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Abstract

Dynamically scheduled high-level synthesis (HLS) compilers rely
on the latency-insensitivity of dataflow circuits to place buffers—
an equivalent of standard registers—to constrain the critical path
and optimize the throughput. However, since buffers are com-
pute resources, their amount is limited on an FPGA—yet this con-
straint is usually not accounted for by current compilers. Further-
more, current HLS strategies do not exploit runtime reconfiguration
opportunities that dataflow circuits offer. This paper introduces
resource-aware optimization that constrains resource allocation in
the dataflow circuit optimization process. It also presents phase-
aware optimization that considers phase information in programs
and optimizes buffer placement for each phase, such that runtime
reconfiguration can achieve improved performance. We integrate
these techniques into an existing HLS compiler, Dynamatic; we
show that, for a set of benchmarks, the proposed approach can
reduce the number of buffers by up to 40%. We also show that
runtime reconfiguration based on our phase-aware optimization
has negligible overheads and can outperform standard execution.
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1 Introduction

High-Level Synthesis (HLS) bridges software design and hardware
design; it takes high-level code and outputs its corresponding cir-
cuit description in Register Transfer Level (RTL). In recent years,
much research has focused on optimizing the resulting circuits.
One advance is the transition from statically scheduled [5] to dy-
namically scheduled [11] HLS. These dynamic circuits are based on
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dataflow graph models and are optimized for high throughput by
placing buffers across the circuit. Buffers are resources that occupy
space on an FPGA chip and are limited. An optimization using
such resources should consider this limitation and carefully place
them to maximize performance without exceeding their availability.
However, existing dataflow circuit optimization strategies neglect
this fact by investing resources as long as performance is improved.

Another limitation of current circuit optimization approaches
concerns phase behavior [2] exhibited by many programs. These
programs’ behavior changes at runtime, implying that their corre-
sponding circuit cannot be optimal for the entire execution unless it
is switched (i.e., reconfigured) according to phase transitions. Run-
time reconfiguration [23] is the process of reconfiguring an FPGA
while a program executes, such that the programmed circuit is
always optimal with respect to the current program behavior. To
the best of our knowledge, this concept has never been considered
by any dataflow graph optimization technique, which limits the
achievable performance.

To address the above-mentioned limitations of current dataflow
circuit optimization strategies, this work makes the following con-
tributions:

(1) We provide a dataflow graph optimization model that can
constrain the amount of resources invested during optimiza-
tion.

(2) We extend the previously introduced optimization such that
a circuit is optimized with respect to each of its phases, en-
abling the use of runtime reconfiguration.

(3) We integrate this new optimization strategy in Dynamatic [12]
a state-of-the-art HLS compiler, and show that up to 40% of
buffers can be saved without loss of performance.

(4) We show that runtime reconfiguration always outperforms
normal execution with negligible overheads under realistic
conditions.

The rest of the paper is structured as follows. Section II discusses
background and related work. Section III covers resource-aware
optimization. Section IV introduces phase-aware optimization. Sec-
tion V evaluates our approach. Section VI discusses its limitations
and possible future work, and Section VII concludes the paper.

2 Background and Related Work

This section provides the background on dataflow circuits and their
existing optimizations; we describe the HLS tool that we will employ
in our evaluation. We introduce the concept of phase behavior and
discuss its relevance in this context.
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2.1 Dataflow Circuits

Dynamically scheduled HLS tools are based on dataflow circuits
built from dataflow units that can execute an operation as soon as
all its input data are available and the unit is free, and the successor
is ready to receive data. This behavior is implemented by channels
between units that use a handshake protocol to signal when data
are ready to be received or processed. This implies that operation
scheduling is decided at runtime.

Most dynamically scheduled HLS tools rely on the same method-
ologies [10] [11] to generate dataflow graphs from high-level code
specifications. In short, the circuit is built by connecting Basic
Blocks (BBs), which are straight pieces of code, by control flow deci-
sions. Each BB is built as a connection of basic dataflow units. The
control flow between such units is built using Merge and Branch
units that, respectively, insert a token in a BB, and dispatch a token
to the successor BB. Figure 1(a) shows a circuit example generated
from the code in Listing 1: a token holding the initial value of the
loop iterator enters the loop from the Start input, repeatedly trig-
gers the loop operations by reinserting the updated iterator into
the current Loop Basic Block, and ultimately exits through the End

output.
int fir (int d[N], int idx[N]){
int sum = 0;
for (i =0 ; i < N; i ++){
sum += idx[i] » d[N - 1 - i];
}

return sum;

Listing 1: FIR filter C++ implementation.

