input every second cycle (as II = 2); it is
replicated by Fork and sent to𝑀1 and𝑀2 (both have latency
= 3 and, thus, 3 pipeline stages that can compute on different
tokens in parallel). 𝑀3 consumes 𝑀1’s results; a join (+)
consumes tokens produced by𝑀2 and𝑀3.𝑀1,𝑀2, and𝑀3
are under-utilized (i.e., not all pipeline stages contain tokens
simultaneously); therefore, sharing is advantageous here, as
we can potentially maintain the circuit performance while
reducing the functional unit usage.

Assume that we implement operations𝑀2 and𝑀3 using a
single unit. Figure 1b describes the shared unit (shared by𝑀2
and𝑀3) with a sharing wrapper: a merge and a mux select
the inputs of the original operations and send the selected
operands to the shared unit. The merge informs the condition
buffer which input has been taken; this information will be
used by Branch to send the result to the correct successor.
There is a buffer slot at each output of Branch to account for
the temporary unavailability of the successors. This design
has a deadlock risk, as described next.

Example: Naive resource sharing creates deadlock. The cir-
cuit in Figure 1b may deadlock due to head-of-line block-
ing [17, 33, 40]. Initially, the shared unit executes𝑀2 twice
before𝑀3. The resulting state (in Figure 1b) has an execution
dependency cycle: (1) The first𝑀2-produced token occupies
M2’s output buffer, which prevents the shared unit from
sending out the token closest to its output (i.e., the head-of-
line position). (2) The token at the head of the line blocks the
token after it, i.e., the first token of 𝑀3. (3) The first token
of𝑀3 cannot reach Join; since Join needs both tokens from
𝑀2 and 𝑀3 to execute, it cannot consume the token that
occupies M2’s output buffer. The circuit deadlocks since no
token can move.
Prior work: a total-order-based approach. Josipović et

al. [33] propose a solution to this deadlock problem. Con-
sider Figure 1b. There is no deadlock risk if we always access
the shared unit in the control flow order, i.e., operations of
one basic block (BB) must execute before the operations of
another. In this example,𝑀2 and𝑀3 of iteration 1 must be
executed before 𝑀2 and 𝑀3 in any subsequent iterations.
For example, "𝑀2, 𝑀3, 𝑀2, 𝑀3, etc." is a legal order, as no
access runs ahead of the execution of the previous iteration.
In Figure 1b, "𝑀2, 𝑀2, 𝑒𝑡𝑐 ." violates the total order.
In the last example, deadlock is avoided without an II

penalty; the II remains 2, which is the best II when a resource
is shared between 2 operations. Yet, the same example also
shows a performance limitation of this strategy. Consider the
same circuit, except that𝑀1 and𝑀3 now share one unit with
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an order "𝑀1, 𝑀3, 𝑀1, 𝑀3, . . . ". We illustrate the schedule
in Figure 2a: in cycle 1, 𝑀1 starts; in cycle 4, 𝑀3 receives
data from M1, and starts; in cycle 5,𝑀1 starts; in cycle 8,𝑀3
receives data from M1, etc. In this case, every𝑀1 (starting
from iteration 2) has to wait until the 𝑀3 in the previous
iteration begins; this creates an execution dependency cycle
of latency 4 (the entire execution of 𝑀1, the first stage of
𝑀3, and back to𝑀1), which forces the achievable II to be at
least 4 (greater than the theoretically achievable II).

Besides the performance limitation, the prior work relies
on a time-consuming strategy to find a good ordering. Recent
dataflow HLS strategies achieve high parallelism where BBs
execute out of order for performance benefits—enforcing a
total token order diminishes the advantage [21].

Our work: a credit-based approach. To overcome these lim-
itations, we devise a credit-based sharing strategy inspired
by techniques well-known in interconnect systems [9, 10, 17,
40]. (1) We seize opportunities like in Figure 2a by allowing
out-of-order accesses to the shared unit, thus achieving the
schedule like in Figure 2b. (2) Our deadlock avoidance strat-
egy is agnostic to the circuit’s control flow, thus, it is suitable
for different dataflow HLS strategies [21, 29].
The rest of the paper is organized as follows: Section 4

describes our sharing strategy and how it ensures deadlock-
free resource sharing. Section 5 discusses the performance
aspect of sharing and presents efficient heuristics for reduc-
ing resource usage and maintaining the II. Section 6 presents
a complete workflow and evaluates our approach. Section 7
concludes the paper.

4 Deadlock-Free Resource Sharing:
A Credit-Based Approach

This section presents our credit-based sharing approach for
preventing deadlocks.

We assume that the circuit before sharing is deadlock-free
per se (i.e., dependency cycles do not exist in any possible cir-
cuit execution); this work focuses on avoiding the deadlock
situations introduced by resource sharing. We classify the
sharing-induced deadlocks into two types: (1) Head-of-line

blocking: the interaction between the sharingwrapper and its
successors might create a deadlock (elaborated in Section 3).
We avoid it with a credit-based stall mechanism. (2) Fixed
access order policy: the interaction between the sharing wrap-
per and its predecessors might create a deadlock. We avoid
it with an adaptive arbitration scheme with priority.

4.1 Avoiding Deadlock Caused by Head-of-Line
Blocking

This section describes how we eliminate head-of-line block-
ing using a credit-based approach [17, 40].
We extend the naive sharing wrapper (Figure 1b) with

a credit-based control mechanism, as shown in Figure 1c.
At the inputs of the sharing wrapper (i.e., before the merge
and mux), each operation that shares the unit maintains the
number of available credits—the number of computations it
can issue to the shared unit. Initially, the number of cred-
its must be no greater than the number of output buffer
slots. A computation is issued by consuming 1 credit; when-
ever an operation has all its input data but no credit, the
wrapper prevents access by stalling the operation’s prede-
cessor(s). Consider Figure 1c: both𝑀2 and𝑀3 initially have
1 credit (the same as the output buffer slots); 0/1 means that,
initially, the operation has 1 credit, but currently it has 0
credits. When the sharing wrapper has issued an 𝑀2 (left)
and its result has not left yet,𝑀2 will be out of credits, which
stops the sharing wrapper from issuing any𝑀2; meanwhile,
the wrapper can issue an 𝑀3 (right) as there is 1 available
credit. Whenever a token leaves the output buffer, a credit is
returned to the input; this indicates that an output buffer slot
becomes free. In this way, at any point in time, each token
in the shared unit can always find a free slot at its destina-
tion output buffer, and the token at the head of the line can
never be stalled, thus, the deadlock risk due to head-of-line
blocking is eliminated.
Irrelevant to correctness, sufficient credits are necessary

for maintaining the II, since the credit count limits the
number of computations in the shared unit. Consider Fig-
ure 1c: The shared unit will be underutilized when𝑀2 and
𝑀3 each have only 1 credit (at most 2 out of 3 pipeline stages
can be used). In Section 5.4, we will discuss how to allocate
sufficient credits to maintain the desired II.

