N
Check for
Updates

ElasticMiter: Formally Verified Dataflow Circuit Rewrites

Ayatallah Elakhras® Jiahui Xu* Martin Erhart
EPFL ETH Zurich ETH Zurich
Lausanne, Switzerland Zurich, Switzerland Zurich, Switzerland
ayatallah.elakhras@epfl.ch jxu@ethz.ch merhart@student.ethz.ch
Paolo Ienne Lana Josipovi¢
EPFL ETH Zurich

Lausanne, Switzerland
paolo.ienne@epfl.ch

Abstract

Dataflow circuits have been studied for decades as a way
to implement both asynchronous and synchronous designs,
and, more recently, have attracted attention as the target
of high-level synthesis (HLS) compilers. Yet, little is known
about mechanisms to systematically transform and optimize
the datapaths of the obtained circuits into functionally equiv-
alent but simpler ones. The main challenge is that of equiva-
lence verification: The latency-insensitive nature of dataflow
circuits is incompatible with the standard notion of sequen-
tial equivalence, which prevents the direct usage of standard
sequential equivalence verification strategies and hinders
the development of formally verified dataflow circuit trans-
formations in HLS. In this paper, we devise a generic frame-
work for verifying the equivalence of latency-insensitive
circuits. To showcase the practical usefulness of our verifica-
tion framework, we develop a graph rewriting system that
systematically transforms dataflow circuits into simpler ones.
We employ our framework to verify our graph rewriting pat-
terns and thus prove that the obtained circuits are equivalent
to the original ones. Our work is the first to formally ver-
ify dataflow circuit transformations and is a foundation for
building formally verified dataflow HLS compilers.

CCS Concepts: -« Hardware — Datapath optimization;
Model checking; - Computer systems organization —
Data flow architectures.

Keywords: Dataflow circuits, high-level synthesis, formal
verification, model checking

ACM Reference Format:

Ayatallah Elakhras, Jiahui Xu, Martin Erhart, Paolo Ienne, and Lana
Josipovi¢. 2025. ElasticMiter: Formally Verified Dataflow Circuit
Rewrites. In Proceedings of the 30th ACM International Conference

“Both authors contributed equally to this work.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1079-7/2025/03.
https://doi.org/10.1145/3676641.3715993

293

Zurich, Switzerland
ljosipovic@ethz.ch

on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS °25), March 30-April 3, 2025, Rotterdam,
Netherlands. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3676641.3715993

1 Introduction

The rise of dataflow circuits in HLS. High-level synthe-
sis (HLS) compilers convert high-level programs (e.g., C/C++)
into circuits and offer application designers an efficient way
to program FPGAs [2, 9, 56]. Recent HLS approaches fo-
cus on producing dataflow circuits [21, 22, 31], built out of
fine-grained operators that communicate with bidirectional
handshake signals; the time when data is exchanged among
these operators is not predefined by the HLS compiler, but
determined at runtime based on particular data and control
outcomes. This scheduling flexibility, paired with a variety
of performance-enhancing features such as speculation [32]
and multithreaded execution [23], offers significant perfor-
mance advantages over standard HLS compilers in irregular
and control-dominated applications, and motivates the fur-
ther development and enhancements of this HLS approach.

How to verify dataflow circuits? As dataflow-oriented
HLS strategies evolve and get more complex, there is an
increasing need to verify the produced dataflow circuits
and circuit transformations. Although some formal verifi-
cation strategies for standard HLS compilers apply here as
well [48], dataflow circuits exhibit a unique property: due to
their latency-insensitivity, two sequentially nonequivalent
circuits that produce the same results (possibly, at different
times) are considered functionally equivalent and can thus
be used interchangeably. Yet, standard sequential equiva-
lence [20, 51, 55] is too restrictive to capture this property—it
requires two equivalent circuits to produce the same outputs
on every clock cycle and thus cannot capture the latency-
insensitivity of dataflow computation.

Consider the example in Figure 1a. Circuit A is a stan-
dard sequential circuit that duplicates the value received
from its input to the two outputs with a 2-cycle delay, as
determined by the flip-flops (FFs) on the different paths. Cir-
cuits A and B produce the same values on every clock cycle
and are, therefore, sequentially equivalent; circuit C is not
equivalent to them as the value of the input arrives to the

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3676641.3715993
https://doi.org/10.1145/3676641.3715993
https://doi.org/10.1145/3676641.3715993
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676641.3715993&domain=pdf&date_stamp=2025-03-30

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

A B C

not EQ FF

<X>

A@EE

(a) Ordinary digital circuits
(building blocks: FF and logic gates)

FF

mll

Ayl o
Buff BUﬁ Bu
! Fori <:> <:> ForQ
NS Fork NN
Buff Buff (Buff
Vi ‘i

(b) Latency-insensitive circuits
(building blocks: dataflow units)

Figure 1. Sequential equivalence vs. latency-insensitive
equivalence. Two ordinary circuits are sequentially equiv-
alent if, on every clock cycle, they produce identical data;
this is the case for circuits A and B in Figure 1a, but not
for circuit C. In contrast, dataflow circuits are considered
equivalent if they produce and consume the same sequence
of valid tokens, regardless of when the token exchanges take
place; this is the case for all three circuits in Figure 1b. This
work devises a framework that verifies latency-insensitive
equivalence and uses it for dataflow circuit simplification.

left output one cycle earlier than in the first two circuits. A
conceptually similar dataflow circuit is shown in Figure 1b;
the main difference is that all units, including the sequential
buffers, communicate with handshake signals to exchange
data tokens. For a valid token to be exchanged among two
units, both handshake signals must be set; data that is not
accompanied by a handshake exchange is invalid and thus
irrelevant. The three dataflow circuits in Figure 1b are not
sequentially equivalent: some of their output wires may have
different values at a given point in time. Yet, they all produce
and consume the same sequence of valid tokens—replacing
one circuit with another only changes the times when the
tokens are produced and consumed, and not the token val-
ues themselves [10]. Capturing this is beyond the standard
definition of sequential equivalence.

In analogy to software code, sequential equivalence is con-
ceptually similar to checking whether two assembly codes
always produce the same values in the same number of clock
cycles. We aim for a verification strategy that resembles stan-
dard software verification: it is the data values that matter
and not the exact time when they are computed. We need
to rethink the concept of equivalence for dataflow circuits
accordingly and devise a general strategy to verify it.

Ayatallah Elakhras, Jiahui Xu, Martin Erhart, Paolo lenne, and Lana Josipovi¢

294

ElasticMiter: an equivalence verifier for dataflow cir-
cuits. In this paper, we devise a practical definition of equiv-
alence that captures the latency-insensitivity of dataflow cir-
cuits; instead of cycle-by-cycle values, it considers whether
two dataflow circuits eventually produce the same sequence
of valid tokens. We develop ElasticMiter, an automated
model-checking-based approach for verifying dataflow cir-
cuit equivalence. ElasticMiter allows us to verify equivalence
in general as well as under certain behavioral conditions—a
feature that we will exploit to reason about HLS-produced
dataflow circuits whose behaviors are constrained by the
properties of the originating software code.

A formally verified graph-rewriting system for
dataflow optimization. Dataflow circuits tend to suffer
from area overheads [33, 60]—it is favorable to replace them
with simpler equivalent circuits whenever possible. To this
end, we propose a graph rewriting system composed of a se-
ries of rewrite patterns to systematically simplify expensive
dataflow logic. Our patterns are small and localized—thus, we
formally verify them with ElasticMiter in acceptable runtime.
The resulting circuits are smaller, faster, and provably equiv-
alent to circuits produced by a state-of-the-art HLS compiler.
More importantly, this illustrates the ability of ElasticMiter
to perform systematic and practical formal verification of
HLS-produced dataflow circuits.

This paper has the following contributions: (1) We build
upon the theory of latency-insensitive design [10] to devise a
formal definition of latency-insensitive equivalence compat-
ible with model checking. (2) We devise a formal framework
for proving that two dataflow circuits are latency-insensitive
equivalent regardless of their surroundings. (3) We devise
a set of rewrite rules that reduce the area and latency of
HLS-produced dataflow circuits and use our framework to
prove their correctness. (4) We implement a compiler opti-
mization pass based on the rewrite rules in Dynamatic, an
open-source MLIR-based HLS compiler that converts C to
dataflow circuits; our solution has achieved 24% mean reduc-
tion in latency and 14% reduction in FPGA FF resources.

2 The Need for Dataflow Circuit
Optimization and Verification

This section describes the units that form dataflow circuits.
We illustrate the need to optimize dataflow steering logic in
HLS-produced dataflow circuits. We then outline the formal
verification techniques that this paper relies on.

2.1 Background on Dataflow Circuits

Dataflow circuits are networks of units that communicate
with latency-insensitive channels [10, 19, 21, 31] containing
handshake signals—valid and ready. A handshake protocol
regulates the computation: data propagates through the chan-
nel when valid and ready are both set; otherwise, the data
is stalled. The units progress the computation and there is

ElasticMiter: Formally Verified Dataflow Circuit Rewrites

7

Buffer ourc

(a) Basic dataflow units
Ctrl

=

(b) Suppress (Supp):
branch + sink

(c) Init: buffer +
an initial token

Figure 2. Our dataflow units. Gray tokens are consumed by
the units to produce the white tokens.

no centralized scheduler. Many research works discuss the
generation of dataflow circuits [6, 19, 21, 31]; we focus on
HLS-produced dataflow circuits generated from C code [31].

Figure 2 shows our dataflow units. (1) Fork has 1 input
and multiple outputs; it replicates the input token and sends
it to all successors. (2) Join has multiple inputs and 1 out-
put; it synchronizes the tokens of all predecessors before
generating the output token. Joins reside in arithmetic and
logic units to ensure they operate on valid data. (3) Merge
has 2 inputs and 1 output; it propagates a token received
at any input to its output; it prioritizes one of the inputs if
multiple tokens are simultaneously present. (4) Mux has 2
data inputs ("+" and "—"), a control input (Ctrl) and 1 data out-
put; it sends the "+"-input token to the output if the control
token has value true, and the "—"-input otherwise; the input
that is not selected waits. (5) Control Merge (CMerge) is a
Merge with a condition output, indicating from which input
it propagates a token. (6) Branch consumes a condition to-
ken and propagates the data input token to the "+" output if
the condition is true and to the "—" output if the condition is
false. (7) Buffer is the only unit that stores tokens; it breaks
combinational loops, eliminates throughput bottlenecks, and
can be inserted between any two units without altering the
functionality [7, 34, 50]. (8) Source has no inputs; it con-
stantly delivers data tokens to its successor. (9) Sink has no
outputs; it is always ready to take tokens. (10) Nondeter-
ministic wire (ND) is an artificial unit that does not appear
in the implemented circuits; ElasticMiter uses it to model
arbitrary stalls [44, 60], as we will see in Section 4.

