
SimGen: Simulation Pattern Generation for
Efficient Equivalence Checking

Carmine Rizzi
D-ITET, ETH Zurich
Zurich, Switzerland

crizzi@ethz.ch

Sarah Brunner
D-ITET, ETH Zurich
Zurich, Switzerland

sarbrunn@student.ethz.ch

Alan Mishchenko
Department of EECS, UC Berkeley

Berkeley, USA
alanmi@berkeley.edu

Lana Josipović
D-ITET, ETH Zurich
Zurich, Switzerland
ljosipovic@ethz.ch

Abstract—Combinational equivalence checking for hardware
design tends to be slow due to the number and complexity of in-
termediate node equivalences considered by the SAT solver. This
is because the solver often spends extensive time disproving nodes
that appear equivalent under random simulation. We propose
SimGen, an open-source and expressive simulation pattern gen-
erator inspired by Automatic Test Pattern Generation (ATPG);
it exploits the circuit’s structure to disprove the equivalence of
circuit nodes and avoid excessive SAT calls. We demonstrate
the effectiveness of SimGen’s simulation patterns over those
generated by state-of-the-art random and guided simulation.

I. INTRODUCTION

Combinational equivalence checking (CEC) determines
whether two circuit networks have an equivalent logic func-
tion. It is commonly performed using boolean satisfiabil-
ity (SAT) or binary decision diagram (BDD) sweeping, where
a SAT or BDD solver proves or disproves the equivalence of
a pair of candidate points [14]. Yet, checking all point pairs
is time-consuming [3]; thus, sweeping is usually performed
after iterative circuit simulation that partitions the equivalence
classes (i.e., sets of circuit points that may be equivalent and
must be checked) of the considered networks and, conse-
quently, reduces the number of checks.

The key to successful simulation lies in employing simula-
tion vectors that efficiently partition the equivalence classes.
Fully random simulation patterns [13], [19] cannot guarantee
the separation of specific classes and often remain stuck at a
local minimum. Reverse simulation [26] promises to efficiently
separate equivalence classes by generating targeted simulation
vectors as follows: (1) Randomly select a pair of nodes from
the same class, also called target nodes. (2) Assign comple-
mentary values to the target node outputs. (3) For each target
node, determine a set of inputs for which the node’s logic
function produces the desired value; assign these values to the
target node inputs (i.e., the outputs of the predecessor nodes).
If multiple assignments are possible, pick one randomly.
(4) Traverse the networks backward while assigning a value
to each node following the same strategy (i.e., to honor the
logic function of the previously visited nodes). (5) Terminate
if the inputs of the networks are reached or if a conflicting
assignment occurs at any internal node. If reverse simulation
successfully reaches the network’s inputs, the values assigned
to the inputs serve as a high-quality simulation vector that
can disprove the target nodes’ equivalence; otherwise, the
procedure repeats with the next pair of target nodes.

A B C

1

1 1

1 0

D

z

x y

1 2

3
4

(a) Reverse sim-
ulation: steps 1-4

A B C

1

1 1

1 0 0
0

1

D

z

x y
5 6

7

(b) Reverse sim-
ulation: steps 5-7

A B C

1

1 1

1 0 0
1

D

z

x y

5

6

(c) SimGen (our
work): steps 5-7

Fig. 1: Reverse simulation vs. SimGen. Reverse simulation in Figures
a and b results in a conflict in step 7 (red) due to a local and random
decision of the input values of gate y. In contrast, SimGen implies
the input values of y based on the already assigned value of ‘0’ at
input B, thus identifying a correct input vector without a conflict.
SimGen aims to exploit this and other strategies to mitigate conflicts
and improve the success rate of reverse simulation.

The Limitations of Reverse Simulation. Consider the
example in Figure 1. Assume that node z belongs to an
equivalence class (other class nodes and their networks are
omitted for simplicity); we want to separate it from its class
by following the reverse simulation procedure outlined above.
To this end, assume that D needs to evaluate to ‘1’; reverse
simulation propagates values backward from D to find a suit-
able input assignment. In Figure 1a, a series of propagations
(represented by enumerated arrows) assigns ‘1’ and ‘0’ to
inputs A and B; then, the output of y is assigned a ‘1’.