4.2 Avoiding Deadlock Caused by a Fixed Access
Order

The sharing wrapper must have an access policy to handle
situations where multiple operations can be executed. One
might attempt to use a round-robin style arbiter to control
the access, i.e., an arbiter that strictly follows a predefined
order to execute the operations. However, this might create
a deadlock if we do not know the dependencies between the
input operations.
Example: a fixed access order causes deadlock. Consider

Figure 1d; we share operations𝑀1 and𝑀3, where𝑀3 needs
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the result of𝑀1 to execute. Assuming that the arbiter follows
a fixed order "𝑀3, 𝑀1, 𝑀3, 𝑀1", the circuit deadlocks as
(1) the first request of𝑀3 will not be issued before the first
𝑀1 is available, and (2) the first𝑀1 cannot be executed as it
has to wait for the first𝑀3.
We do not allow an absent request keeping any other

request out of the shared unit. We realize this through an
arbiter with a priority. Consider Figure 1e. In this case, unlike
in Figure 1d where a fixed access order is used, an arbiter
decides which operation can run based on a predefined pri-
ority (e.g., in this case, 𝑀3 is prioritized over 𝑀1); the key
difference compared with fixed order is that𝑀1 can execute
in the absence of𝑀3.
In this way, sharing will not create any dependency be-

tween the predecessors of different operations that share
the unit, thus avoiding deadlock caused by the interaction
between the sharing wrapper and its predecessors.

Irrelevant to correctness, not all priorities maintain the II.
Section 5.3 discusses how to determine one that does.

4.3 A Sharing Mechanism for Dataflow
Circuits

This subsection leverages the insights from Section 4.1 and
Section 4.2 to devise a sharing circuit construction strategy.
We denote the set of operations that share a unit as a sharing
group 𝐺 := {𝑜𝑝1, 𝑜𝑝2, . . . , 𝑜𝑝 |𝐺 | }; the group size is |𝐺 |. A
group 𝐺 := {opi} of one operation denotes that op𝑖 does not
share a unit with any other operations.

Consider Figure 3: a unit is shared between |𝐺 | = 3 opera-
tions using our credit-based method. Similar to the circuit
in Figure 1, the sharing circuit consists of a mux, an arbiter
merge (implementing the priority-based arbitration in Sec-
tion 4.2), a shared unit, a condition buffer (cond buffer), and
a branch (their usages are discussed in Section 3). We extend
it as follows: for each operation 𝑜𝑝𝑖 , a credit counter 𝐶𝐶𝑖

tracks the number of computations that can be issued to the
shared unit. 𝐶𝐶𝑖 resets with 𝑁𝐶𝐶,𝑖 credits (implemented as
dataless tokens); here, 𝑁𝐶𝐶,𝑖 = 2. After each output channel
𝑖 of the branch, there is a buffer (output buffer (𝑂𝐵𝑖 )) that
has 𝑁𝑂𝐵,𝑖 slots (here 𝑁𝑂𝐵,𝑖 = 2)—it holds tokens dispatched
from the shared unit, but cannot be taken yet by the out-
put (e.g., see Figure 1). To avoid deadlock, the following must
hold (described in Section 4.1):

𝑁𝐶𝐶,𝑖 ≤ 𝑁𝑂𝐵,𝑖 ,∀𝑖 . (1)

In Figure 3,𝐶𝐶1 has two initial credits and𝑂𝐵1 has two slots,
which honors the constraint described in Equation 1.

Before the merge and muxes, a join Join𝑖 synchronizes
op𝑖 ’s credit and operands from op𝑖 ’s predecessors and 𝐶𝐶𝑖 .
When 𝑜𝑝𝑖 has an available credit and all the operands, Join𝑖 ,
the merge, and muxes will consume a credit and start a
computation in the shared unit; whenever the operands are
incomplete or have no credits, Join𝑖 prevents op𝑖 access by
stalling the predecessors and 𝐶𝐶𝑖 .
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Figure 3. Credit-based sharing wrapper for a group of 3
operations,𝑀1,𝑀2, and𝑀3.

When a token produced by 𝑜𝑝𝑖 leaves the sharing wrapper,
a fork Fork𝑖 returns a credit to𝐶𝐶𝑖 . The forkmust be lazy [14],
i.e., it propagates tokens to the successors only if both are
ready, which prevents a credit from being returned before
the OB slot is freed. To avoid combinational loops, in the
same cycle, the credit being returned cannot be used for
starting a new computation.
Our sharing wrapper introduces area and timing over-

heads. To estimate when sharing is beneficial (i.e., before
mapping the circuit onto an FPGA, which can be very time-
consuming), we devise a cost function for the shared units of
operation type𝑇 and wrapper logic as the following:

CT · |groups |︸         ︷︷         ︸
Cost of the shared units
(reduces with sharing)

+
∑︁

Gi∈groups
CWP ( |Gi |),︸            ︷︷            ︸

Cost of the sharing wrappers
(increases with sharing)

(2)

where CT is one shared unit’s resource cost (e.g., DSP blocks
on FPGAs); groups := {𝐺1,𝐺2, . . . } is the set of non-empty
sharing groups (in total |groups | groups) of operations with
type 𝑇 ; CWP (·) is the resource cost of the sharing wrapper
given the group size |Gi |. The first termmodels the cost of the
shared units, which decreases with more units shared (i.e.,
fewer sharing groups) as fewer units need to be implemented.
The second term models the cost of the sharing wrappers,
which increases with more units shared since the selection
and arbitration logic become more complex. Equation 2 can
be used to model different resources and characterize dif-
ferent platforms (e.g. FPGAs and ASICs). It can guide the
sharing heuristic (Algorithm 1 in Section 5.2) to find more
desirable solutions. By plotting Equation 2 against the size
of the sharing group, we can decide if sharing a particular
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Figure 4. Access priority may penalize II when disregarding the dependency between operations. Figure 4a and Figure 4d: in
both circuits, M1 and M2 share one unit and M2 depends on M1. Figure 4b and Figure 4e: respective schedules when𝑀1 ≺ 𝑀2;
II is maintained in both cases. Figure 4c and Figure 4f: schedules when𝑀2 ≺ 𝑀1; II is penalized in both cases.

unit is beneficial at all (e.g., sharing integer adders is not
beneficial—the cost of the wrapper quickly surpasses the
cost of the removed adders). Section 6 will show that the
overheads are insignificant—for practical sharing applica-
tions, say, sharing expensive floating-point units, the saving
compensates the sharing overhead.