We also introduce the following units in Figure 2b and
Figure 2c: A Branch with a Sink after the "+"-output is a
Suppress (Supp). A Buffer with an initial token is an Init.

295

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

prody start prodc
) P T e Y
X = prody Muxg <“f—CMerge Fork |
do {
¢ = prod¢ Branch |Branch [€
i (c) prodd
1 v v | ¥
cons'y =x CMerqgel ||_Fork |
d = prodg 1. Muxq
} while (d) x
con52X =x Branch(<
2
cons?y
(a)

Figure 3. Dataflow circuit coupling data propagation with
control flow. The dataflow circuit in (b) implements a part
of the code (a) that delivers the variable x from its definition
(prod,) to its two uses (cons) and cons?). Mux, and Branch,
mimic the loop, and Mux; and Branch; mimic the if-then-
else. The units with gray backgrounds mimic a sequential
program counter and steer data following the program’s con-
trol flow—this leads to overly complicated and slow circuits.

2.2 Dataflow Circuits from Imperative Code Can
Miss Optimization Opportunities

Dataflow circuits are generated from imperative code by
translating individual operations into dataflow units (e.g.,
arithmetic units with handshake communication), and
adding the dataflow units from Figure 2 to appropriately
steer tokens between the operators without altering the data
values. Muxes and Branches conditionally transfer data be-
tween the computational units [30, 31, 41]. This is analogous
to control flow in programs: the result of one operation must
be fed to another operation only if some condition is true.
Typically, dynamically-scheduled HLS strategies [6, 31]
couple data propagation with the control flow. For example,
Figure 3b shows a circuit that implements the code snippet
in Figure 3a following these HLS strategies (some circuit de-
tails, e.g., the Buffers, are omitted for clarity). It propagates
the value of variable x from its producer (prod, executes
once in the beginning) to two consumers (cons executes
conditionally inside a loop, and cons? executes once in the
end). The propagation starts with Mux, that, together with
Branch, implements the do-while loop that is controlled by
the condition produced by prod,. Then, it continues with
Branch; that, together with Mux;, implements the if condi-
tion inside the loop, based on the prod. condition. The select
inputs of Muxes are calculated by the network of CMerges
(see Section 2.1), highlighted in gray. Essentially, this net-
work mimics a sequential program counter by propagating
a dataless token that is injected once upon the start of the
execution and continues through the circuit according to
the control-flow decisions. The effect of this circuit is that

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

‘I .
cons, receives a token as long as prod, and prod, are produc-

ing true tokens and cons? receives a token only once prod,
produces a false token.

Although intuitive and correct, the circuit in Figure 3b
is overly complicated and has a limited performance, as we
show later: It is essential for cons] to be sensitive to both the
loop and if conditions; however, it is completely unnecessary
and inefficient for cons? to wait for the loop to complete its
execution—it would be correct to propagate its data directly
from prod,, irrespective of any control flow. Nevertheless,
it is challenging to decide when to propagate data directly
versus when to couple it with the control flow. Some efforts
apply control dependence analysis on the high-level input
to match the conditions of production and consumption to
implement the minimal necessary control flow [15, 22, 28].
Yet, such analysis is nontrivial and is hard to formally verify.

Section 6 presents a set of formally verified circuit rewrites
that systematically transform inefficient circuits such as the
one in Figure 3b into equivalent and simpler circuits. Yet, we
first need to define our notion of equivalence for dataflow
circuits and devise a framework to verify them. We tackle
these questions first in Section 3, Section 4, and Section 5.

2.3 Formal Verification Using Model Checking

Model checking [4, 17, 53] is an automatic approach for for-
mal verification of temporal properties in finite state ma-
chines (FSM). A model checker [5, 11] analyzes the state
space (the set of possible states that the FSM can reach) of
the FSM; it provides a formal proof if the property holds, and
shows a counterexample otherwise.

ElasticMiter exploits model checking to verify circuit
equivalence. We consider properties specified using two com-
putation tree logic (CTL) operators—a common extension of
Boolean logic to include the notion of time [36, 46]: AG (al-
ways globally) and AF (always finally). For a proposition
p (e.g., p = "signals s, and s;, are both 1"), a statement AG p
asserts that p must hold at the initial state, and always hold
after any possible state transition; AF p asserts that the p
must hold at some point in the future; if there exists a possi-
ble future in which p does not hold forever, then AF p is not
honored. As we will see in Section 3, ElasticMiter formulates
the properties using these operators (e.g., it checks if some
properties always hold, for which AG is a good fit).

3 Defining Latency-Insensitive Equivalence

This section presents our definition of the latency-insensitive
equivalence of two dataflow circuits, building upon the the-
ory of latency-insensitive design [10]. Under the latency-
insensitive protocol, we define the behaviors of the circuit
in terms of the presence of valid tokens. Identifying valid
tokens is protocol-specific (e.g., in SELF [19], a channel is
considered to be transmitting a valid token in a given state
only when both the valid and ready signals are set.).

Ayatallah Elakhras, Jiahui Xu, Martin Erhart, Paolo lenne, and Lana Josipovi¢

296

Definition 1 (Token sequence).
The token sequence of a channel is an ordered list of valid
tokens sent over the channel.

Definition 2 (Equivalent token sequences).
Two token sequences are equivalent if (1) their lengths are
equal, and (2) the token values are pairwise equal.

We assume two given circuits under verification have
matching input and output channels (we call them elastic
primary input channels (EPIs) and elastic primary output chan-
nels (EPOs), to distinguish with the terminology of primary
inputs and outputs (PIs and POs) used for ordinary digital cir-
cuits); two circuits with different interfaces are trivially not
equivalent. For two circuits having n EPIs (EPI, ..., EPI,_;)
and m EPOs (EPO,, ..., EPO,,_;) each, we define latency-
insensitive equivalence as follows:

Definition 3 (Latency-insensitive equivalence).

Two dataflow circuits with matching interfaces are latency-
insensitive equivalent if, for any identical finite token se-
quences given at the EPIs, they eventually consume and
produce identical token sequences at their EPIs and EPOs,
respectively.

Verifying that two circuits satisfy Definition 3 has two
challenges: accounting for all possible scenarios where two
circuits receive identical sequences and checking that the pro-
duced sequences are identical. The following section presents
a framework that overcomes these challenges.

4 FElasticMiter: A General Framework for
Dataflow Circuit Equivalence Checking

This section presents ElasticMiter: a framework for verifying
Definition 3 by embedding the two circuits to be compared
within a larger circuit of a general form (the ElasticMiter
fabric) and then proving the properties of this circuit.

4.1 The ElasticMiter Fabric

Figure 4 shows an example of the ElasticMiter fabric to prove
the equivalence of two circuits. We refer to these as left-hand
side (LHS) @ and right-hand side (RHS) @. In this example,
LHS and RHS are trivially equivalent—both send the token
received from EPIj to one of the outputs depending on the
token received from EPI;. A similar ElasticMiter fabric can be
automatically constructed for any two dataflow circuits with
matching interfaces. An ElasticMiter fabric has the following
parts: (1) sequence generator, (2) input decoupler, (3) LHS
and RHS contexts, (4) LHS and RHS, (5) output decoupler,
and (6) sequence comparator, which we elaborate on next.

Sequence generator. The sequence generator (i.e., @ in
Figure 4) ensures that LHS and RHS always receive identical
token sequences. For each EPI, a Source (see Figure 2) sends
tokens with symbolic values to the Fork, which duplicates the
token sequence and sends them to the LHS and RHS (through
intermediate units in @, @, and @).

ElasticMiter: Formally Verified Dataflow Circuit Rewrites

o Sequence glnput LHS RHS
generator decoupler context context
Output Sequence
@ LHS @ RHS ﬂ decoupler@ comparator
) | Sourcey @ | Source,
0
v v L4 L4
Buffo Buff1 Buff2 Buff3

o
o b

v EPly _ WEPI,

| Fork | | Fork |
v Not
Su
@ EPOy EPO @
9 ND6 ND7 e
v v
Buff4 Buffs Buffe Buff7
| | L | 0
R)
ElQ EQq? ElQ EQ? (3]

Figure 4. ElasticMiter: an equivalence checking framework
for dataflow circuits.

Validating identical token sequences. The sequence
comparator (@ in Figure 4) compares the token sequences
generated by LHS and RHS. For each EPO, an EQ unit com-
pares every pair of tokens generated by LHS and RHS and
outputs a token of value = 1 if the input tokens are identical.

If we directly connected the sequence generator to the
EPIs of LHS and RHS (e.g., directly connect Fork, to EPI,
without going through Buff, and ND,), and the EPOs of LHS
and RHS to the sequence comparator (e.g., connect EPOy
to EQ, while skipping Buff, and NDy), the circuit would
have a similar form as a miter circuit, commonly used to
verify sequential equivalence [55]. Despite the similarity,
this setup without our extensions (ie., @, €. @, and @)
does not compare all possible behaviors of the two circuits,
as we will see later.

Decoupling LHS and RHS. The input and output de-
couplers (i.e., subcircuits @ and @ in Figure 4) separate the
executions of LHS and RHS via Buffers, enabling ElasticMiter
to account for behaviors of LHS and RHS independently: for
both LHS and RHS, we insert a Buffer for each EPI after the
sequence generator, and for each EPO before the comparator.
Without @, the sequence generator only sends tokens to
LHS and RHS simultaneously, ignoring the cases where LHS

297

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

and RHS consume tokens at different times. Without @), the
EQ units only take tokens produced by LHS and RHS at the
same cycle, ignoring the cases where LHS and RHS produce
tokens at different times. Yet, to check input sequences of
any length, Buffers in @ and @ must have infinite size to en-
sure that the circuits are always decoupled. Model checkers
typically do not support infinite memory [18]. Section 4.3
discusses how to reduce the Buffers to a finite size.