Additionally, dataflow circuits are said to be latency-insensitive [6]
[7]. In other words, their functionality is invariant to any delay on
their input operands. This implies that buffers, which are storage
elements with appropriate handshake signals to communicate with
other dataflow units, can be placed anywhere in the circuit without
modifying functionality. Even though these buffers have no func-
tional impact, correctly placing and sizing them can significantly
improve throughput and constrain the critical path of the resulting
circuits [4] [13].

2.2 Buffer Optimization

A primary performance bottleneck in dataflow circuits is stalling
due to backpressure, which occurs when a successor unit is not
ready to process the produced data; this forces the predecessor unit
to block and prevents it from starting a new computation, even
if new data are ready and available on all of its operands. This
situation usually arises when different paths in the dataflow graph
of different latencies are joined at a functional unit, as longer paths
will force shorter paths to wait for data. This problem worsens as
latency differences become more significant, as more time is wasted
waiting at the joining point. An additional performance issue is
critical path regulation: the handshake protocol of dataflow circuits
incurs long combinatorial paths [18] that can significantly reduce
the achievable clock period and, consequently, performance.

The first problem can be resolved by adding transparent buffers,
i.e., pass-through FIFOs to relieve backpressure; the latter can be
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optimized by adding non-transparent buffers (i.e., registers breaking
combinational paths). Figure 1(a) shows an example in which a
transparent buffer (of 5 slots), and two non-transparent buffers (2
and 1 slots) have been added to optimize the circuit. Non-transparent
buffers are marked with N and serve for cutting long combinational
paths; transparent buffers are marked with T and store multiple
data items to regulate the throughput.

The placement and sizing of buffers in dataflow circuits are
based on Petri Nets (i.e., marked-graphs) [1][13], retiming [15] [20],
and latency-insensitivity [3] [4] [8], and are typically implemented
as Mixed-Integer Linear Programming (MILP) optimization. This
optimization problem comprises parameters, constraints, and an
optimization objective; as in all optimization problems, the goal is
to find optimal parameters that respect the constraints and meet
the optimization objective.

For buffer optimization, the parameters of the MILP are the num-
ber of buffers on each channel of the dataflow graph and their
transparency (i.e., whether the buffer is non-transparent or trans-
parent). The constraints are divided into two types:

o Path constraints, responsible for enforcing a given maximum
clock period (CP).

o Throughput constraints, responsible for getting the correct
throughput for each cycle.

Finally, the optimization objective is a weighted sum of each choice-
free (no control flow decision) cycle’s throughput. The goal is to
maximize each cycle’s throughput while respecting a maximum
Clock Period. By setting the weights in the sum, the more frequently
executed cycles are given more importance in the optimization
objective than less frequently executed ones.

Several studies show that one of the main shortcomings of the
above optimization is the inaccurate and unstable estimate of the
frequency or Clock Period. Recent work has looked at ways of
making buffering implementation-aware [19] [24]; the goal is to
produce more accurate frequency estimation and optimization by
understanding how a dataflow circuit is mapped to the FPGA. As
discussed later, our work suffers from significant instability with
the frequency of generated circuits. This issue could be overcome
by combining it with the above work for greater frequency control
and more stable results.

2.3 Dynamatic

Dynamatic [12] is a state-of-the-art HLS compiler, relying on dy-
namic scheduling of operations to generate greatly optimized cir-
cuits from a subset of C/C++ code. It generates circuits described
in Section 2.1 and optimizes them by placing buffers as explained
in Section 2.2.

Our contributions have been integrated into Dynamatic to facili-
tate their evaluation. We choose this tool as it is one of the most
recent open-sourced HLS compilers producing dataflow circuits,
and it allows us to work directly on dataflow graphs generated
from actual high-level code without coding this circuit generation
from scratch. Note that our contributions are general and can be
integrated into other dataflow circuit generation strategies as well.
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Figure 1: FIR filter optimized dataflow circuit generated by Dynamatic. The green squares are the buffers: T for a transparent

buffer and N for a non-transparent buffer.

2.4 Phase Behaviour and Phase Optimization

It is known that a number of programs exhibit what is called phase
behavior. Before defining it, we introduce the notion of a working
set. A working set is the information accessed by the program for a
given duration. A phase is the maximum interval during which the
working set is approximately stable. A phase is considered major
when the working set is stable for a non-negligible duration. From
all the previous definitions, the phase transition model [2] defines
that program execution is composed of a succession of major phases
separated by unstable states. When a program phase changes, sev-
eral of its characteristics (e.g., branch conditions, memory accesses)
change, meaning that previous optimizations might not be relevant
anymore.