5 Sharing and Performance
This section devises a strategy that determines sharing
groups; an access priority is then decided for each group.
We aim to use as few groups as possible while maintaining
the II of the performance-critical CFCs (e.g., the innermost
loop of each loop nest). We will describe cases where sharing
increases II and present heuristics that generate performance-
preserving grouping and priority schemes.

5.1 Examples: Sharing Might Penalize II
This subsection discusses examples of when sharing hurts II:
We discuss the cases where a good priority must be selected
and the cases where none of the access priorities preserves
the II, i.e., operations should not share one unit.

Example 1: access priorities. Figure 4a describes a CFC with
operations𝑀1 and𝑀2 (they have the same type, and have 2
pipeline stages). The II before sharing is 2, which indicates
that both𝑀1 and𝑀2 need the same pipeline stage once every
two clock cycles. We can potentially implement𝑀1 and𝑀2
using one unit while maintaining II = 2: in each iteration,
we activate𝑀1 and𝑀2 in two separate cycles. In this way,
they can still be activated every 2 cycles after sharing and
the II is maintained. Since Fork always makes data tokens
available to𝑀1 and𝑀2 simultaneously, arbitration between
them is needed. We denote op𝑎 precedes op𝑏 with op𝑎 ≺ op𝑏 .
Figure 4b depicts the schedule if we consider𝑀1 ≺ 𝑀2 (i.e.,
𝑀1 will access the shared unit first when both𝑀1 and𝑀2
can execute); this is desirable as II = 2. Instead, if 𝑀2 ≺
𝑀1 (Figure 4c), a token has to wait for 𝑀2 for 1 cycle, and
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Figure 5. No access priority maintains the II. M1 and M2 are
in the same SCC and are always executed simultaneously
before sharing. Thus, M1 and M2 should not share one unit.

stays in𝑀1 for 2 cycles; since a new iteration can start only
once𝑀1 produces a value, the II becomes 3.

Example 2: access priorities. Figure 4d depicts a subcircuit
receiving a new token with an II = 2; it might be desirable
to have𝑀1 and𝑀2 share one unit.𝑀1 ≺ 𝑀2 maintains the
II (Figure 4e). On the other hand, if 𝑀2 ≺ 𝑀1 (Figure 4f),
since𝑀1 and𝑀2 can execute simultaneously every 2 cycles,
postponing𝑀1 also delays the subsequent𝑀2, i.e., the circuit
can no longer run with an II = 2.
In both examples, 𝑀2 needs the result from 𝑀1. In Fig-

ure 4a, 𝑀2 needs the result from 𝑀1 in the previous iter-
ation. In Figure 4d, 𝑀2 depends on 𝑀1 in the same itera-
tion. The priority 𝑀2 ≺ 𝑀1 in both examples ignores the
dependency between operations. To avoid a performance
penalty, the priority should follow the data dependency:
when op1 and op2 share one unit, if op2 needs the result
from op1, then op1 is prioritized. Beyond dataflow circuits,
many resource-constrained scheduling techniques employ
this policy [15, 51].

The next example describes a case where the II is penalized
no matter which access priority we choose—this indicates
that operations should not share one unit.
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Example 3: sharing groups. Finding a performance-
preserving grouping scheme seems straightforward—we
want underutilized operations to share one unit [33]. Yet,
there is still one caveat. Consider Figure 5a:𝑀1 and𝑀2 (both
have latency = 2) share one unit. Before sharing, the circuit
can run in II = 2 (Figure 5b). Picking any of them to start first
delays the join’s execution and the II becomes 3 instead of
2 (schedule in Figure 5c). Here, both𝑀1 and𝑀2 need each
other’s results and they always become available to execute
simultaneously; in other words,𝑀1 and𝑀2 are in the same
strongly connected component (SCC)—a subgraph in which
every node is reachable by every other node [43].
The three examples above show that reasoning about

dependencies is critical to making decisions about groups
and priorities. We next devise heuristics for generating the
groups and priority. Both heuristics rely on analyzing the
SCCs in the CFCs.

5.2 Sharing Group Heuristic
This subsection presents our sharing group heuristic.

Each CFC has a set of SCCs. For each CFC, we can build an
SCC graph—a directed graph that describes the dependencies
between the SCCs, where the nodes are SCCs, and an edge
SCC𝑖 → SCC 𝑗 indicates an edge 𝑛𝑖 → 𝑛 𝑗 ∈ CFC exists, such
that𝑛𝑖 ∈ SCC𝑖 , 𝑛 𝑗 ∈ SCC 𝑗 ; this edge indicates that operations
in SCC 𝑗 need the data from operations in SCC𝑖 .
The heuristic is depicted in Algorithm 1—the goal is to

prevent sharing operations that are in the same SCC and
always execute simultaneously. For 𝐾 possible sharing candi-
dates (operations that can share a unit with other operations),
we initialize 𝐾 groups (each has 1 operation). Given 2 groups
𝐺𝑖 ,𝐺 𝑗 , we test the following rules on their union𝐺 = 𝐺𝑖∪𝐺 𝑗 ;
𝐺𝑖 ,𝐺 𝑗 are merged if no rule has failed: R1 : Operations in 𝐺
must have the same type. R2 : For each performance-critical
CFC CFC, the sum of token occupancies in all operations
in 𝐺 ∩ CFC must be lower than the unit capacity. R3 : For
each performance critical CFC CFC and each SCC ∈ CFC,
if ∃𝑜𝑝𝑖 , 𝑜𝑝 𝑗 ∈ (𝐺 ∩ SCC), then ∀𝑢 ∈ (SCC \ {op𝑖 , op 𝑗 }), 𝑢
must have different maximum distances to op𝑖 and op 𝑗 . The
heuristic merges groups until no change can be made.

R3 avoids arbitration between operations in the same
SCC, thus avoiding II penalty. Consider Figure 5a:𝑀1 and𝑀2
are in the same SCC; the maximum distance from any other
unit to 𝑀1 and 𝑀2 is always identical, e.g., the distances
between Buf1 to𝑀1 and𝑀2 are both 0; by R3 ,𝑀1 and𝑀2
should not be in the same group. R3 is a heuristic: if the
depicted SCC is not the bottleneck, having𝑀1 and𝑀2 share
one unit does not penalize the II; we opt for this rule since it
avoids complex analysis of the actual change of the II.

5.3 Access Priority Heuristic
This subsection devises a heuristic that assigns an access
priority scheme to each sharing group (determined using the
sharing group heuristic).