Modeling the circuit context. Equivalent circuits must
produce the same output sequence for any arrival times of
the input tokens and subject to any backpressure on their
outputs—that is, for any context that the circuits can be in.
Such context does not always need to be perfectly general:
in some cases, users may be interested in equivalence only
under specific input and output conditions, as we explain in
Section 5. In the ElasticMiter fabric, the user can customize
LHS and RHS contexts in @ and @ and by configuring the
Sources in the sequence generator in @ of Figure 4.

Figure 4 shows the most general context—tokens can ar-
rive at different EPIs at any time, and the EPOs can stall
at any time and for any duration. To achieve it, we place a
nondeterministic wire (ND, see Section 2.1) between each
input Buffer and the EPJ; it stalls the predecessor Buffer for
an arbitrary number of cycles (but eventually propagates the
token), thus modeling all possible input latencies. Similarly,
an ND is placed between each EPO and the corresponding
output Buffer; this models all possible stalls at the EPOs.

4.2 Properties for Checking Sequence Equivalence

This section formulates Definition 3 in terms of the signal
behaviors in the ElasticMiter fabric.

Producing and consuming the same sequences. We
verify that the following propositions must hold eventually
and continue to hold forever: (a) both circuits consume the
same number of tokens on every pair of inputs and (b) both
circuits produce the same number of tokens on every pair of
outputs. We specify proposition (a) in terms of the states of
every pair of Buffers in the input decouplers (@):

1)

where brys.;, brys,i are the decoupling Buffers of the i-th
EPI of LHS and RHS in @, and b.num indicates the number
of tokens in Buffer b. Since the EQ units consume a pair of
tokens, a mismatched number of output tokens will eventu-
ally result in "leftover" tokens in the output decoupler. Thus,
we specify proposition (b) in terms of every Buffer in @:

Pa: bLHs,,-.num = bRHs,i.num, Vb,- € @,

pp i b.onum =0,Yb € @. (2)

We formulate the following to check that (a) and (b) must
hold eventually and continue to hold forever:

AF AG (pa A ps). ®)

Producing tokens with identical pairwise values. To
check that the values of each pair of tokens produced by

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

State space
(N=1)

Setup: computing
reachable states

v

\

Sourcey Sourceq

Branch

Branch

State space
(N =2=N= oo)

(b) Reachable states of (a)

(a) Circuit

Figure 5. Finite input sequences are sufficient to trigger all
possible behaviors. (a) The same circuit as LHS in Figure 4,
with a Buffer at the condition input and with the correspond-
ing context and the generator. (b) The state spaces obtained
using different token sequence lengths at the input.

LHS and RHS are the same, we check that the EQ units in
the sequence comparators (i.e., @ in Figure 4) only produce
tokens with value = 1; we specify the following formula:

AG (EQ;.valid — EQ;.data=1),Vie {1...m}, (4)
where "a — b" denotes a implies b.

If both Equations 3 and 4 hold, the circuits are equivalent
under the specified context, and one circuit can be replaced
by the other; otherwise, they are not equivalent.

4.3 Reducing to Finite-State Model Checking

ElasticMiter can formally verify the equivalence between any
two dataflow circuits. There is still a practical challenge: to
verify circuit equivalence for input sequences of any lengths,
we need Buffers with infinite slots in the decouplers (i.e., @
and @ in Figure 4) to decouple the two circuits and account
for all possible behaviors in LHS and RHS. This is unrealistic
since it would require infinite memory to represent the state
space. However, this section shows that infinite sequences
are unnecessary, and suggests a way to determine finite-
length sequences that are sufficient for verification.

Ayatallah Elakhras, Jiahui Xu, Martin Erhart, Paolo lenne, and Lana Josipovi¢

298

Using unbounded token sequences is an overkill.
Given a dataflow circuit, its all possible states are the reach-
able states in a general context (i.e., unbounded input se-
quences with arbitrary latency at EPIs and EPOs). When
a circuit receives a sequence with limited lengths, it may
only reach a subset of all possible states, leaving some unac-
counted for. However, with sufficiently large token sequence
lengths, this subset eventually encompasses the entire set of
possible states.

For example, Figure 5a describes a dataflow circuit (LHS
in Figure 4 with a 2-slot Buffer at EPI;). Two Sources and
Sinks produce and consume token sequences from and to the
circuit. To model all possible latency variations, the circuit
is equipped with NDs between the Sources and EPIs and
between the EPOs and Sinks. For unbounded sequences,
each Source outputs an unbounded sequence of tokens with
symbolic data. For bounded sequences, each Source holds a
counter with initial value equal to N, where N is the length of
each input token sequence; the counter counts down when a
token is transferred to the receiver, while the Source remains
valid until the counter reaches 0.

Regardless of bounded or unbounded sequences, the cir-
cuit has a finite number of states and the set of all states
can be determined using a reachability analysis tool [18].
Figure 5b reports all 7 states of the circuit (in the blue box).
Although unbounded sequences are inapplicable to Elas-
ticMiter, the same set of states is reachable using token se-
quences with a finite length. Suppose that we use different
bounds: When each Source produces sequences with N = 1,
the states framed with a red box (states 5-7) are all the reach-
able states; as states 1-4 are not covered, N = 1 is insufficient
for discovering all states. When each Source produces se-
quences with N = 2, the computed state space is the same as
the one using infinite token sequence length. This example
indicates that infinite token sequence length is unnecessary.

When building the ElasticMiter fabric, respectively for
LHS and RHS, we can determine the minimum token se-
quence length N sufficient to account for all possible states.
Since the sequence generator produces bounded sequences,
the Buffers can be sized to N to decouple LHS and RHS.

Determining token sequence length. We employ the
following procedure to determine N when building the Elas-
ticMiter fabric. For both LHS and RHS, (1) we indepen-
dently connect Sources and NDs to EPIs and EPOs to NDs
and Sinks (i.e., Figure 5a); (2) we configure the Sources to
produce unbounded sequences, and use reachability anal-
ysis [11, 18] to determine states,—the set of all reachable
states reached using unbounded sequences; (3) we then con-
figure the Sources to produce bounded sequences to deter-
mine statesy—the set of states reached using a sequence
length N; we increment the values of N starting from 1 until
statesy = states. If LHS and RHS require different values of
N; we use the larger one to construct the ElasticMiter fabric.

ElasticMiter: Formally Verified Dataflow Circuit Rewrites

Seq. length at EPlgp := 1 and EPI¢ := 0

EPIO EPI4 EPIy Y. | EPl4
(Stall) Buff)
\ 4
Join Join
LHS ¥ EPO, RHS V¥ EPOq

(a) T not consumed by LHS (b) T consumed by RHS
Figure 6. The default context can be too general in some
cases. The two circuits are equivalent only if their 2 EPIs
receive an identical count of tokens.

When constructing the ElasticMiter fabric, we set the num-
ber of slots of each Buffer in the input and output decouplers
to N to ensure that the executions of LHS and RHS are always
decoupled. We model check the properties in Section 4.2 for
every combination of sequence lengths from 0 to N (e.g., if
N =1 and the circuits have two EPIs, we separately check
for sequence lengths of (0, 0), (0,1), (1,0) and (1, 1)).

Our strategy ensures that statesy has all the reachable
value combinations in the state registers and the primary
inputs of the LHS and RHS circuits, and the circuit logic de-
fines all the state transitions. Thus, the model with bounded
sequences accounts for all states and all state transitions.
Any discrepancy between the produced and consumed se-
quences of LHS and RHS will be captured by the properties
given in Equations 3 and 4.

This concludes the description of ElasticMiter, a strategy
for verifying the equivalence between two dataflow circuits.

5 Equivalence Under a Context

Two circuits may not be equivalent in a general sense but
can still be used interchangeably within a specific context.
If the surrounding environment limits their behavior, one
circuit can safely replace the other under those constraints.
This section explains why contexts are necessary for cer-
tain rewrites to be applicable, introduces various contexts,
and demonstrates how ElasticMiter incorporates different
contexts while verifying contextual equivalence.

5.1 Why Dataflow Circuits May Need a Context?

LHS and RHS in Figure 6 might seem trivially equivalent. Yet,
when providing them with sequences of length = 1 at EPI,
and length = 0 at EPI;, LHS would not consume any token
from EPI, since a token is missing at EPI; (and the token
would be left over in @ of Figure 4 forever), whereas RHS
would consume a token from EPI, and the token would stay
in its internal buffer forever; this violates Definition 3 since
they consume tokens differently from their inputs despite
being given the same token sequences.

Figure 7 shows another example of contextual equiva-
lence: The left circuit (LHS) in the gray-shaded part shows

299

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

X 1Y D ,C
|ND§|
OIK
X' Y! D' C'
Iv't
ni \ 4
- [Buffl
Mux RHS
Al
Bl

Context
(RHS)

Figure 7. Example of equivalence under a context. The gray-
shaded parts model @ and @ of the ElasticMiter fabric (Fig-
ure 4), and the circuits in the orange-shaded part are € and
@. LHS and RHS are not equivalent in general, but are under
the AT context shown in the oranged-shaded part, and SC
and SV configurations of @), as explained in Section 5.1.

a datapath with a Mux in a loop that propagates to A’ to-
kens arriving at either X’ or Y’. The condition of the Mux
is calculated using a network composed of a CMerge, Forks,
and Suppresses, implementing a dataless structure that mim-
ics the program counter in a loop (analogous to Figure 3):
the values of tokens at C’ dictate the propagation of tokens
that arrived at D’ through the cyclic path; accordingly, the
CMerge drives the condition of the Mux. Assume one wants
to replace this circuit with the one on the right (RHS)—the
idea is to send the tokens at D’ straight to B’, and use an
initial token (Init from Section 2.1) followed by a sequence
of tokens at C’ to calculate the condition of the Mux.