It is an issue when we think about this in the context of HLS
and buffer optimization. The circuit is optimized only once, using
global measures (e.g., overall cycle execution frequency) of the
program, and programmed only once on the FPGA. So, even if the
program exhibits behavior changes, the same circuit is kept, which
is a non-optimal use of limited resources. We can achieve better
performance by acknowledging these phases and using runtime
reconfiguration.

An example of a circuit with two phases is one obtained from
a program with two consecutive loops; these independent loops
represent two phases. In a resource-unlimited context, one can
easily optimize both. However, as we will show in Section 4.1, this
may not be possible in a resource-constrained context where relying
on phases and runtime reconfiguration becomes critical.

Let us introduce phase optimization. Phase optimization concerns
generating a circuit optimized for each program phase and (at
runtime) reconfiguring the circuit after each phase change, such that
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the programmed circuit is always optimized towards the current
behavior.

There have been efforts addressing phase behaviour and phase
optimization. The work of Styles et al. shares our idea of recon-
figuring an FPGA for programs that exhibit phase behavior. Their
compilation framework [22] is similar to the previously introduced
approach for control flow connections between BBs, as they are
dynamically scheduled using MERGE and BRANCH units.

However, the internal structure of a BB from their approach is
different since it is statically scheduled, and all its paths have the
same latency, i.e., all outputs are produced during the same clock
cycle. It enables a designer to set an Initiation Interval (I) for each
BB, directly reflecting resource allocation. Indeed, increasing an II
will increase the sequentiality of the block, and therefore its area
cost will be reduced. These IIs are chosen based on BBs execution
frequency, similar to the usual buffer optimization.

In addition to this compilation framework, Styles et al. introduced
a reconfiguration system [23] that performs phase optimization: it
generates a circuit optimized for each phase of the input programs,
detects phase changes in the input program, and reconfigures the
FPGA to a circuit better optimized for the new phase. We build on
top of this work; we follow their idea of investing resources in a
single phase at a time and apply it to the buffering of a dynamically
scheduled dataflow graph.

3 Resource-Aware Optimization

This section introduces our resource-constrained dataflow circuit
optimization. It maximizes circuit throughput for a given resource
availability and will serve as foundation to develop our phase-aware
optimization in the next section.
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3.1 MILP Problem

As described earlier, buffer optimization is usually solved using
MILP. We follow the same approach here and borrow the path
constraints, throughput constraints, and objective function from
prior work [13]. The optimization objective function is as follows:

max: Z w; . 0; (1)

It is a weighted (w;) sum of each program cycle’s throughput (6;);
the weights are proportional to each cycle execution frequency.

The main difference and extension to usual dataflow optimization
is the addition of another constraint to the model:

ZNC<N
c

where N, is the number of buffer slots on channel c, so the left-
hand side is the total number of buffers in the circuit. The right-
hand side is the buffer limit N, which is an input to the MILP
problem. It specifies the maximum number of buffers invested in
the optimization process. This optimization will output a circuit
optimized as much as possible using up to N buffers. This is in strong
contrast to prior dataflow optimization strategies that add buffers
until optimality is reached, thus giving the minimum number of
buffers to reach maximum throughput; we call it N*. We expect
to reach the maximal achievable throughput for all N > N*. The
interesting observations are made with N < N* where the number
of buffers is insufficient to optimize the circuit fully. We expect to
see a smooth degradation of throughput as N decreases.

@

3.2 Resource Reduction Example

As a quick, illustrative example, we will show the effects of resource
reduction on the circuit generated for Listing 1, a simple FIR filter.

As stated earlier, we integrate this new optimization into Dy-
namatic to provide dynamically scheduled circuits and interesting
optimization comparisons. Figure 1a shows the circuit generated
by Dynamatic default configuration for Listing 1. We can see that 8
buffers have been added during optimization.

We will now use our extension to reduce the number of buffers
and observe the single cycle’s (single loop) throughput degradation:

e N > 8: throughput of 1, optimal performance.
e 8 > N > 7: throughput of 0.83.

e 7> N > 5: throughput of 0.5.

e N = 3: throughput of 0.

When fewer than 8 buffers are available, the loop cannot attain
optimal performance, but it can still be optimized as much as possi-
ble with the available resources. When resources are diminished
further, the throughput decreases. When we reach 3 buffers, the
loop cannot be optimized and the circuit is not functional, as in-
sufficient resources are available. These observations demonstrate
a smooth and explainable performance degradation that follows
buffer availability and shows different area-performance tradeoffs
that one can exploit by tuning the buffer count.