The heuristic is depicted in Algorithm 2; it is based on
applying bubble sort to a list that encodes group𝐺 ’s access
priority. The following details how the heuristic compares
the given 2 list elements, i.e., a pair of operations op𝑖 , op 𝑗
in 𝐺 . For each CFC CFC and the SCC graph of CFC, we
determine a topological order of the SCCs. For any pair of
SCCs SCC𝑖 , SCC 𝑗 ∈ CFC, and op𝑖 , op 𝑗 ∈ 𝐺 such that op𝑖 ∈
SCC𝑖 and op 𝑗 ∈ SCC 𝑗 , the access priority between op𝑖 and
op 𝑗 must follow the topological order of SCC𝑖 and SCC 𝑗 in
the SCC graph. If 𝑜𝑝𝑖 , 𝑜𝑝 𝑗 are in the same SCC, then any
priority between 𝑜𝑝𝑖 , 𝑜𝑝 𝑗 is accepted.

Example: priority based on SCC graph. Consider Figure 4a:
the CFC has 4 SCCs, i.e., SCC0 = {Fork, 𝑀1}, SCC1 =

{𝑀2}, SCC2 = {Buf1}, SCC3 = {Store}. As M2 and Buf 1
depend on the result of Fork and M1, and Store needs the
result from both M2 and Buf 1; a possible topological order
is SCC0 ≺ SCC1 ≺ SCC2 ≺ SCC3. When M1 and M2 share a
unit, since in the topological order SCC0 ≺ SCC1, we order
𝑀1 ≺ 𝑀2 to avoid performance loss. Note that this ordering
scheme is not necessary to prevent performance loss. Con-
sider Figure 4a: if there was a unit before M2 that introduces
one sequential delay, then order𝑀2 ≺ 𝑀1 does not hurt the
II, as𝑀1 and𝑀2 never execute at the same time.

In line with practical HLS strategies [5, 51], our grouping
and priority strategies are based on heuristics. Our heuristics
rely on standard, scalable graph analysis techniques, i.e., de-
termining SCCs in a CFC (scales linearly to the CFC size [43])
and maximum distances in the SCCs (the SCCs are usually
sparsely connected, i.e., the number of paths is small). In
Section 6.3, we show that our strategy can produce efficient
circuits with scalable runtime.

5.4 Buffer Sizing and Credit Allocation
This subsection describes how to decide on buffer and credit
sizing to maintain circuit II.
On reconvergent paths—paths that start and end at the

same fork and join—buffers are inserted on the short-latency
path to avoid the propagation of stalls [2, 4, 34, 41]. If the
latency change is confined to a certain range, it is unneces-
sary to adjust the buffer placement to counteract variation
in the computation pattern. When awaiting arbitration, the
operation postpones consuming tokens available at the input.
In the circuit’s steady state, if a new token becomes available
at the input every II cycles, postponing its acceptance for
less than II cycles will not propagate the stalls to the rest of
the system as no token will be accumulated. Since there is
no additional token accumulation, the reconvergent paths
do not require any extra buffering to balance.
No additional buffer requirement. In our sharing strategy,

for any operation op in a sharing group 𝐺 , the maximum
time that op is postponed is 𝑡max = |𝐺 | − 1 (it has to wait for
all other operations before it can get access); since II ≥ |𝐺 |,
this means 𝑡max ≤ 𝐼 𝐼 −1. Thus, applying our sharing strategy
does not require additional buffers.
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Algorithm 1: Sharing groups
Data: Dataflow circuits, performance-critical CFCs,

occupancies of operations, sharing candidates.
Result: Sharing groups groups.

1 ⊲ For K sharing candidates, initialize groups with K groups, each
has 1 operation.

2 groups← {{𝑜𝑝}|∀𝑜𝑝 ∈ sharing candidates}
3 ⊲ Greedily merge groups until no changes can be made.
4 while groups modified do
5 for 𝐺𝑖 ,𝐺 𝑗 ∈ groups do
6 if ¬check_R1(𝐺𝑖 ∪𝐺 𝑗 ) then
7 continue ⊲ R1 : ops must have the same type.

8 if ∃CFC ∈ Critical CFCs : ¬check_R2(𝐺𝑖 ∪𝐺 𝑗 ,CFC)
then

9 continue ⊲ R2 : sum of occupancy ≤ capacity.

10 if ∃CFC ∈ Critical CFCs : ¬check_R3(𝐺𝑖 ∪𝐺 𝑗 ,CFC)
then

11 continue ⊲ R3 : ops in the same CFC→ ops always start
at different time.

12 if Merging 𝐺𝑖 and 𝐺 𝑗 reduces cost then
13 𝐺𝑖 ← 𝐺𝑖 ∪𝐺 𝑗 ,𝐺 𝑗 ← {} ⊲ Merge𝐺𝑖 and𝐺 𝑗 .

.
.
.

.
.
.

M1 O

M1 O
M1 M2

* *

Fork

Join

Buf1
1

2

3

II = 2

II = 2

Buf1

0 1 2 3 4
Cycle

M1
1

2

3 II = 2

0 1 2 3
Cycle

(b) Before sharing (c) After sharing(a) Circuit

5 6

M2
Buf1

M1
M2
Buf1

M1
M2

M2
Buf1

M2
Buf1

O

Ite
ra

tio
n

Ite
ra

tio
n

Figure 6. On reconvergent paths, operations sharing the
same unit do not increase buffer usage. Before and after
sharing, Buf1 only needs 1 slot despite the latencies on other
reconvergent paths having increased.

Consider Figure 6a: 𝑀1 and 𝑀2 (latency = 2) share one
unit. To balance token occupancy on the three paths, a 1-
slot buffer (Buf1) is placed on the right path; this prevents
stalling the Fork. Figure 6b and Figure 6c describe the sched-
ule without and with sharing (𝑀1 ≺ 𝑀2). Compared with
the unshared circuit, the execution of𝑀2 is always delayed
for one cycle due to arbitration. The cycles where Buf1 takes
tokens are also delayed by 1 since the time it can dispatch
the token out to the Join is delayed, therefore the time it
can receive a token is also delayed. In the steady state of the
circuit after sharing (starting from iteration 2), a token stays
in Buf1 for 2 cycles, thus, no need to resize it.

Algorithm 2: Group access priority
Data: Dataflow circuit, performance-critical CFCs, sharing

group 𝐺 .
Result: Group 𝐺 ’s access priority 𝐺.prio.

1 𝐺.prio = [𝑜𝑝1, 𝑜𝑝2, . . . , 𝑜𝑝 |𝐺 | ] ⊲ Priority as a list
2 while 𝐺.prio modified do
3 for 𝑖 ∈ 2 . . . |𝐺 | do
4 for CFC ∈ CriticalCFC do
5 SCCGCFC = getSCCGraphOfCFC (CFC)
6 ⊲ If ops are in different SCCs of the same CFC, we decide

on the priority based on the topological order of the SCC
graph (SCCGCFC ).