If we plug LHS and RHS in Figure 7 into the ElasticMiter
fabric, it will report that the circuits are not equivalent. Send-
ing multiple tokens at D’ might result in the CMerge in LHS
reordering them (e.g., take a “newer” D’ from the left before
taking in an “older” D’ from the right); thus, the order of to-
kens outputted at B’ might be different from that inputted at
D’, and the order of tokens outputted at A” will be impacted
by the reordering at D’. In contrast, in RHS, the sequence of
tokens at B’ is always the same as the sequence at D’, and
the sequence at D’ has no impact on the sequence at A’. Ad-
ditionally, sending an arbitrary count of tokens to D’ might
result in the RHS having more tokens at B’ than the LHS: if
the count of tokens at D’ is greater than the count of false
tokens at C’, the left Suppress in the LHS will prevent some
tokens from reaching B’, while, in the RHS, all tokens from
D’ will be bypassed directly to B’. Furthermore, sending arbi-
trary values of tokens at C’, independent of D’, might result
in them being consumed in the RHS, while being held back
in the LHS: if the very first token at C’" happens to be false
and the second token to be true, and if D’ receives only one

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

token, the second token of C’ will be held back in the LHS
(waiting for a token to arrive at D’) but will be consumed
(stored in the Init) in the RHS. All these scenarios violate
Definition 3 and make LHS and RHS nonequivalent.
Although the LHS and RHS of the given examples are,
generally, not equivalent, they are equivalent if we constrain
the input sequences to prevent the aforementioned scenarios.
We leverage the insight that the circuits we are interested in
optimizing are produced from imperative code that naturally
restricts the circuit’s behavior [58]; we infer such restrictions
and model them as contexts, as explained in the next section.

5.2 Context of Isolated Dataflow Circuits

Dataflow circuits produced from imperative code have a nat-
urally restricted behavior. For instance, they model a single
thread of execution and implement finitely terminating loops
that operate as follows: take one token carrying the loop’s
initialization value, circulate it for some iterations, and fi-
nally send out the result, upon loop termination signaled by
a false token at the loop condition, to the rest of the circuit.
Such restrictions impose a token sequence count (SC) re-
lation between EPIs, certain token sequence values (SV)
arriving to some EPIs, and a token arrival timing (AT)
relation between token arrivals at different EPIs and EPOs.

We model an SC context by configuring the Sources in
the sequence generator (@ in Figure 4). We specify relations
that constrain the count of tokens in the sequences arriving
at EPIx and EPIy as follows:

SCequ: |EPIx.seq| = |EPIy.seq| (5)

configures EPIyx and EPIy to receive the same count of to-
kens. It models channels in a straight datapath (free of con-
trol flow) in a dataflow circuit—they must receive the same
count of tokens [22, 31]. It is necessary in the example of
Figure 6 to ensure that all inputs of the shown Joins receive
sequences of the same length, preventing any discrepancy
in consumption between the LHS and RHS. Additionally,

SCyar: |EPIx.seq| = |[{v € EPly.seq | v = val}| (6)

configures EPIx to receive a count of tokens matching the
count of tokens received at EPIy with a certain value val. It
models channels that receive tokens conditionally depending
on some control flow decisions [22]. One key usage of such
a context is part of modeling the operation of a loop (see
the beginning of the section) together with the SV and AT
contexts: Specifically, the count of tokens initializing a loop
must match the count of tokens terminating the loop and the
count of false tokens at the loop condition. This context is
useful in Figure 7 to force the count of tokens at D’ (i.e., the
loop initialization) to match the count of false tokens at C’
(i.e., the loop condition), preventing any tokens at D’ from
getting blocked in the LHS. The Sources in the sequence gen-
erator of the ElasticMiter fabric can be configured to support
other SC relations, depending on the user’s requirements.

Ayatallah Elakhras, Jiahui Xu, Martin Erhart, Paolo lenne, and Lana Josipovi¢

300

Similarly, we model an SV context by configuring the
Sources of the sequence generator (@ in Figure 4). We con-
strain the value of a particular token at index i in the se-
quence of tokens arriving at a particular EPIx as follows:

SV : EPIx.seq|i] = val. (7)

This models the condition of a finitely terminating loop by
forcing the last token at a loop condition to take the value
false. In Figure 7, it forces the last token at C’ to be false,
ensuring that the tokens at C” will be consumed in the same
manner in the LHS and the RHS.

Unlike SC and SV contexts that restrict the token se-
quences, an AT context restricts the time when tokens be-
come available at EPIs. Therefore, it should come after the
NDs in @ and @ of Figure 4 to constrain their effect. We im-
plement AT as a circuit shown in the orange-shaded region
of Figure 7, which models a loop circulating a single token at
a time: it delays the arrival time of a new token at D" until a
token is produced at B’. It does so through the Join that stalls
the next token of D’ by holding the prior one in a Buffer until
a token arrives at B’; thus enabling only a single value of D’
to enter the circuit at a time and preventing any reordering
from occurring at the CMerge. The provided circuit can be
replaced with other circuits for other timing relations, as
decided by the user of ElasticMiter.

In general, not every rewrite with input channels coming
from one straight datapath will require the SCeq, context
for it to apply. Similarly, not every rewrite with a loop will
require the SC,,, SV, and AT contexts to hold. As we will see
in the next section, it depends on how different the structures
of the circuits in the LHS and RHS of a rewrite are, and
whether this difference in structures could result in them
violating some properties of Section 4.2 under arbitrary input
counts, values, and latencies.

6 A Graph Rewriting System

HLS-produced dataflow circuits often use excessive steering
units [22], as suggested in Figure 3. Prior approaches [22]
for optimizing the steering logic do not formally or compre-
hensively reason about their transformations. We develop
a graph rewriting system that takes a conservative HLS-
produced dataflow circuit and transforms it into a simpler
and faster one using our provably correct rewrite transforma-
tions. Our rewrites are few and operate on localized patterns
(i.e., a few dataflow units form a pattern that is replaced
by another one), thus, we can verify the latency-insensitive
equivalence of each rewrite with ElasticMiter once and be-
fore the HLS process. After verification, our rewrites can be
applied to any HLS-produced circuit.

6.1 Dataflow Circuit Rewrites

We present a set of rewrites that change the steering logic
between computational units without affecting the computa-
tional units themselves. We classify them into five categories,

ElasticMiter: Formally Verified Dataflow Circuit Rewrites ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

: Token sequence count : Token sequence value : Token arrival time
A: Breaking Branches into Suppresses B: Extracting Control Predicates C: Decoupling Datapaths from Control
D o XY D c XYDC c D C

D C
#e>]
Not
T F Eim‘_l

Mux < nit
Iyt | = |
Mux
A

T F
(@ (b) - A (d)
D: Simplifying Datapaths D C D c D C
R E%
- ‘ + »
of
Mux <init Mux ‘J) pp [«Not e
Mux
A B v A
, o A
v Y
Mux <J A
D g Not E: Replicating Datapaths
In|t L D C D c
ot D c D c
A A :
V) | | =y 1
= R 208 2 7 YN N
D MN D N 1M Mux Mux_<fnit Mux_<{Init
4 Not
* Mux (J ot Not
A B A i
B AB A B
A A .
(9 (h) (i)
F: Cleaning Datapaths
D C D C M N C M N C D D D D D D
) J 3 R
> Miix < = [Fgi | LRk >
Iﬁl [Sink] f
() (k) AB X () ABX , AB (m) A B (n)
Figure 8. Dataflow circuit rewrites forming a graph rewriting system.
according to their purpose, and include a sixth category that point created by a Branch into two datapaths to allow other
does basic optimizations ensuring that the other rewrites rewrites to optimize them separately.
are applicable, as shown in Figure 8. Whenever the pattern Rewrites B: extracting control predicates. Figure 8b
of the LHS of one rewrite is found within a larger dataflow is the rewrite discussed in Figure 7. It generalizes to any
circuit, we replace it with the equivalent RHS circuit. number of Muxes driven by the CMerge. It requires the
Some of our rewrites are correct for an arbitrary context, three types of contexts explained in the previous section.
whereas some of them require one or more of the contexts The rewrite in Figure 8c is qualitatively the same but for
described in Section 5.2, as recorded in Figure 8. an if-then-else construct. It requires an AT context identical
Rewrite A: breaking Branches into Suppresses. This to that of the orange-labeled region of Figure 7 to prevent
rewrite, shown in Figure 8a, applies in the general context. It the CMerge in the LHS from reordering tokens. Furthermore,
replaces any Branch with two Suppresses that take the same it requires the SCeq,, context of Equation 5 to ensure that the
condition but with opposite signs. It splits the divergence count of tokens arriving at C matches that at D.

301

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Rewrites C: decoupling datapaths from control struc-
tures. These rewrites remove circuitry that unnecessarily
couples data propagation with the control flow of do-while
and if-then-else structures; such couplings appear frequently
in C-to-dataflow translation [31]. Figure 8d replaces a Mux in
a pointless loop structure with a simple wire that propagates
the input D of the Mux to the output A of the Suppress. It
requires the SC,,; of Equation 6 to ensure that the count of
tokens at D matches the count of false tokens at C. Addi-
tionally, it requires the SV context of Equation 7 to force
the very last token at C to be false, modeling a finitely ter-
minating loop. Figure 8e eliminates a pointless if-then-else,
implemented using a Mux and complementary Suppresses.
It requires only the SCeq, context of Equation 5 to ensure
that the count of the tokens arriving at C matches that at D.

Rewrites D: simplifying datapaths. These rewrites sim-
plify datapaths by shifting complexity on the circuitry cal-
culating the conditions. They apply to steering logic with
multiple control flow decisions—i.e., nested constructs, such
as those in Figures 8f-g, which show a loop nest and a nested
if-then-else structures, respectively. Figure 8g applies in a
general context. On the contrary, Figure 8f requires the SV
context of Equation 7, setting the last tokens of M and N
to false to model finitely terminating loops. Additionally, it
requires two instances of the SC,,; of Equation 6 to ensure
that (1) the count of D matches the count of false tokens at
M, and (2) the count of M matches the count of false tokens
at N, modeling the fact that the number of iterations of the
outer loop (that has the condition M) matches the number of
times the inner loop (that has the condition N) terminates.

Rewrites E: replicating datapaths. These rewrites do
not eliminate redundant circuitry, but in fact add more of it
to enable other optimizations. They advance steering logic
over a Fork: Figure 8h advances a Suppress over a Fork, and
Figure 8i advances a do-while loop structure over a Fork
in the middle of the structure that feeds a Suppress, which
in turn completes the loop. They generalize to Forks with
an arbitrary number of outputs. Both rewrites apply in a
general context. Some added circuitry may end up not be-
ing entirely optimized by other rewrites, thus unnecessarily
increasing the circuit’s area. Therefore, we employ two ad-
ditional rewrites that we will refer to as Rewrites E’; these
simply undo the effect of Rewrites E. We apply them once
at the end; otherwise, together with Rewrites E, they could
produce a nonterminating sequence of rewrite steps.