As a quick sanity check, Figure 1b shows the optimized dataflow
graph with a constraint of 5 maximum buffers, i.e., N set to 5. By
looking at the green squares and comparing them to Figure 1a, we
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can see that the number of buffers has been reduced to 5, and fewer
resources are used in this circuit as expected.

4 Phase-Aware Optimization

Now that buffer optimization can account for resource constraints,
we consider program phase behavior and adopt runtime reconfig-
uration to optimize the use of limited resources during program
execution.

As introduced in the previous section, a dataflow circuit’s buffer
optimization relies on an MILP problem whose objective function
maximizes the throughput of the program cycles. This optimization
is guided so that more executed cycles receive more buffers and
fewer executed cycles receive fewer buffers. If two cycles have
similar execution frequencies, it can be expected that resources are
shared or one cycle is preferred to increase overall throughput.

As stated earlier, some programs exhibit phase behavior, meaning
that some of their characteristics, such as branch probability, may
change during program execution. It implies that overall execution
frequencies may not provide sufficient information to fully optimize
the circuit. Our discovery in this work is that relying solely on the
overall cycle execution frequency for optimization may not yield
optimal performance when buffers are constrained.

We will first discuss an illustrative example showing how usual
buffer optimization is non-optimal when input programs exhibit
phase behavior. We will then present a new optimization that ac-
knowledges phases to reach maximal performance in a resource-
constrained system using runtime reconfiguration.

4.1 Phase Unawereness
Listing 2 shows a small code example that consists of two consecu-
tive loops.
int loops(int w[N],int y[N],int a[N],int b[N]){
int sum = 0;

for (i =0 ; i < N; i ++){
sum += a[i] » w[i];

}

for (i =0 ; i < N; i ++){

sum += b[i] « y[i];

}

return sum;

Listing 2: Two consecutive simple loops.

A usual buffer optimization (e.g., Dynamatic) will assign the
same optimization priority to both loops in the objective as they
have the same size. The default Dynamatic optimization adds 16
buffers, fully optimizing each loop and executing the program in
1000 cycles. If 16 buffers are available, this solution is perfectly fine;
however, imagine that this is not the case. Using our new resource-
constrained optimization, we can limit the number of employed
buffers, at a performance cost. For instance, if we limit optimization
to only 12 buffers, 1670 cycles are needed to execute the program,
as both loops cannot be fully optimized.

Figure 2a shows the corresponding optimized dataflow graph.
We can see that block2 (corresponding to the first loop) receives
fewer buffers than block4 (corresponding to the second loop), so
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Figure 2: Optimized dataflow graph for the code of Listing 2, with 12 buffers.

performance is degraded as the first loop cannot attain maximum
throughput. This observation makes sense and is expected, but a
higher performance can be attained if phases are considered and
runtime reconfiguration is used.

This program exhibits phase behavior and has two phases cor-
responding to the two loops. Indeed, the program spends the first
half of its execution on the first loop and then switches to the sec-
ond loop. This switch changes the working set of the program, e.g.,
different branches executed, different memories accessed, so it is a
phase change, also known as phase transition.

If the available resources are fully invested in a phase at a time,
e.g., all buffers on the first loop, then the circuit reconfigured with
all buffers in the second loop, performance can be improved; this
shows phase optimization. The above program can be executed in
1000 cycles, using only 12 buffers if reconfiguration overhead is not
considered. Figure 2b and 2c show the optimized dataflow graph
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when the optimization targets each phase. We can see that the
transparent buffers are fully allocated to the loop targeted by the
optimization: in Figure 2b, buffers are allocated to block1 (first loop),
and in Figure 2c, buffers are allocated to block4 (second loop).

Note that non-transparent buffers are still added everywhere
when optimization targets only one phase, as we want to ensure
that the Clock Period is constrained across the entire circuit to
achieve high performance.

4.2 Phases and Multiple Optimizations

The above example shows how phase optimization can increase
performance when buffers are limited. The idea is simple: the same
buffer optimization model is applied for each input program phase,
and P circuits are produced, where P is the number of phases in the
program. The FPGA is reconfigured at runtime whenever a phase
transition is detected to keep the circuit optimal.
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One question is: how to detect and represent phases in the opti-
mization objective?

This work only focuses on circuit optimization, assuming that
phases are already detected. Several approaches present various
ways of detecting phases [9] [21], making our assumption reason-
able. One of the measures used to characterize a phase is its branch
probabilities, which are tightly related to cycle execution frequency.
We assume that we know the execution frequency for each cycle
for each phase of the input program.