7 if 𝐺.prio[𝑖 − 1],𝐺 .prio[𝑖] ∈ CFC then
8 if ∃𝑆𝐶𝐶𝑖 , 𝑆𝐶𝐶 𝑗 ∈ SCCGCFC : 𝐺.prio[𝑖 − 1] ∈

𝑆𝐶𝐶𝑖 ,𝐺 .prio[𝑖] ∈ 𝑆𝐶𝐶 𝑗 then
9 getTopologicalOrder (SCCGCFC)

10 if 𝑆𝐶𝐶𝑖 .order > 𝑆𝐶𝐶 𝑗 .order then
11 𝐺.prio.swap(𝑖 − 1, 𝑖)

Credit sizing requirements. There are many credit and out-
put buffer sizing possibilities to honor the correctness con-
straint (see Equation 1 in Section 4.3)—yet, not all of them
achieve our desired performance with reasonable cost. For
operation op, the initial number of credits 𝑁CC,op is the up-
per bound (in all possible circuit execution) of the sum of
the number of tokens carrying the intermediate results of
op (i.e., inside the shared unit, indicating the number of si-
multaneous computations) and staying in the output buffers
of op (i.e., due to temporary unavailability of the successor
caused by sharing). Credits must be sufficiently allocated
to avoid an II penalty, yet naively assigning many credits
incurs a high output buffer cost [34].

Credit allocation rule. To maintain the circuit’s II, for each
operation op in any sharing group with occupancy Φ𝑜𝑝 , we
assign the number of initial credit 𝑁CC,op as

𝑁CC,op = Φop + 1, (3)

where Φop credits keep the shared unit fully utilized; the one
extra credit hides the latency of returning the credit (see
Section 4.3) and accounts for the token that occupies 𝑜𝑝’s
output buffer.
Why do we need more credits than the average occu-

pancy (i.e., 𝑁CC,op > Φop)? Consider Figure 6c: After pro-
cessed by𝑀1 (see cycle 2), the token has to stay in the output
buffer (see OB in Figure 3) while waiting for𝑀2 to get access
to the shared resource. In this way, the credit correspond-
ing to that token is not immediately returned to the credit
counter for𝑀1; if there were initially only 1 credit (the same
as average occupancy Φop),𝑀1 could not start again (in cycle
2) since there would be no available credits.
Why is exactly 1 more credit sufficient (Equation 3)? In a

steady state, there is at most one token staying in the output
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Technique LUTs FFs DSPs
No sharing 76k/101k (75%) 115k/202k (57%) 790/600 (132%)
CRUSH 46k/101k (45%) 45k/202k (22%) 60/600 (10%)

Table 1. By unrolling (a common HLS optimization strategy
to increase parallelism [46]) the loops in gesummv by 75,
the resource cost easily exceeds the capacity of our target
Kintex-7 FPGA device. After using our method, the kernel
can easily fit on the FPGA.

buffer, as a token remains in the buffers for at most |𝐺 | - 1 = II
- 1 cycles due to arbitration. Thus, in the worst case, 𝐶𝐶 gets
a new credit from the output buffer every II cycles, allowing
the shared unit to initiate a new computation every II cycles
for op. Therefore, Φop + 1 credits are sufficient.

This concludes the description of our sharing strategy—we
will evaluate its effectiveness in the following section.

6 Evaluation
This section evaluates the effectiveness of CRUSH—our re-
source sharing strategy for dataflow circuits. The artifact
evaluation instructions are available in Appendix A.
The costs of an FPGA design are the number of used

LUTs (implement combinational logic) and FFs (registers).
An FPGA synthesis tool further offloads complex arithmetic
functions onto specialized DSP blocks. DSP blocks are scarce
resources: recent FPGAs typically have 300k–800k LUTs/FFs
and, in contrast, only 1k–2k DSP blocks [27].
To demonstrate the practical importance of sharing, we

aim to share the floating-point arithmetic units as much as
possible. These units are often a desirable sharing candidates
for FPGA designs since they demand multiple DSP blocks.
Our strategy is also applicable to other units.

6.1 Methodology
This subsection describes the experiment setup.

We evaluate our approach on standard HLS benchmarks
that exhibit different computation patterns and loop proper-
ties, including a subset of PolyBench [38] (atax, bicg, 2mm,
3mm, symm, gemm, gesummv, mvt, and syr2k) and gsum
and gsumif, which have irregular computation patterns that
are often used to showcase the benefit of dynamic sched-
uling [11]. All the kernels have an II > 1 due to the long-
latency loop-carried dependencies between floating-point
operations, therefore, many units are underutilized and can
be shared without a performance penalty.

We employ Dynamatic [24, 31], an open-source HLS com-
piler for translating C code to a dataflow circuit. Dynamatic
places buffers to optimize the circuit throughput and fre-
quency [34]. After obtaining dataflow circuits, we apply the
heuristics described in Section 5.2 and Section 5.3 to deter-
mine the sharing groups and the access priority within each
group. We then apply the sharing strategy from Section 4.3
to share floating-point arithmetic units in the circuit. We

determine the number of credits and output buffer sizes ac-
cording to the occupancy in the performance analysis result
reported by Dynamatic (see Section 5.4).

We use ModelSim [42] to obtain the execution latency in
the clock cycle count and verify the functionality.We confirm
that the circuit produces the same result as the C code and the
circuit does not deadlock. We use Vivado (2019.1) [45] to syn-
thesize the RTL design and obtain the post-place-and-route
area and maximum frequency, targeting a Kintex-7 FPGA
(part number: xc7k160tfbg484-1) with a clock period (CP) of
6 ns.We use the sameMILP formulation as Dynamatic for the
performance optimization, with the same solver (Gurobi [25]
version 11.0.3) and a timeout of 2 min.

We show that our sharing strategy is equally effective
on two different dataflow HLS strategies: (1) a circuit gen-
eration strategy that organizes units into BBs [29, 31] and
(2) a circuit generation strategy that organizes units into
producer-consumer pairs [21].
We contrast our method with a prior resource sharing

strategy, which restricts access to the shared unit to BB or-
dering [33] (see Section 3). For fairness, both sharing strate-
gies aim to share the functional units as much as possible
without hurting the performance of the inner-most loops. We
show that, while both approaches maintain the circuit per-
formance, CRUSH can seize more sharing opportunities (e.g.,
Figure 2) while spending substantially lesser runtime.