Rewrites F: cleaning datapaths. Figures 8j—n show
rewrites that remove useless steering components whose
presence would make other rewrites inapplicable. These in-
clude a Suppress, a Mux, or a Fork that feed a Sink. Besides,
it combines a Fork feeding another Fork into one larger Fork.
Figure 8j requires the SC,q, context of Equation 5 between
C and D. Figure 8k requires the SC,,; context of Equation 5
to ensure that the count of tokens at M matches the count

Ayatallah Elakhras, Jiahui Xu, Martin Erhart, Paolo lenne, and Lana Josipovi¢

302

of false tokens at C, and the count of tokens at N matches
the true tokens at C. Figures 8l-n apply in a general context.

6.2 Putting All Rewrites Together

We present the properties of our graph rewriting system and
show a working example reducing the datapath of Figure 3b.

Order of rewrites. Our system is not confluent: If two
rewrites are simultaneously applicable, choosing one rewrite
over the other could result in a different circuit. Hence, we
pragmatically order rewrites as follows: Rewrites F, A, E, B,
C, and D, and apply them in the following form (FAEBCD)*:
we iterate through the ordered set of rewrites, one by one,
applying each rewrite once, and repeating until none of the
rewrites further apply (we will discuss the termination of our
system later in this section). Finally, we apply Rewrites E’
once and exit.

Application of rewrites. Our rewrites reduce the num-
ber of steering units on every path from any input to any out-
put. We apply them to the datapath of Figure 3b, omitting the
network of CMerges (with the gray background in Figure 3b)
for simplicity, but it is optimized out similarly by the iterative
application of Rewrites F, A, and B. We show the result of
each step in Figure 9. None of Rewrites F are applicable, so
we start with Rewrite A of Figure 8a, replacing every Branch
with two Suppresses, and show the result in Figure 9a. Then,
we apply Rewrite E of Figure 8h by advancing a Suppress
over a Fork, thus replicating Supp,, resulting in a two-output
Fork feeding another two-output Fork. At this point, none of
the remaining rewrites are applicable anymore so we start
another iteration of our rewrites by applying Rewrite F of
Figure 8l to combine the two two-output Forks into one,
and show the result in Figure 9b. Following our order, none
of Rewrites A or E are applicable, and Rewrites B applies
to the network of CMerges, which is omitted for simplicity.
Therefore, we apply Rewrite C of Figure 8e, which eliminates
Mux, Suppor, and Supp;. This rewrite feeds the condition
of the Suppresses to a Sink; thus results in some Fork outputs
feeding Sinks. Additionally, it results in the top Fork feeding
directly to the Fork that was at the output of Mux;. None of
Rewrites D apply so we reapply Rewrites F of Figures 81-n
to remove the sinked Fork outputs and combine Forks, and
show the result in Figure 9c. Then, Rewrite E of Figure 8i is
the first applicable, advancing Mux, and Supps over a Fork
resulting in Figure 9d. In turn, Rewrite C of Figure 8d is the
first applicable, eliminating the pointless loop datapath that
delayed the data propagation to cons2, resulting in Figure 9e.
The final circuit achieves our goal: a better implementation
of the same functionality.

Termination. Although we believe that our system of
rewrite rules is finitely terminating when presented with any
dataflow graph that might be generated by an HLS compiler—
and our experiments confirm this for our benchmarks, as
shown in Section 7—a formal proof of termination is nontriv-
ial and beyond the scope of this paper. Our main contribution

ElasticMiter: Formally Verified Dataflow Circuit Rewrites

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

(a)

prodx prodc prodd prodx prodc prodd prodx prodc prodd prody prodec prodq ' prody prodcprodg
L
SAs Aoy
Muxq Fork Muxg E r'f_
f Fork] Not
[Fork
Not Not 1
v Noi Muxoo
[Fork Not
consly =R |
® u
b [E
6 Not Suppod
Sup @?ﬂ« ®
Ycons2y cons?y cons?y consly cons2y

Figure 9. Dataflow circuit transformations. All circuits are equivalent to the one in Figure 3b but with different steering logic.
We omit the Mux conditions for simplicity. Each step indicates the applied rewrites among @Y-@.

Rule
database

Model
checker

ElasticMiter Model
generator

"Check rules

0.0 .6

Our contribution: a HLS optimization pass
based on formally verified rewrite rules

"Verified Rules 3,0, ... @"

RTL
generator

Specs

Rewrite Perf. opt. N

(buffering) | % RTL

Dynamatic: an open-source—MLIR-based HLS compiler)
* : MLIR handshake dialect (dataflow circuit IR)

C-to-DF

pass

Figure 10. Our complete workflow.

is providing a framework to prove the correctness of dataflow
circuit rewrites. The specific rewrite system discussed in this
section serves only as an example of a useful system that
achieves measurable advantages, as reported in our results.

7 Evaluation

We formally verify the rewrites (Section 6) in an acceptable
runtime leveraging ElasticMiter (Section 4). We then employ
our verified rewrites in a compiler optimization pass and
show experimentally that it improves circuit performance
and area. Our research artifact is publicly available [25].

7.1 Methodology

Our framework is shown in Figure 10. It has two parts:
(1) Our verifier that takes rules from a predefined database,
generates the ElasticMiter fabric (Section 4), and employs
a model checker to verify them. (2) Our compiler pass that
implements our rewrites (Section 6), integrated into Dyna-
matic [31], an open-source MLIR-based HLS compiler [42].

303

Formally verifying our rewrites. We model dataflow
circuits, their context, and the formal properties using the
SMV language [38]. The SMV models of the units are iden-
tical to their RTL implementation; the data signals are ab-
stracted using 1-bit for scalability [60]. We use nuXmv [11]
to prove temporal properties and extract the set of reachable
states (using BDD-based reachability analysis). We determine
the configurations of ElasticMiter (i.e., the token sequence
length) using the approach in Section 4.3 and verify latency
insensitive equivalence using the properties of Section 4.2.

Evaluating the effectiveness of our rewrites. We im-
plement an MLIR [42] compiler pass that greedily and itera-
tively applies our rewrite patterns until no match is found.
We integrate this pass into the HLS flow of Dynamatic which
implements a simple strategy [31] for dataflow circuit gen-
eration from C (C-to-DF in Figure 10). We place our graph-
rewriting pass (Rewrite pass) right after the C-to-DF step and
before buffer placement. We apply a simple buffer placement
heuristic: we insert a buffer to break every combinational
cycle and, additionally, a buffer with a large depth at every
fork output; then, we iteratively reduce the depths only if
this reduction has no negative effect on the circuit’s latency
reported in simulation. We use the circuits produced by Dy-
namatic in the C-to-DF step as a baseline, after passing them
through the same buffer placement heuristic. We use Dy-
namatic’s RTL generator for all circuits. We synthesize the
generated VHDL netlists using Vivado [57] with a clock-
period constraint of 4 ns, targeting a Kintex-7 FPGA. We
simulate the designs with ModelSim [39] and use a set of test
vectors for functional verification. We measure (1) the cycle
count obtained from simulation, (2) the clock period (CP)
from the postrouting timing analysis, and (3) resource usage
(i.e., LUT, FF, and DSP counts) reported from Vivado after
placement and routing. Our goal is a smaller LUT and FF
usage, and a faster execution time compared to the baseline.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. Verifying the rewrites in Section 6.1.

Rewrite Sequence length Model checking
Tokens Time(s) Length Value Time (s)

Fig. 8a 1 0.2 v v 16
Fig. 8b 3 35.2 v v 1153
Fig. 8¢ 2 1.2 v v 2.0
Fig. 8d 4 2.1 v v 18.1
Fig. 8¢ 1 0.2 v v 0.4
Fig. 8f 4 16.3 v v 854.2
Fig. 8g 1 0.2 v v 1.9
Fig. 8h 1 0.2 v v 2.2
Fig. 81 3 2.1 v v 98.6
Fig. 8 1 0.1 v v 0.2
Fig. 8k 1 0.2 v v 0.3
Fig. 8 1 0.2 v v 0.7
Fig. 8m 1 0.2 v v 0.5
Fig. 8n 1 0.1 v v 0.1

7.2 Results: Rewrite Rule Verification

Table 1 reports the results and runtime statistics of ver-
ifying the correctness of the rewrites of Figure 8 using
ElasticMiter. Sequence length reports the token sequence
length bound used in the framework (Section 4.3) and the
time spent on determining it for each rewrite in column
Rewrite. Model checking reports the model checking re-
sults: Length and Value describe the sequence value and
length equivalence (Equations 3 and 4); Runtime indicates
the total verification runtime. Most verification runs finish
within seconds. Rules with loops (Figure 8b, d, and i) have a
larger state space and take a longer time to prove. nuXmv has
poorer scalability on AF properties: for the rule in Figure 8f,
the Value property only took 50 s, whereas the Length prop-
erty took 800s to prove. Speeding up model checking is
orthogonal to our contribution and ElasticMiter could, if
needed, be complemented with existing verification speedup
strategies (e.g., abstractions or invariants [12, 13, 18, 58]).
Note that verification runtime is not a concern for us: we
need to prove a limited number of small rewrites once and
then we can optimize any HLS-produced dataflow circuit.

7.3 Results: Effectiveness of Our Rewrite Pass

We evaluate our rewrites using a set of HLS kernels com-
monly used for dynamically-scheduled HLS [14, 31, 47, 54].
Circuits with a more complex and irregular control-flow
structure have more steering logic and thus can benefit more
from our rewrites. When our rewrites remove steering units,
they reduce area and allow units in independent control
structures to run in parallel, thus increasing performance.

Table 2 summarizes the timing and resources of the circuits
generated by our approach (Ours) compared to the baseline
Dynamatic [31]. Figure 11 graphically represents our results
normalized to those of Dynamatic. In most benchmarks,
our results Pareto-dominate the baseline: they improve the
overall execution time without negatively affecting the area,
if not actually reducing it.

Ayatallah Elakhras, Jiahui Xu, Martin Erhart, Paolo lenne, and Lana Josipovi¢

304

B Exec.time W FFs Wl LUTs

Baseline

binary
search
cnn

gemver
sobel
spmv
gcd
stencil
matvec

fir

0.6 0.8

T
0.4
Ratio: ours / baseline

Figure 11. Results of our rewrites normalized to baseline
Dynamatic circuits [31].