Our model defines a phase as ¢: a vector containing the weights
(execution frequency) for each program cycle. The optimization model
receives one ¢ for each phase as input, and performs the optimiza-
tion P times:

P
Vg max: > ;. 0; 3)
i=1
Listing 2 has 2 phases corresponding to the two program loops.
A phase is therefore defined by a pair of coefficients: the execution
frequency for the first loop, and the execution frequency for the
second loop. So each phase of this program corresponds to the exe-
cution of a single loop; in other words, this loop is always executed
and thus has an execution frequency (branch probability) of 1. The

two phases ¢ of Listing 2 are:
$1:(1,0)
$2: (0,1)
We therefore perform optimization 2 times, first optimizing only
the first loop and then only optimizing the second loop:
max: ¢p
max: ¢
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4.3 Runtime Reconfiguration

The above methodology will generate P optimized circuits. These
circuits will be introduced at runtime, using reconfiguration and
following phase transitions, to keep the programmed FPGA optimal
to the current program behavior.

To understand when such an approach is beneficial, we introduce
a reconfigurable hardware performance model based on [16]:

— NC
-~ XN+ Ny)

where j is each phase of the input program, N, is the number of
cycles to execute the default optimized circuit without reconfigu-
ration, N; is the number of cycles to execute part j on the phase-
optimized circuit (optimized for phase j), and N, is the number of
cycles needed for reconfiguration. The denominator is, therefore,
the number of cycles to execute the program when we use the
phase-optimized circuit and switch them when a phase change is
detected.

This equation computes {, which is the speed benefit of using
the runtime reconfiguration approach compared to the default opti-
mized circuit. Reconfiguration brings performance benefits if > 1.

For instance, for Listing 2, with only 25 buffers available, the
entire program takes 1670 cycles to execute, so N, = 1670. However,
each phase can be fully optimized and executes in 500 cycles each,
so Ny = N2 = 500. If we assume that reconfiguration only takes 100
cycles, N, = 100, we then have:

4 ©

1670 _
100 + 500 + 100 + 500

l= 1.39 (5)
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Since { > 1, phase optimization and runtime reconfiguration
bring benefits, and performance is improved.

5 Evaluation

This section evaluates our optimization. We first introduce our
experimental setup, then discuss the quality of our results in terms
of the achieved clock period, buffer utilization, and the effectiveness
of phase optimization.

5.1 Methodology

As stated earlier, our new optimization model has been integrated
into Dynamatic. We evaluate our work using 4 benchmarks from
Dynamatic’s buffer optimization study [13]. These benchmarks
mainly originate from Polybench [17]. Some of them are combined
sequentially to produce programs with clear major phases. This
hand-engineering phase creation was performed to simplify our
evaluation work, as detecting phases is another problem requiring
non-trivial algorithms.

Our methodology applies the Dynamatic toolchain to generate
optimized RTL descriptions for each benchmark. The number of
cycles to execute the generated circuits is obtained from simulation
using Modelsim, and their Clock Period and resource usage (LUTs)
from Vivado place & route, targeting a Xilinx Virtex UltraScale+
FPGA (xcvul9p-fsva3824-2-e). Buffer optimization is performed with
a target Clock Period of 5 ns and different configurations:

e no phase optimization, no buffer constraint: To measure the
Dynamatic default circuit performance and get the default
number of added buffers.

e no phase optimization, with buffer constraint: To measure
the circuit performance when fewer buffers are available.
Sequential buffer constraints are tested in these experiments
until the performance is modified. Experiments are stopped
when the worst performance is reached.

e phase optimization, no buffer constraint: To get the default

number of buffers added by Dynamatic for each phase-optimized

circuit.

e phase optimization, with buffer constraint: To measure each
phase-optimized circuit performance on its phase when fewer
buffers are available. Again, sequential buffer constraints are
tested to detect performance degradation, and experiments
are stopped when the worst performance is reached.

Runtime reconfiguration is simulated, so the number of cycles
for each phase-optimized circuit is added to compute the overall
circuit performance (Table 2). We will first assume that reconfig-
uration is instantaneous (i.e., 0 cycles of overhead) to provide an
optimistic upper bound on performance. Then using the difference
in cycles between the default execution and optimistic runtime
reconfiguration execution, we can quantify up to what overhead
value our solution can cover. In other words, using our experimental
results and Equation 4, we can find the maximum reconfiguration
overhead above which our solution is no longer faster. We will
also compare our findings with usual overhead values to provide
realistic performance conclusions.