6.2 Discussion: Importance of Resource Sharing on
FPGAs

To demonstrate the feasibility of our approach on larger
benchmarks and the importance of resource sharing on FP-
GAs, we unroll the inner loop of the kernel gesummv by 75
(typically done in HLS and on FPGAs for parallelism [46]).
Table 1 reports the synthesis result: without sharing, even a
single kernel does not fit on our target Kintex-7 FPGA (i.e.,
requires 32% more than the available DSP units), whereas it
fits after applying CRUSH to share resources. This demon-
strates the relevance of sharing: even a modest workload
requires it to fit onto an FPGA. Moreover, resource sharing
frees up available resources, which can be used to perform
other computations.

6.3 Discussion: Effectiveness of Our Strategy
Table 2 reports the utilization, performance, and optimization
runtime of different approaches. The column Technique
categorizes the used sharing strategy: Naive indicates no
resource sharing [34], In-order indicates total-order-based
sharing [33], and CRUSH indicates our credit-based sharing
strategy. The columns Functional units and DSPs respec-
tively report the functional unit count in the dataflow circuit
and the number of DSPs in use—they indicate the effective-
ness of the sharing strategies.

CRUSH vs Naive. CRUSH greatly reduces the functional
unit usage—all units with identical types can be implemented
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Benchmark Technique Functional units DSPs Slices LUTs FFs CP (ns) Cycles Exec. time (us) Opt. time (s)
Naive 2 fadd 2 fmul 10 616 1581 1921 5.2 4604 23.9 0.7

In-order 1 fadd 1 fmul 5 577 1540 1600 5.3 4604 24.4 8.5atax
CRUSH 1 fadd 1 fmul 5 580 1669 1446 5.5 4604 25.3 1.2
Naive 2 fadd 2 fmul 10 592 1434 1801 5.1 8842 45.1 0.5

In-order 1 fadd 1 fmul 5 551 1475 1531 5.2 8786 45.7 6.2bicg
CRUSH 1 fadd 1 fmul 5 524 1437 1310 5.3 8758 46.4 0.7
Naive 5 fadd 4 fmul 22 757 2135 2833 6 3642 21.9 0.5

In-order 5 fadd 4 fmul 22 757 2135 2833 6 3642 21.9 33.6gsum
CRUSH 1 fadd 1 fmul 5 531 1521 1386 5.8 3642 21.1 1
Naive 7 fadd 4 fmul 26 1065 2730 3694 6.3 3556 22.4 1

In-order 3 fadd 2 fmul 12 829 2361 2568 6.3 3624 22.8 61.4gsumif
CRUSH 1 fadd 1 fmul 5 616 1794 1731 6.6 3556 23.5 1.2
Naive 2 fadd 4 fmul 16 1364 3198 3798 5.7 18627 106.2 1.6

In-order 1 fadd 1 fmul 5 1228 3110 3211 6 18242 109.5 27.72mm
CRUSH 1 fadd 1 fmul 5 1168 3144 3004 5.5 18223 100.2 2
Naive 3 fadd 3 fmul 15 1224 2933 3246 5.2 28195 146.6 2

In-order 1 fadd 1 fmul 5 1003 2718 2436 5.6 27330 153 11.73mm
CRUSH 1 fadd 1 fmul 5 1046 2986 2232 5.5 27310 150.2 3.1
Naive 4 fadd 7 fmul 29 1816 4337 4925 6.3 39922 251.5 1.1

In-order 1 fadd 1 fmul 5 1464 3865 3376 6.5 47113 306.2 60.3symm
CRUSH 1 fadd 1 fmul 5 1432 3885 3056 6.3 39372 248 1.7
Naive 1 fadd 3 fmul 11 760 1939 2363 5.5 76851 422.7 0.8

In-order 1 fadd 1 fmul 5 729 1975 2162 5.6 76433 428 12.7gemm
CRUSH 1 fadd 1 fmul 5 701 1955 2076 5.6 76433 428 1.1
Naive 3 fadd 4 fmul 18 885 2246 2988 5.5 8856 48.7 0.7

In-order 1 fadd 1 fmul 5 746 2048 2099 5.7 9267 52.8 16.4gesummv
CRUSH 1 fadd 1 fmul 5 720 2052 1892 5.5 8773 48.3 1
Naive 2 fadd 2 fmul 10 649 1637 1989 5.1 17646 90 0.8

In-order 1 fadd 1 fmul 5 625 1625 1680 5.6 17487 97.9 4.4mvt
CRUSH 1 fadd 1 fmul 5 610 1699 1498 5.2 17477 90.9 1.1
Naive 2 fadd 5 fmul 19 1307 2970 3610 5.5 17472 96.1 2

In-order 1 fadd 1 fmul 5 1133 3014 2983 5.6 18262 102.3 37.8syr2k
CRUSH 1 fadd 1 fmul 5 1087 2992 2628 5.6 17372 97.3 2.7

Average improvement of CRUSH vs Naive. Slices: -17% LUTs: -6% FFs: -32% DSPs: -66% Opt. time (s): +47% Exec. time (us): +1%
Average improvement of CRUSH vs In-order. Slices: -7% LUTs: -3% FFs: -15% DSPs: -12% Opt. time (s): -90% Exec. time (us): -4%

Table 2. Comparison between no sharing (Naive) [34], total-order-based sharing (In-order) [33], and our work (CRUSH).
Compared with In-order, CRUSH seizes more sharing opportunities and has significant runtime savings; this is achieved at
negligible performance degradation.
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Figure 7. The trade-off between FF, DSP, and latency (Exec.
time) of CRUSH (this work) vs Naive [29] in Table 2. All
metrics are normalized to the value of Naive. The dashed
lines indicate the average values.

using one shared unit. This is achieved at a negligible perfor-
mance degradation, as reported in Exec. time (us) (calcu-
lated as CP × Cycles). Compared with Naive, CRUSH has
1% performance loss on average (CRUSH has a CP overhead
but has a lower cycle count, as discussed later). Figure 7
depicts the trade-off between FF, DSP, and latency from
Table 2: CRUSH’s solutions are Pareto optimal or domi-
nate the solutions of Naive. This shows that our heuristics
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Figure 8. The trade-off between FF, DSP, and latency (Exec.
time) of CRUSH (this work) vs In-order [33]. All metrics are
normalized to the value of In-order.

successfully maintain the performance (Section 5.2 and Sec-
tion 5.3).
The column Opt. time (s) reports the total optimization

time (MILP + sharing). CRUSH has a runtime overhead
compared with Naive, as Naive does no resource analysis.
The overhead is negligible as it is typically within 1 s.