Specifically, gemver (30 x 30 matrix dimension), binary
search (101 vector dimension), and cnn (10 x 10 x 10 image
dimension and 1 x 1 kernel dimension) feature multiple loop
nests in succession. They benefit from the rewrites of Fig-
ure 8b, d, and f to varying degrees, depending on the amount
of data and memory dependencies. sobel (15 x 15 image
dimension and 3 x 3 kernel dimension) and spmv (10 vec-
tor dimension) also feature multiple loop nests along with
a few if-then-else structures; thus, they additionally bene-
fit from the rewrites of Figure 8c, e, and g. These rewrites
parallelize multiple control structures and achieve tangi-
ble advantages on all metrics. ged (computation between
7,966,496 and 314,080,416) also has a few loops and if-then-
else structures, and it still benefits from the rewrites; yet,
the gain appears mostly as an area reduction and less in
cycle count because the parallelism is limited by multiple
data dependencies. Finally, stencil (30 x 30 input dimension
and 3x3 kernel dimension), matvec (100 x 100 matrix dimen-
sion), and fir (1000 vector dimension) have simple control
structures; as expected, they do not benefit much from our
rewrites. In fact, fir witnesses a minor CP degradation, yet it
is caused by orthogonal effects: our non-delay-driven buffer-
ing heuristic and the place-and-route heuristics of the FPGA
implementation tool [57].

Overall, our rewrites produce smaller and faster dataflow
circuits that are formally proven equivalent to the original
ones. They remove a multitude of unnecessary components
and thus improve resources, critical paths, and clock cycles.

8 Related Work

Dataflow circuit optimizations. Prior work explored the
generation of dataflow circuits from imperative code [6,
28, 31, 35]; this includes Dynamatic [31], the source of

ElasticMiter: Formally Verified Dataflow Circuit Rewrites

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 2. Results of our rewrites (Ours) on the circuits generated by Dynamatic contrasted to the original circuits ([31]).

Benchmark Cycles CP (ns) Exec. time (us) LUTs FFs DSPs
[31] Ours [31] Ours [31] Ours [31] Ouwurs [31] Owurs

binary search 282 155 4.4 4.0 1.2 0.6 -50% 1,131 924 -18% 1,061 738 -30% 0
cnn 6,659 5,506 4.8 3.8 32 209 -35% 2,181 2,212 1% 1,326 1,275 -4% 3
gemver 5,007 4,972 6.0 4.9 30.0 244 -19% 3,366 3,093 -8% 2,960 2,541 -14% 22
sobel 4,173 2,159 7 5.9 29.2 127 -57% 2,259 2,053 -9% 2,107 1,533 -27% 6
spmv 61 46 5.2 4.5 0.3 0.2 -33% 1,534 1,321 -14% 1,359 1,124 -17% 3
ged 77 76 5.1 5.3 0.4 0.4 0% 1,656 1,184 -29% 1,233 754 -39% 0
stencil 2d 432 433 4.2 3.8 1.8 1.6 -11% 869 898 3% 678 687 1% 3
matvec 15,740 15,725 5.2 4.2 81.8 660 -19% 685 694 1% 525 531 1% 4
fir 1,007 1,007 3.7 3.9 3.7 3.9 5% 388 383 -1% 356 354 -1% 3

the dataflow circuits for our evaluation. Dataflow cir-
cuits strongly relate to dataflow machines [1, 27, 45]. Bal-
lance et al. [3] and Campbell et al. [8] proposed program
analysis to optimize software code for these machines. Al-
though they produced software code, their compiler repre-
sentations can be interpreted as dataflow circuits. Elakhras et
al. proposed a fast token delivery strategy [22, 24] that used
those representations to improve the area and performance
of dataflow circuits. Cheng et al. [15] analyzed high-level
code to exploit more parallelism in statically inferrable sit-
uations. All these efforts only target better conversions of
high-level code into dataflow circuits, whereas we propose
formally verified circuit-to-circuit transformations that pro-
duce provably correct, optimized dataflow circuits without
the need for any high-level code analysis.

Sequential synthesis [40, 51, 52, 58—60] reduces circuit
complexity while keeping circuits before and after optimiza-
tion sequentially equivalent. Although applicable to dataflow
circuits [58], these approaches are complementary to our op-
timization techniques—our optimization approach alters the
sequential behavior of the circuit to reduce execution latency
and area cost, while still maintaining the same functionality.

Verification techniques for accelerator synthesis.
Recent efforts aim at verifying the HLS compilation pro-
cess [26, 29]: These tools target statically-scheduled circuits,
while we focus on the HLS of dataflow circuits. Pan et al. [44]
proposed a bounded strategy for checking if an RTL mod-
ule behaves the same under arbitrary stalls; they do not
determine a sufficient bound value for the proof, whereas
ElasticMiter addresses this issue (Section 4.3). Lin et al. [37]
proposed an approach for translation validation between an
LLVM program and the program compiled using a dataflow
compiler; yet, their approach does not apply when the com-
piler restructures the code. Pouchet et al. [48] introduced an
equivalence checking tool for HLS source-to-source trans-
formation. Their approach is limited to programs with static
control flow and targets a different abstraction level (C code).

Our definitions of equivalent sequences and latency-
insensitive equivalence are inspired by Carloni et al. [10].

305

They do not provide a problem encoding that is directly com-
patible with model checking. We take advantage of dataflow
circuits’ well-defined in/out ports and specify our definition
over them; this facilitates the encoding of the equivalence
problem (ElasticMiter) for any two circuits and enables au-
tomated model checking proofs.

Program equivalence checking is an important problem
in software verification [16, 43, 49, 61]. Dataflow circuits
cannot directly benefit from these techniques: at a semantic
level, dataflow units can execute in arbitrary order permitted
by data dependencies; yet, software equivalence checking
assumes that instructions execute in a sequence.

9 Conclusions

Dataflow circuits are a promising HLS target, but their trans-
formations lack formal verification strategies that would
enable their safe and systematic usage in HLS. This is due to
the fact that the notion of equivalence in dataflow circuits
differs from that in ordinary digital circuits. In this work,
we develop a generic framework that exploits a dataflow-
specific equivalence definition to prove the equivalence of
two dataflow circuits. We use our framework to verify a
graph rewriting system for dataflow circuit simplification,
and employ the verified graph rewrites to transform HLS-
produced dataflow circuits into their equivalent, cheaper, and
faster counterparts. Our work complements existing soft-
ware and hardware verification strategies and enables the
development of formally verified dataflow HLS compilers.

Acknowledgments

We thank the anonymous reviewers and our shepherd
Guy Steele for their valuable feedback. Ayatallah Elakhras is
supported by a Google PhD Fellowship in Distributed Sys-
tems and Parallel Computing. Jiahui Xu is supported by the
Swiss National Science Foundation (grant number 215747)
and the ETH Future Computing Laboratory (donation from
Huawei Technologies).

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

A Artifact Appendix

A.1 Abstract

This artifact contains all the source codes and benchmarks of
ElasticMiter. It utilizes a Dockerfile to set up the environment
and scripts to replicate our experiments in Section 7 and
generate data for Table 1, Table 2, and Figure 11.

A.2 Artifact check-list (meta-information)

e Program: The source code for the rewriting pat-
terns and the verification framework is available in
elastic-miter/. The source code for the rewriting
optimization is available in dynamatic/. They are both
available in the Zenodo archive.

e Compilation: Use Dockerfile to build the project.

¢ Run-time environment: The experiments run in an
Ubuntu 22.04 docker (Dockerfile provided). Our exper-
iments require Vivado 2019.1 and ModelSim 20.1 (see
Appendix A.3.3).

e Hardware: AMD Ryzen 7 PRO 5850U (or any similar
processors) with > 32 GB memory.

e Output: Generate simulation reports, synthesis re-
ports, and log files.

e Experiments: Run all experiments using the Bash
scripts. README . md documents the individual experi-
ments.

e Disk space required: The docker image and the soft-
ware installation packages add up to > 120 GB.

e Time needed to prepare workflow: Approximately
2.5 hours to setup the workflow.

e Time needed to complete experiments: Around 3

hours to complete all experiments.

Publicly available: Yes.

Code licenses: MIT license.

Workflow automation framework used: Docker.

Archived: Archived on Zenodo with DOI: 10.5281/zen-

0do0.14776038.

A3

The detailed descriptions are documented in README . md in
the Zenodo archive [25]. This subsection describes some
notable hardware/software requirements (e.g., proprietary
software dependencies).

Description

A.3.1 How to access. The artifact is publicly available
at https://doi.org/10.5281/zenodo.14776038. In the archive,
asplos25fall-elastic-miter.zip contains all the source
codes, benchmarks, scripts, and environment setup files.
generated-files.zip contains all the generated files, i.e.,
log files, synthesis/simulation reports, and tables.

A.3.2 Hardware dependencies. A Ubuntu 22.04-LTS
Linux machine with at least 120 GB of free disk space and
32 GB memory.

Ayatallah Elakhras, Jiahui Xu, Martin Erhart, Paolo lenne, and Lana Josipovi¢

306

A.3.3 Software dependencies. The experiments depend
on proprietary software. Vivado (version 2019.1) [57] and
ModelSim (version 20.1) [39] have free versions. README . md
provides the instructions for downloading the software.

All the remaining dependencies are automatically config-
ured by Dockerfile.

A.4 Installation

This subsection describes the steps for generating the run-
time Docker environment for our experiments.

e Install Docker (https://www.docker.com/).

e Download the Zenodo archive [25] and follow the in-
structions in the README .md to download the propri-
etary software dependencies (see Appendix A.3.3), ob-
tain the Gurobi license, and build the docker image.

A5

Follow the instructions in README.md. Launch the con-
tainer and run all experiments using exp_gen_tab_1.sh
and exp_gen_tab_2.sh.