Table 1 summarises most of our ‘resource-constrained’ experi-
mental results, and Table 2 shows our phase-optimization measures.
We discuss them in detail in the following sections.
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BM #buffers LUT CP(ns) Cycles Execution time (us)

40 1006 3.2 6012 19.2

31 970 3.5 6012 21.0

27 953 3.8 6012 22.8

25 948 3.9 6760 26.4

24 903 3.8 8508 323

Comb1 20 915 3.6 10 504 37.8
19 893 3.6 12 007 432

15 874 3.6 13 008 46.8

13 859 2.6 14 257 37.1

110 2267 42 5261 22.1

102 2295 14 5261 23.2

70 2169 35 5261 184

65 2118 4.1 5377 22.0

Fdtd 60 2130 5.0 6353 31.8
57 2036 35 6738 235

55 2077 3.6 7207 26.0

50 2046 4.0 7549 30.3

48 1992 3.4 8033 27.3

130 3825 42 5562 23.4

118 3452 4.5 5562 25.0

75 3349 47 5562 26.1

72 3270 5.0 6444 32.2

Gemver 68 3304 42 9154 38.4
58 3252 5.1 9515 485

55 3231 5.8 10 040 58.2

52 3248 55 11254 62.0

50 3173 6.8 12754 86.7

39 3134 5.2 13 024 67.7

210 20 908 6.3 7337 46.2

202 20274 6.6 7337 484

121 20 058 6.4 7337 46.9

120 19 981 6.6 7548 498

119 19771 6.6 8233 54.3

Comb?2 116 19 877 5.6 9136 51.2
103 20 082 5.8 9342 54.2

101 20 833 5.9 10 361 61.1

99 20 144 53 11382 60.5

87 20 198 5.6 11830 68.9

85 19 610 6.1 12 730 77.7

77 19 633 5.9 13 658 80.6

68 20 089 6.1 13778 84.0

Table 1: Execution time, resource usage and Clock Period for
the Dynamatic default-optimized circuit and for the resource-
constrained circuit.

5.2 Clock Period Instability

As stated in our Methodology, we ran the buffer algorithm with a
target Clock Period of 5ns. A first important observation, looking at
the results displayed in Table 1, is that some values are above this
limit, showing that the buffer optimization frequency estimation is
not always accurate.

We can also see that the results are unstable; we cannot extract
any global trend. Sometimes it seems like it is decreasing when
buffers are reduced, e.g., from 3.5ns to 2.6ns in Comb1, but in other
benchmarks, it seems like it is increasing, e.g., from 4.5ns to 5.2ns
in Gemver.

A question arises: how can a solution with fewer buffers be better
than a solution with more buffers? Our optimization tweaks the
transparent buffers but does not touch the non-transparent buffers,
so modifying the buffer availability should not modify the Clock
Period that much. As introduced in the Background section, recent
work [24] has looked at ways of making buffer placement mapping
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BM # buffers Number of cycles (Phase: cycles) Total cycles
40 0: 3004 ; 1: 3008 6012
31 0: 3004 ; 1: 3008 6012
21 0: 3004 ; 1: 3008 6012
Comb1 20 0: 3003 ; 1: 3756 6760
18 0: 3003 ; 1: 5254 8257
17 0: 3003 ; 1: 5507 8510
15 0: 4002 ; 1: 7502 11 504
13 0: 5252 ; 1: 9004 14 256
110 0:1771;1: 1771 ; 2: 1719 5261
102 0:1771;1: 1771 ; 2: 1719 5261
53 0:1771;1:1771;2: 1719 5261
52 0:1771; 1: 1771 ; 2: 1805 5347
Fdtd 51 0:1771; 1: 1771 ; 2: 1834 5376
50 0: 2177 ; 1: 2190 ; 2: 2328 6695
49 0: 2177 ; 1: 2190 ; 2: 2355 6722
48 0: 2611 ; 1: 2611 ; 2: 2811 8033
130 0: 1831 ; 1: 1831 ; 2: 60 ; 3: 1831 5553
118 0: 1831 ; 1: 1831 ; 2: 60 ; 3: 1831 5553
51 0: 1831 ; 1: 1831 ; 2: 60 ; 3: 1831 5553
50 0: 1831 ; 1: 2191 ; 2: 60 ; 3: 1831 5913
49 0: 1831 ; 1: 2191 ; 2: 60 ; 3: 2190 6272
48 0: 1831 ; 1: 2716 ; 2: 60 ; 3: 2190 6797
Gemver 47 0: 1831 ; 1: 2716 ; 2: 60 ; 3: 2716 7323
44 0: 1831 ; 1: 3931 ; 2: 60 ; 3: 2716 8538
43 0: 1831 ;1: 3931 ; 2: 60 ; 3: 3931 9753
42 0: 1831 ; 1: 5430 ; 2: 60 ; 3: 3931 11 252
41 0: 1831 ; 1: 5430 ; 2: 60 ; 3: 5430 12 751
39 0: 2102 ; 1: 5430 ; 2: 60 ; 3: 5430 13 022
210 0:1832; 1: 1832 ; 2: 1832 ; 3: 1842 7338
202 0:1832; 1: 1832 ; 2: 1832 ; 3: 1842 7338
79 0:1832;1: 1832 ; 2: 1832 ; 7338
78 0:1832;1:1832;2: 1832 ; 3: 7993
Comb 76 0:1832;1: 1832 ;2: 1832 ; 3: 8235
omb2 74 0:2042 ; 1: 2042 ; 2: 1832 ; 9132
73 0: 2733 ; 1: 2042 ; 2: 1832 ; 9823
72 0:3032; 1: 2042 ; 2: 1832 ; 10 542
71 0:3632; 1: 2042 ; 2: 2042 ; 11 352
70 0: 4082 ; 1: 2400 ; 2: 2731 ; 3: 12 849
69 0: 4082 ; 1: 2400 ; 2: 3031 ; 3: 13 149
68 0: 4082 ; 1: 2400 ; 2: 3665 ; 3: 13783