Compared with Naive, CRUSH occasionally has a lower
clock cycle count. This effect is accidental—Naive and
CRUSH are expected to have approximately the same clock
cycle count. They are different because Dynamatic’s units
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Figure 9. Resource cost (Equation 2) ratio between shar-
ing and not sharing floating-point adders; we report the
shared unit’s and the sharing wrappers’ utilizations (see Fig-
ure 3) when synthesized in isolation. The solid curves denote
CRUSH’s ratio; the dashed curves denote In-order’s ratio.

have a single enable signal for the entire pipelined unit. The
unit is stalled if the token at the head-of-the-line position
cannot move out; CRUSH eliminates head-of-line blocking,
which accidentally improves the performance.

CRUSH vs In-order. CRUSH is more effective in shar-
ing functional units compared with In-order—in gsum and
gsumif, CRUSH seizes sharing opportunities because it per-
mits out-of-order accesses to shared units (see Section 3).
Figure 8 reports the trade-off between FF, DSP, and latency
in Table 2: except for gsumif (where CRUSH has higher la-
tency but lower DSP usage), atax and bicg (where CRUSH is
Pareto optimal), CRUSH Pareto-dominates In-order for all
these metrics. CRUSH has significantly better runtime (an
average reduction of 90%) than In-order, since In-order re-
quires repetitively solving the MILP formulation to evaluate
the effect of sharing.

6.4 Discussion: Resource Efficiency of Our
Strategy

Columns Slices, LUTs, FFs in Table 2 indicate the FPGA re-
source utilization (a slice contains several LUTs and FFs). Out-
side the DSP units, the floating-point units use pipeline reg-
isters to buffer the intermediate results and logic to control
the DSP units. Thus, compared withNaive, CRUSH reduces
LUT usage when many floating-point units are shared (gsum
and gsumif ) and reduces the FF usage consistently.
CRUSH’s sharing wrapper has a similar cost as In-

order’s wrapper. We individually synthesized each building
block in the sharing wrappers (i.e., each unit in Figure 3).
Figure 9 reports the aggregated resource usage of a shared
floating-point adder with a sharing wrapper: the orange
solid lines denote CRUSH; the blue dashed lines denote In-
order. The figure shows only a minor difference between
the resource usage of CRUSH and In-order, which can also
be confirmed in Table 2: when CRUSH and In-order share
the same number of units, CRUSH uses more LUTs while
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Figure 10. Resource breakdown of CRUSH’s sharing wrap-
per (i.e., the resource cost of each dataflow unit in Figure 3)
for different group sizes |𝐺 |. The number of initial credits
and buffer sizes is calculated using Equation 3, where unit
occupancy Φop is the maximum achievable occupancy when
|𝐺 | operations share the unit (lat𝑜𝑝/|𝐺 |).

In-order uses more FFs. Compared with In-order, CRUSH
achieves an average reduction of 7% Slices, 3% LUTs, and 15%
FFs because more functional units have been shared.

Figure 10 breaks down the resource usage of each dataflow
unit in a sharing circuit (e.g., the one in Figure 3). The sharing
circuit is not FF-demanding—it consumes far fewer FFs than
the shared floating-point adder. As the size of the sharing
group grows, the sharing circuit uses more LUTs. This trend
is expected: as more operations share the same unit, the
selection and distribute logic (i.e., the merge, muxes, and the
branch in Figure 3) becomes more complex, and more output
buffers have to be placed. The output buffers constitute the
majority of the sharing overhead (approximately 50% LUTs
when sharing 7 operations); this is due to the bypass and FIFO
logic. Recall that these buffers are used to prevent the shared
unit from being stalled. However, if we can prove (e.g., using
model checking [50]) that the output is always ready to take
tokens computed by the shared unit, then the output buffer
is redundant and can be removed to save resources.

The column CP (ns) in Table 2 indicates the achieved CP.
Overall, sharing increases the critical path, since the sharing
wrapper adds combinational logic (e.g., the input multiplex-
ers); when many operations are sharing the same unit, as
expected, the CP overhead becomes large (e.g., gsumif ). This
aspect is orthogonal to our goal, i.e., reducing resource us-
age; it can be mitigated by enhancing Dynamatic’s timing
model [41] to support sharing.

6.5 Discussion: Generality of Our Strategy
In the previous sections, our baseline (In-order) is special-
ized for circuits whose units are organized into BBs, where
sharing can be determined and regulated by BB ordering.
Yet, this is not always the case: more recent dataflow HLS
strategies omit BB organization for performance merits [21];
prior work (In-order) re-introduces the BB order, which
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Benchmark Technique Functional units DSPs Slices LUTs FFs CP (ns) Cycles Exec. time (us) Opt. time (s)
Fast token 2 fadd 2 fmul 10 789 2114 2374 5.5 3594 19.8 4.9atax CRUSH 1 fadd 1 fmul 5 760 2202 1893 5.6 3518 19.7 6.7
Fast token 2 fadd 2 fmul 10 675 1794 2048 5.9 8090 47.7 0.8bicg CRUSH 1 fadd 1 fmul 5 626 1808 1557 5.7 8120 46.3 1.1
Fast token 5 fadd 4 fmul 22 878 2213 2886 6 3633 21.8 0.4gsum CRUSH 1 fadd 1 fmul 5 527 1559 1389 5.8 3633 21.1 0.7
Fast token 7 fadd 4 fmul 26 1026 2797 3467 6.4 2317 14.8 0.4gsumif CRUSH 1 fadd 1 fmul 5 656 1853 1453 6.9 2317 16 0.6
Fast token 2 fadd 4 fmul 16 1678 3785 4175 5.6 8623 48.3 16.82mm CRUSH 1 fadd 1 fmul 5 1439 3820 3381 5.6 8234 46.1 17.1
Fast token 3 fadd 3 fmul 15 2004 4712 4847 5.9 8624 50.9 11.23mm CRUSH 1 fadd 1 fmul 5 1822 4619 3833 6 8232 49.4 11.9
Fast token 4 fadd 7 fmul 29 1886 5042 5064 5.8 35580 206.4 30.4symm CRUSH 1 fadd 1 fmul 5 1534 4578 3196 5.8 34580 200.6 27.6
Fast token 1 fadd 3 fmul 11 881 2461 2581 5.6 69234 387.7 24.4gemm CRUSH 1 fadd 1 fmul 5 911 2479 2294 5.8 68833 399.2 25.8
Fast token 3 fadd 4 fmul 18 873 2433 2929 5.4 8017 43.3 1.1gesummv CRUSH 1 fadd 1 fmul 5 745 2180 1833 5.8 7931 46 1.4
Fast token 2 fadd 2 fmul 10 845 2342 2587 5.7 8004 45.6 1.1mvt CRUSH 1 fadd 1 fmul 5 852 2435 2096 5.6 7890 44.2 1.2
Fast token 2 fadd 5 fmul 19 1590 3989 4072 5.7 16445 93.7 69.2syr2k CRUSH 1 fadd 1 fmul 5 1404 3981 3088 5.7 16345 93.2 64.8