Experiment workflow

A.6 Evaluation and expected results

The produced data corresponding to the entries in Table 1,
Table 2, and Figure 11 will be generated with identical or
nearly identical numbers as reported (location of the files
are documented in README . md). The produced verification
runtime is not expected to be identical but is expected to be
similar to the ones reported in Table 1.

https://doi.org/10.5281/zenodo.14776038
https://doi.org/10.5281/zenodo.14776038
https://doi.org/10.5281/zenodo.14776038
https://www.docker.com/

ElasticMiter: Formally Verified Dataflow Circuit Rewrites

References
[1] Arvind and Rishiyur S. Nikhil. 1990. Executing a Program on the MIT

[10

(11

[12

(13

[15

—

—

—

—

[

[t

—

—

[utr}

—

—

Tagged-Token Dataflow Architecture. IEEE Trans. Comput. 39 (March
1990), 300-318. https://doi.org/10.1109/12.48862

David F. Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA Pro-
gramming for the Masses. Commun. ACM 54, 4 (April 2013), 56-63.
https://doi.org/10.1145/2436256.2436271

Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstien. 1990.
The Program Dependence Web:A Representation Supporting Control-,
Data-, and Demand-Driven Interpretation of Imperative Languages.
In Proceedings of the 11th ACM SIGPLAN Conference on Programming
Language Design and Implementation. White Plains, NY, 257-71. https:
//doi.org/10.1145/93542.93578

Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling.
In Proceedings of the 12th International Workshop on Verification, Model
Checking, and Abstract Interpretation. Austin, TX, 70-87. https://doi.
org/10.1007/978-3-642-18275-4_7

Robert Brayton and Alan Mishchenko. 2010. ABC: An Academic
Industrial-Strength Verification Tool. In Proceedings of the 22nd Inter-
national Conference on Computer Aided Verification. Edinburgh, 24-40.
https://doi.org/10.1007/978-3-642-14295-6_5

Mihai Budiu, Pedro V. Artigas, and Seth Copen Goldstein. 2005.
Dataflow: A Complement to Superscalar. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware. Austin, TX, 177-86. https://doi.org/10.1109/ISPASS.2005.1430572
Dmitry Bufistov, Jordi Cortadella, Mike Kishinevsky, and Sachin Sap-
atnekar. 2007. A General Model for Performance Optimization of
Sequential Systems. In Proceedings of the International Conference on
Computer-Aided Design. San Jose, CA, 362-69. https://doi.org/10.1109/
ICCAD.2007.4397291

Philip L. Campbell, Ksheerabdhi Krishna, and Robert A. Ballance. 1993.
Refining and Defining the Program Dependence Web. Technical Report.
University of New Mexico. https://www.osti.gov/biblio/6231712
Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed
Kammoona, Tomasz Czajkowski, Stephen D. Brown, and Jason H.
Anderson. 2013. LegUp: An Open-Source High-Level Synthesis Tool
for FPGA-Based Processor/Accelerator Systems. ACM Transactions
on Embedded Computing Systems 13, 2 (Sept. 2013), 24:1-24:27. https:
//doi.org/10.1145/2514740

Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-
Vincentelli. 2001. Theory of Latency-Insensitive Design. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
20, 9 (Sept. 2001), 1059-76. https://doi.org/10.1109/43.945302
Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Grig-
gio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri,
and Stefano Tonetta. 2014. The nuXmv Symbolic Model Checker. In
Proceedings of the 26th International Conference on Computer Aided
Verification. Vienna, 334-42. https://doi.org/10.1007/978-3-319-08867-
9 22

Satrajit Chatterjee and Michael Kishinevsky. 2012. Automatic Gen-
eration of Inductive Invariants from High-Level Microarchitectural
Models of Communication Fabrics. Formal Methods in System Design
40 (2012), 147-69. https://doi.org/10.1007/s10703-011-0134-0
Satrajit Chatterjee, Michael Kishinevsky, and Umit Y. Ogras. 2012.
xMAS: Quick Formal Modeling of Communication Fabrics to Enable
Verification. IEEE Design & Test of Computers 29, 3 (June 2012), 80-88.
https://doi.org/10.1109/MDT.2012.2205998

Jianyi Cheng, Lana Josipovi¢, George A. Constantinides, Paolo Ienne,
and John Wickerson. 2020. Combining Dynamic & Static Scheduling
in High-Level Synthesis. In Proceedings of the 28th ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays. Seaside, CA,

288-98. https://doi.org/10.1145/3373087.3375297
Jianyi Cheng, Lana Josipovi¢, George A. Constantinides, and John

Wickerson. 2022. Dynamic Inter-Block Scheduling for HLS. In Pro-
ceedings of the 32nd International Conference on Field-Programmable

307

[16]

(17]

(18]

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Logic and Applications. Belfast, UK, 243-52. https://doi.org/10.1109/
FPL57034.2022.00045

Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019.
Semantic Program Alignment for Equivalence Checking. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation. Phoenix, AZ, 1027-1040. https://doi.org/10.1145/
3314221.3314596

Edmund Clarke, Kenneth McMillan, Sérgio Campos, and Vicky
Hartonas-Garmhausen. 1996. Symbolic Model Checking. In Proceed-
ings of the 8th International Conference on Computer Aided Verification.
New Brunswick, NJ, 419-22. https://doi.org/10.1007/3-540-61474-5_93
Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. 2018.
Introduction to Model Checking. Springer International Publishing,
Cham, 1-26.

[19] Jordi Cortadella, Mike Kishinevsky, and Bill Grundmann. 2006. Syn-

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

thesis of Synchronous Elastic Architectures. In Proceedings of the 43rd
Design Automation Conference. San Francisco, CA, 657-62. https:
//doi.org/10.1145/1146909.1147077

Giovanni De Micheli. 1994. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, New York.

Stephen A. Edwards, Richard Townsend, and Martha A. Kim. 2017.
Compositional Dataflow Circuits. In Proceedings of the 15th ACM-IEEE
International Conference on Formal Methods and Models for System
Design. Vienna, 175-84. https://doi.org/10.1145/3127041.3127055
Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovi¢, and Paolo Ienne.
2022. Unleashing Parallelism in Elastic Circuits with Faster Token
Delivery. In Proceedings of the 32nd International Conference on Field-
Programmable Logic and Applications. Belfast, UK, 253-61. https:
//doi.org/10.1109/FPL57034.2022.00046

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovi¢, and Paolo Ienne.
2024. Survival of the Fastest: Enabling More Out-of-Order Execution in
Dataflow Circuits. In Proceedings of the 32nd International Symposium
on Field-Programmable Gate Arrays. Monterey, CA, 44-54. https:
//doi.org/10.1145/3626202.3637556

Ayatallah Elakhras, Riya Sawhney, Andrea Guerrieri, Lana Josipovi¢,
and Paolo Ienne. 2023. Straight to the Queue: Fast Load-Store Queue
Allocation in Dataflow Circuits. In Proceedings of the 31st International
Symposium on Field-Programmable Gate Arrays. Monterey, CA, 39-45.
https://doi.org/10.1145/3543622.3573050

Ayatallah Elakhras and Jiahui Xu. 2025. Research Artifact of Elas-
ticMiter: Formally Verified Dataflow Circuit Rewrites. https://doi.org/
10.5281/zenodo.14776038

Florian Faissole, George A. Constantinides, and David Thomas. 2019.
Formalizing Loop-Carried Dependencies in Coq for High-Level Synthe-
sis. In Proceedings of the 27th IEEE Symposium on Field-Programmable
Custom Computing Machines. San Diego, CA, 315. https://doi.org/10.
1109/FCCM.2019.00056

V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes. 1989. The
Epsilon Dataflow Processor. In Proceedings of the 16th Annual In-
ternational Symposium on Computer Architecture. Jerusalem, 36-45.
https://doi.org/10.1145/74926.74930

Hagen Gadke-Liitjens. 2011. Dynamic Scheduling in High-Level Compi-
lation for Adaptive Computers. Ph.D. Thesis. Technischen Universitit
Braunschweig, Braunschweig, Germany. https://doi.org/10.24355/
dbbs.084-201105300920-0

Yann Herklotz, James D Pollard, Nadesh Ramanathan, and John Wick-
erson. 2021. Formal Verification of High-Level Synthesis. Proceed-
ings of the ACM on Programming Languages 5, OOPSLA (2021), 1-30.
https://doi.org/10.1145/3485494

Hans M. Jacobson, Prabhakar N. Kudva, Pradip Bose, Peter W. Cook,
Stanley E. Schuster, Eric G. Mercer, and Chris J. Myers. 2002. Syn-
chronous Interlocked Pipelines. In Proceedings of the 8th International
Symposium on Advanced Research in Asynchronous Circuits and Systems.
Manchester, 3-12. https://doi.org/10.1109/ASYNC.2002.1000291

https://doi.org/10.1109/12.48862
https://doi.org/10.1145/2436256.2436271
https://doi.org/10.1145/93542.93578
https://doi.org/10.1145/93542.93578
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1109/ISPASS.2005.1430572
https://doi.org/10.1109/ICCAD.2007.4397291
https://doi.org/10.1109/ICCAD.2007.4397291
https://www.osti.gov/biblio/6231712
https://doi.org/10.1145/2514740
https://doi.org/10.1145/2514740
https://doi.org/10.1109/43.945302
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/s10703-011-0134-0
https://doi.org/10.1109/MDT.2012.2205998
https://doi.org/10.1145/3373087.3375297
https://doi.org/10.1109/FPL57034.2022.00045
https://doi.org/10.1109/FPL57034.2022.00045
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1007/3-540-61474-5_93
https://doi.org/10.1145/1146909.1147077
https://doi.org/10.1145/1146909.1147077
https://doi.org/10.1145/3127041.3127055
https://doi.org/10.1109/FPL57034.2022.00046
https://doi.org/10.1109/FPL57034.2022.00046
https://doi.org/10.1145/3626202.3637556
https://doi.org/10.1145/3626202.3637556
https://doi.org/10.1145/3543622.3573050
https://doi.org/10.5281/zenodo.14776038
https://doi.org/10.5281/zenodo.14776038
https://doi.org/10.1109/FCCM.2019.00056
https://doi.org/10.1109/FCCM.2019.00056
https://doi.org/10.1145/74926.74930
https://doi.org/10.24355/dbbs.084-201105300920-0
https://doi.org/10.24355/dbbs.084-201105300920-0
https://doi.org/10.1145/3485494
https://doi.org/10.1109/ASYNC.2002.1000291

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

(31]

(32]

(33]

(34]

(35]

[36

—

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

(45]

[46]

(47]

Lana Josipovi¢, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically
Scheduled High-level Synthesis. In Proceedings of the 26th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. Monterey,
CA, 127-36. https://doi.org/10.1145/3174243.3174264

Lana Josipovi¢, Andrea Guerrieri, and Paolo Ienne. 2019. Speculative
Dataflow Circuits. In Proceedings of the 27th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays. Seaside, CA, 162-71.
https://doi.org/10.1145/3289602.3293914

Lana Josipovi¢, Axel Marmet, Andrea Guerrieri, and Paolo Ienne. 2022.
Resource Sharing in Dataflow Circuits. In Proceedings of the 30th IEEE
Symposium on Field-Programmable Custom Computing Machines. New
York, 1-9. https://doi.org/10.1109/FCCM53951.2022.9786084

Lana Josipovi¢, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne,
and Jordi Cortadella. 2020. Buffer Placement and Sizing for High-
Performance Dataflow Circuits. In Proceedings of the 28th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. Seaside,
CA, 186-96. https://doi.org/10.1145/3373087.3375314

Nico Kasprzyk. 2005. COMRADE—Ein Hochsprachen-Compiler fiir
Adaptive Computersysteme. Ph.D. Thesis. Technischen Universitét
Braunschweig, Braunschweig, Germany.