Table 2: Number of cycles to execute each phase on its phase-
optimized circuit with a decreasing number of available
buffers.

aware, which should make frequency estimation more accurate and
avoid this instability.

However, in our work, the instability is directly reflected in the
execution time results that no longer follow the cycle results. We
decided to focus on cycle results for the rest of this evaluation for
stability reasons.

5.3 Results: Buffer Over-Utilization

Table 1 displays each benchmark’s cycle count and LUTs usage. As
stated in Methodology, we started from Dynamatic default optimiza-
tion (in bold) and decreased the number of buffers until reaching
the absolute worst performance. These results are shown in Figure 3,
with the default optimization represented by diamonds.

A first overall observation is that the number of cycles degrades
"smoothly” from optimal performance, with high buffers, to worst
possible performance, with low buffers. It shows that our resource-
constrained optimization model is stable and produces explainable
results. In addition, the overall reduction of LUT usage for most
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benchmarks (some outliers) also increases the confidence in our
results, as it shows that buffers are decreased after the optimization.

On the other hand, from Figure 3, we can see that the curve is
always flat for high buffer availability. This is not surprising on the
right side of the default optimization (diamond) since performance
is already optimal, and adding buffers cannot optimize it further. It
is, however, surprising on the left side, as it would mean that the
number of buffers can be decreased without losing any performance,
which means Dynamatic default buffer optimization is pessimistic.
A detailed look at the buffer numbers, while performance remains
unchanged, provides the following information:

e Combl: 4 useless buffers out of 17; 13%
e Fdtd: 32 useless buffers out of 126; 31%

e Gemver: 43 useless buffers out of 103; 36%
e Comb2: 81 useless buffers out of 216; 40%

The results are variable from one benchmark to another. Still, the
table shows that buffer savings are possible for every benchmark.
They range from 13% for the simplest benchmark to 40% for the most
complex benchmark, which indicates that buffer savings increase
as the circuit complexity increases.

5.4 Results: Phase Optimization

Table 2 shows, for each benchmark, the number of cycles to execute
each phase on its phase-optimized circuit. We simulated the whole
program on each phase-optimized circuit and measured the cycles
for the phase it was optimized for.

As mentioned in our methodology, the first assumption is that
runtime reconfiguration is instantaneous (i.e., 0 cycles of overhead).
Therefore, the full program execution is just the sum of cycles for
each phase-optimized design. We did this computation in the last
column of the table and plotted it against the result of Table 1,
which does not use phase optimization or runtime reconfiguration.
The results are shown in Figure 4.

We can see that the blue curve (reconfiguration) is always be-
low the green curve (no reconfiguration), implying that phase-
optimization and runtime reconfiguration consistently outperform
default circuit execution. Negligible reconfiguration overhead is
unrealistic, so this result is an optimistic upper-pound. For more
realistic results, we should take reconfiguration overhead into ac-
count.