Average improvement of CRUSH vs Fast token. Slices: -14% LUTs: -7% FFs: -29% DSPs: -66% Opt. time (s): +21% Exec. time (us): -0%
Table 3. Comparison between Fast token (a more recent dataflow HLS strategy [21]) and the same fast-token circuit optimized
using CRUSH. Since the circuit does not have the notion of BBs, the total-order-based sharing solution [33] does not apply
here; this shows that our strategy is general. The results show that CRUSH is effective on different dataflow HLS approaches.
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Figure 11. The trade-off between FF, DSP, and latency
when applying CRUSH to a more recent dataflow HLS strat-
egy [21] (results in Table 3). All metrics are normalized to
the value of the pre-sharing circuit (Fast token).

requires non-trivial code analysis [23], may diminish the
benefit of omitting BB organization, and does not make up
for the limited sharing capability. In contrast, CRUSH can
be effortlessly ported to different dataflow HLS approaches;
we demonstrate this by integrating unmodified CRUSH into
a recent fast token delivery approach [21].
Table 3 reports statistics of circuits produced by the fast

token delivery approach without and with our resource-
sharing method. Each table entry with Fast token denotes
that the circuit is generated using the fast token delivery ap-
proach, and CRUSH indicates that the circuit is additionally
resource-optimized using our resource sharing strategy. The
result shows that we have achieved an average reduction of
66% DSPs, 29% FFs, and 14% slices; this is similar to the im-
provement in the other HLS strategy (Table 2) usingCRUSH.
The trade-off between resources and performance is depicted
in Figure 11, our solution is systematically Pareto-optimal
or Pareto dominates Fast-token.

7 Conclusion
Resource sharing has always been a challenging topic for
dataflow-based systems due to the risk of deadlock. Existing
solutions are inefficient in both the optimization runtime and
the produced circuits; they are also limited to particular HLS
strategies for dataflow circuits. We have presented CRUSH,
an efficient resource sharing strategy for dataflow circuits.
Our deadlock avoidance mechanism is modular, localized,
and independent of the circuit’s control mechanism, which
makes it available to different HLS strategies for dataflow
circuits. All these benefits make HLS of dataflow circuits
more attractive and practical. CRUSH has been integrated
into the Dynamatic HLS compiler (https://github.com/EPFL-
LAP/dynamatic).

Acknowledgments
We thank the anonymous reviewers and our shepherd Aaron
Lee Smith for their valuable feedback. This work has been
supported by the Swiss National Science Foundation (grant
number 215747) and the ETH Future Computing Laboratory
(donation from Huawei Technologies).

260

https://github.com/EPFL-LAP/dynamatic
https://github.com/EPFL-LAP/dynamatic


CRUSH: A Credit-Based Approach for Functional Unit Sharing ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

A Artifact Appendix
A.1 Abstract
This artifact contains all the source codes and benchmarks
of CRUSH. It utilizes a Dockerfile to set up the environment
and scripts to replicate our experiments in Section 6 and
generate data for Tables 1–3 and Figures 7–11.

A.2 Artifact check-list (meta-information)
• Program: The source code for CRUSH is available in
pyhash (in the Zenodo archive).
• Compilation:Use the Bash script build_project.sh
to build the project.
• Run-time environment: The experiments run in
an Ubuntu 22.04 docker (Dockerfile provided). The
installation tarballs and executables of Vivado 2019.1,
ModelSim 20.1, and the Gurobi optimizer have to be
downloaded by the evaluator (see Appendix A.3.3).
• Hardware: AMD Ryzen 7 PRO 5850U (or any similar
processors) with ≥ 32 GB memory.
• Output: Generate simulation reports, synthesis re-
ports, and log files (for optimization runtime). Tables 2–
3 and Figures 7–11 are automatically generated.
• Experiments: Run all experiments using the Bash
script run_all_experiments.sh. README.md docu-
ments the individual experiments.
• Disk space required: The public archive needs 170
MB after unzipping. The docker image and the soft-
ware installation packages add up to ≥ 180 GB.
• Time needed to prepare workflow: Approximately
2.5 hours to setup the workflow.
• Time needed to complete experiments: Around 4
hours to complete all experiments.
• Publicly available: Yes.
• Code licenses: MIT license.
• Workflow automation framework used: Docker.
• Archived:Archived on Zenodowith DOI: 10.5281/zen-
odo.14017399.

A.3 Description
The detailed descriptions are all documented in README.md
in the Zenodo archive [47]. In this subsection, we describe
some notable hardware/software requirements (e.g., propri-
etary software dependencies).

A.3.1 How to access. The artifact is publicly available
at https://doi.org/10.5281/zenodo.14017399. In this Zenodo
archive, asplos25summer-crush-main.zip contains all the
source codes, benchmarks, scripts, and environment setup
files (i.e., Dockerfile). generated-files.zip contains all the
generated files, i.e., log files, synthesis/simulation reports,
figures, and tables.
A.3.2 Hardware dependencies. A Ubuntu 22.04-LTS
Linux machine with at least 180 GB of free disk space and
32 GB memory.

A.3.3 Software dependencies. The experiments depend
on proprietary software. Vivado (version 2019.1) [45] and
ModelSim (version 20.1) [42] have free versions. Gurobi op-
timizer (version 11.0.3) [25] can be downloaded for free and
offers a free academic license. README.md provides the in-
structions for downloading the software and obtaining the
Gurobi license.

All the remaining dependencies are automatically config-
ured by Dockerfile.

A.4 Installation
This subsection describes the steps for generating the run-
time Docker environment for our experiments.
• Install Docker (https://www.docker.com/).
• Download the Zenodo archive (https://doi.org/10.5281/
zenodo.14017399) and follow the instructions in the
README.md to download the proprietary software de-
pendencies (see Appendix A.3.3), obtain the Gurobi
license, and build the docker image.

A.5 Experiment workflow
Follow the instructions in README.md. Launch the container,
build Dynamatic using build_project.sh, and run all ex-
periments using run_all_experiments.sh.

A.6 Evaluation and expected results
Tables 1–3 and Figures 7–11 will be generated with identical
or nearly identical numbers as reported in Tables 1–3 (lo-
cation of the files are documented in README.md). Any dis-
crepancy in the synthesis results (i.e., Slices, LUTs, FFs) is
due to the non-deterministic behavior of MILP solver on dif-
ferent machines. The optimization runtime is not expected
to be identical but the reduction ratios are expected to be
similar.
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