Christoph Kern and Mark R Greenstreet. 1999. Formal Verification in
Hardware Design: A Survey. ACM Transactions on Design Automation
of Electronic Systems 4, 2 (April 1999), 123-93. https://doi.org/10.1145/
307988.307989

Zhengyao Lin, Joshua Gancher, and Bryan Parno. 2024. FlowCert:
Translation Validation for Asynchronous Dataflow via Dynamic Frac-
tional Permissions. Proceedings of the ACM on Programming Languages
8, OOPSLA2, Article 289 (Oct. 2024). https://doi.org/10.1145/3689729
Kenneth L. McMillan. 1993. The SMV System. Springer US, Boston,
MA, 61-85. https://doi.org/10.1007/978-1-4615-3190-6_4

Mentor Graphics. 2016. ModelSim. https://www.mentor.com/
products/fv/modelsim/

Alan Mishchenko, Michael Case, Robert Brayton, and Stephen Jang.
2008. Scalable and Scalably-Verifiable Sequential Synthesis. In Proceed-
ings of the 27th International Conference on Computer-Aided Design.
San Jose, CA, 234-241. https://doi.org/10.1109/ICCAD.2008.4681580

Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkatara-
mani, Seth Copen Goldstein, and Mihai Budiu. 2006. Tartan: Eval-
uating Spatial Computation for Whole Program Execution. In Pro-
ceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems. 163-74. https:
//doi.org/10.1145/1168917.1168878

Multi-Level IR Compiler Framework 2020. https://mlir.llvm.org/. Multi-
Level IR Compiler Framework. https://mlir.llvm.org/

George C. Necula. 2000. Translation Validation for an Optimizing
Compiler. In Proceedings of the ACM SIGPLAN 2000 conference on Pro-
gramming language design and implementation. Vancouver, British
Columbia, 83-94. https://doi.org/10.1145/358438.349314

Peitian Pan and Christopher Batten. 2023. Formal Verification of
the Stall Invariant Property for Latency-Insensitive RTL Modules. In
Proceedings of the 21st ACM/IEEE International Conference on Formal
Methods and Models for System Design. Hamburg, Germany, 148-158.
https://doi.org/10.1145/3610579.3611081

Gregory Michael Papadopoulos. 1998. Implementation of a General-
Purpose Dataflow Multiprocessor. Ph. D. Dissertation. Massachusetts
Institute of Technology, Laboratory for Computer Science. http:
//hdl.handle.net/1721.1/27967

Nir Piterman and Amir Pnueli. 2018. Temporal Logic and Fair Discrete
Systems. Springer International Publishing, Cham, 27-73. https:
//doi.org/10.1007/978-3-319-10575-8_2

Louis-Noél Pouchet. 2012. Polybench: The Polyhedral Benchmark Suite.
https://sourceforge.net/p/polybench/wiki/Home/

Ayatallah Elakhras, Jiahui Xu, Martin Erhart, Paolo lenne, and Lana Josipovi¢

308

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Louis-Noél Pouchet, Emily Tucker, Niansong Zhang, Hongzheng Chen,
Debjit Pal, Gabriel Rodriguez, and Zhiru Zhang. 2024. Formal Verifica-
tion of Source-to-Source Transformations for HLS. In Proceedings of
the 32nd ACM/SIGDA International Symposium on Field Programmable
Gate Arrays. Monterey, CA, 97-107. https://doi.org/10.1145/3626202.
3637563

David A. Ramos and Dawson R. Engler. 2011. Practical, Low-Effort
Equivalence Verification of Real Code. In Proceedings of 23rd Inter-
national Conference on Computer Aided Verification. Snowbird, UT,
669-685. https://doi.org/10.1007/978-3-642-22110-1_55

Carmine Rizzi, Andrea Guerrieri, Paolo Ienne, and Lana Josipovi¢. 2022.
A Comprehensive Timing Model for Accurate Frequency Tuning in
Dataflow Circuits. In Proceedings of the 22nd International Conference
on Field-Programmable Logic and Applications. Belfast, UK, 375-83.
https://doi.org/10.1109/FPL57034.2022.00063

Ellen. M. Sentovich, Kanwar Jit Singh, Cho Moon, Hamid Savoj,
Robert K. Brayton, and Alberto Sangiovanni-Vincentelli. 1992. Sequen-
tial Circuit Design Using Synthesis and Optimization. In Proceedings
1992 IEEE International Conference on Computer Design: VLSI in Com-
puters & Processors. Cambridge, MA, 328-33. https://doi.org/10.1109/
ICCD.1992.276282

Ellen. M. Sentovich, Horia Toma, and Gérard Berry. 1996. Latch Op-
timization in Circuits Generated from High-Level Descriptions. In
Proceedings of the 15th International Conference on Computer-Aided De-
sign. San Jose, CA, 428-35. https://doi.org/10.1109/ICCAD.1996.569833
Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. 2000. Checking
Safety Properties Using Induction and a SAT-Solver. In Proceedings of
the 3rd International Conference on Formal Methods in Computer-Aided
Design. Austin, TX, 127-144. https://doi.org/10.1007/3-540-40922-X_8
Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede. 2023.
Compiler Discovered Dynamic Scheduling of Irregular Code in High-
Level Synthesis. In Proceedings of the 33rd International Conference
on Field-Programmable Logic and Applications. Gothenburg, Sweden.
https://doi.org/10.1109/FPL60245.2023.00009

C. A.J. Van Eijk. 2000. Sequential Equivalence Checking Based on
Structural Similarities. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 19, 7 (Aug. 2000), 814-819. https:
//doi.org/10.1109/43.851997

Xilinx Inc. 2018. Vivado Design Suite User Guide: High-Level Synthe-
sis. Xilinx Inc. https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf

Xilinx Inc. 2019. Vivado Design Suite. Xilinx Inc. http://www.xilinx.
com/products/design-tools/vivado.html

Jiahui Xu and Lana Josipovi¢. 2023. Automatic Inductive Invariant
Generation for Scalable Dataflow Circuit Verification. In Proceedings of
the 42nd International Conference on Computer-Aided Design. San Fran-
cisco, CA, 1-9. https://doi.org/10.1109/ICCAD57390.2023.10323796
Jiahui Xu and Lana Josipovi¢. 2024. Suppressing Spurious Dynamism
of Dataflow Circuits Via Latency and Occupancy Balancing. In Pro-
ceedings of the 32nd ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. Monterey, CA, 188-98. https://doi.org/10.
1145/3626202.3637570

[60] Jiahui Xu, Emmet Murphy, Jordi Cortadella, and Lana Josipovi¢. 2023.

[61]

Eliminating Excessive Dynamism of Dataflow Circuits Using Model
Checking. In Proceedings of the 31st ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays. Monterey, CA, 27-37.
https://doi.org/10.1145/3543622.3573196

Anna Zaks and Amir Pnueli. 2008. CoVaC: Compiler Validation by
Program Analysis of the Cross-Product. In Proceedings of 2008 In-
ternational Symposium on Formal Methods. Turku, Finland, 35-51.
https://doi.org/10.1007/978-3-540-68237-0_5

https://doi.org/10.1145/3174243.3174264
https://doi.org/10.1145/3289602.3293914
https://doi.org/10.1109/FCCM53951.2022.9786084
https://doi.org/10.1145/3373087.3375314
https://doi.org/10.1145/307988.307989
https://doi.org/10.1145/307988.307989
https://doi.org/10.1145/3689729
https://doi.org/10.1007/978-1-4615-3190-6_4
https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
https://doi.org/10.1109/ICCAD.2008.4681580
https://doi.org/10.1145/1168917.1168878
https://doi.org/10.1145/1168917.1168878
https://mlir.llvm.org/
https://doi.org/10.1145/358438.349314
https://doi.org/10.1145/3610579.3611081
http://hdl.handle.net/1721.1/27967
http://hdl.handle.net/1721.1/27967
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://sourceforge.net/p/polybench/wiki/Home/
https://doi.org/10.1145/3626202.3637563
https://doi.org/10.1145/3626202.3637563
https://doi.org/10.1007/978-3-642-22110-1_55
https://doi.org/10.1109/FPL57034.2022.00063
https://doi.org/10.1109/ICCD.1992.276282
https://doi.org/10.1109/ICCD.1992.276282
https://doi.org/10.1109/ICCAD.1996.569833
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1109/FPL60245.2023.00009
https://doi.org/10.1109/43.851997
https://doi.org/10.1109/43.851997
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/products/ design-tools/vivado.html
http://www.xilinx.com/products/ design-tools/vivado.html
https://doi.org/10.1109/ICCAD57390.2023.10323796
https://doi.org/10.1145/3626202.3637570
https://doi.org/10.1145/3626202.3637570
https://doi.org/10.1145/3543622.3573196
https://doi.org/10.1007/978-3-540-68237-0_5

	Abstract
	1 Introduction
	2 The Need for Dataflow Circuit Optimization and Verification
	2.1 Background on Dataflow Circuits
	2.2 Dataflow Circuits from Imperative Code Can Miss Optimization Opportunities
	2.3 Formal Verification Using Model Checking

	3 Defining Latency-Insensitive Equivalence
	4 ElasticMiter: A General Framework for Dataflow Circuit Equivalence Checking
	4.1 The ElasticMiter Fabric
	4.2 Properties for Checking Sequence Equivalence
	4.3 Reducing to Finite-State Model Checking

	5 Equivalence Under a Context
	5.1 Why Dataflow Circuits May Need a Context?
	5.2 Context of Isolated Dataflow Circuits

	6 A Graph Rewriting System
	6.1 Dataflow Circuit Rewrites
	6.2 Putting All Rewrites Together

	7 Evaluation
	7.1 Methodology
	7.2 Results: Rewrite Rule Verification
	7.3 Results: Effectiveness of Our Rewrite Pass

	8 Related Work
	9 Conclusions
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