From Table 1 and Table 2, we can compute the cycle count dif-
ference between default execution and (optimistic) reconfiguration
execution. Then using Equation 4, we can derive the following
analysis:

N
S, Ny ! ©
N
N, > P.N, + Z N; (8)
7
Ne 25Ny )
P r

This gives us the maximum value for N, above which reconfig-
uration is no longer attractive as { would be inferior to 1. Using
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Figure 4: Number of cycles to execute each benchmark, first with default optimization (), then with decreasing number of
available buffers. The green plot is without reconfiguration, while the blue one is with reconfiguration when overhead is
negligible. We can see that the blue curve is always below the green, indicating that runtime reconfiguration is always better, or

as good, as default execution.

Equation 9 and the cycle count difference, we perform this analysis
for every buffer constraint, and plot the results in Figure 5.

As expected, runtime reconfiguration improves performance for
high buffer availability only if reconfiguration overhead is negli-
gible or instantaneous, which is impossible. It is expected that if
the number of buffers is unlimited, it is possible to optimize the
default circuit to its maximum performance. In this case, runtime
reconfiguration is unattractive since it cannot surpass optimal per-
formance. However, in practice, the amount of buffers is limited,
so overhead can be significant and runtime reconfiguration can
become attractive. The following maximum overhead is attained
for each benchmark:

e Comb1: 2623 cycles
o Fdtd: 653 cycles
e Gemver: 2280 cycles
e Comb2: 1416 cycles

To provide a realistic comparison, including some reconfigura-
tion overhead measures would be interesting. After some research
on Xilinx documentation, it is noted that reconfiguration time de-
pends on several parameters, from the benchmark to the targeted
FPGA board, making it challenging to come up with exact values
for our benchmarks. However, reconfiguration overhead usually
ranges from a few milliseconds for simple designs to minutes for
more complex designs. If the Clock Period is assumed to be around
5ns, overhead would range from millions to billions of cycles. The
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results shown above are far from the usual overhead, which would
indicate that runtime reconfiguration is not attractive.

Nonetheless, it is important to note that most of the benchmarks
involve loops processing arrays of data; if the array size is large and
the loops would also be large, then the number of cycles to execute
the programs will increase. Furthermore, the performance drop
when buffers are decreased is proportional to the size of the loop, as
it is based on the throughput of the loop which is the rate at which
it can process the data. So we can expect performance degradation
to increase with limited buffers. If these loops are large enough,
we can observe performance degradation in millions of cycles. At
this point, even with realistic overheads, runtime reconfiguration
would become attractive. This reasoning is not too optimistic; in-
deed, when applying HLS to tackle big data problems like Machine
Learning, we can expect to run into training of Deep Neural Net-
works [14], which requires several large matrix multiplications,
each involving large loops. This would make our approach based
on runtime reconfiguration attractive.

6 Limitations and Future Work

As discussed in the Background and Evaluation sections, the Clock
Period can be problematic when optimizing buffer placements. We
run into this issue, which makes us focus on simulation results.
Advances from mapping-aware buffer optimization [19] [24] could
help to address this issue, enabling us to provide more realistic
execution time results.
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Figure 5: Maximum number of cycles for reconfiguration, above which reconfiguration is no longer attractive, for each
benchmark and decreasing buffer availability. It was computed from the cycle difference between Table 1 and Table 2 results,
and Equation 9. One of Gemver phases is trivial, so we assume the benchmark only had 3 phases. We can see that, as expected,
runtime reconfiguration becomes more interesting when buffer availability is lower.

While this work focuses on buffers, many other kinds of re-
sources are used in dataflow circuits, such as functional units. An
extension of our approach could look into enhancing phase opti-
mization such that other types of resources are better allocated
following the program behavior. Moreover, it would be worthwhile
studying other state-of-the-art HLS compilers to see if they may
also benefit from taking phases into account and using runtime
reconfiguration.

Finally, as noted above, it would be interesting to evaluate our
work based on neural network benchmarks to confirm the extent
of speedup when the amount of buffers is limited.

7 Conclusions

This paper presents novel approaches for resource-aware and phase-
aware optimizations for designs targeted by dynamically-scheduled
HLS tools. It first introduces resource-aware buffer optimization
for dataflow circuits that allows limiting the amount of resources
for optimization. Then phase-aware optimization is presented that
optimizes a dataflow graph for each of its phases, such that run-
time reconfiguration can be used to switch between the different
optimized circuits following behavior transitions.

We integrate these new optimizations into Dynamatic, a com-
piler supporting dynamically scheduled HLS. It is shown that the
proposed optimizations can lead to buffer reduction of up to 40%
for complex benchmarks.

Furthermore, we show that runtime reconfiguration consis-
tently outperforms normal execution with negligible overhead,
so our approach shows promise under realistic workloads.
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