In the following propagation steps (Figure 1b), three pos-
sible input assignments to gate y result in a ‘1’ at its output:
either one input is ‘0’ and the other is ‘1’, or both inputs
are ‘0’. Reverse simulation chooses one input assignment at
random—in this example, it assigns ‘0’ to both inputs. Yet,
further propagation causes a conflict at step 7 (shown in red):
the inverter function dictates that B must be ‘1’, but it was
previously assigned a ‘0’. At this point, reverse simulation fails
and terminates without identifying an appropriate input vector.
This illustrates the limitations of reverse simulation: due to the
inability to exploit information regarding previous assignments
or the circuit’s structure, in many situations, it terminates
unsuccessfully; the number of subsequent SAT calls remains
excessive and impractical for sweeping realistic circuits.

SimGen: A Guided and Controlled Reverse Simulation
Strategy. Figure 1c shows an alternative strategy. It recognizes



that the ‘0’ value of input B implies that the inverter’s output
must be ‘1’ and immediately makes this assignment (the red
arrow at step 5). There is now only one possible assignment
for the right input of gate y: input C must be set to ‘0’. At
this point, all internal and input values are assigned without
a conflict, achieving a valid simulation vector that guarantees
the desired value at output D. This highlights the importance
of leveraging functional and structural information to prevent
conflicts and achieve the desired simulation vector.

In this paper, we propose SimGen, an open-source simula-
tion vector generator for effective and controlled equivalence
class partitioning. In contrast to standard reverse simulation,
we incorporate techniques from Automatic Test Pattern Gen-
eration (ATPG) to decrease the chances of failure. We exploit
structural and logic information of the circuit to postpone
random decisions as much as possible, like in the example
above: we establish signal correlations between a node and
its neighboring nodes, postpone critical decisions and, when
they are inevitable, leverage structural information to make
educated decisions. We identify different ways of interleaving
ATPG techniques to minimize the number of required SAT
calls and, consequently, SAT runtime. On a set of standard
logic synthesis benchmarks, we show that our strategy is
superior to recent reverse and random simulation approaches.

In the rest of this paper, Section II describes the background
and previous works. Section III outlines SimGen’s structure.
Section IV and Section V explain two key ATPG concepts
incorporated in SimGen. Section VI details our results.

II. BACKGROUND AND RELATED WORK

Boolean Network. A Boolean network is a Directed
Acyclic Graph (DAG). Each graph’s node represents a logic
function; we assume that each node has a single output bit.

The fanins of a node n are the input nodes of n. The fanouts
of a node n are the output nodes of n. A Primary Input (PI)
and Primary Output (PO) are, respectively, the nodes with no
fanins and with no fanouts. The level of a node corresponds
to the length of the longest path from any PI. The fanin/fanout
cones of a node n are the sets of nodes that can reach one of
the fanins/fanouts. A Fanout-Free Cone (FFC) is a subset of
the fanin cone of a node n where all the paths from each node
inside the cone towards the POs of the network have to pass
through n. The leaves of a cone are the first nodes of the cone
encountered on any path from any PI to any node of the cone.
A Maximum Fanout-Free Cone (MFFC) is the largest among
the possible FFCs of a certain node [20].

Sweeping and Simulation. CEC relies on BDD [15], [14]
or SAT [16], [21], [5] sweeping in conjunction with circuit
simulation [21], [12], [17], [22], [24], as illustrated by the blue
box in Figure 2. First, both input networks are simulated using
random input vectors to separate nodes into independent equiv-
alence classes. The classes are then sent to the verification
tool to prove the non-equivalence of its nodes; the resulting
input vector can be employed by the simulator for further class
separation. Due to the ineffectiveness of random simulation
vectors, Mischenko et al. [21] introduce a 1-distance vector
which selectively flips one bit of the input vector obtained from

Network 1
Network 2

Circuits
Simulator

Verification
Tool

EC

OUTgold
Generator OUTgold

SimGen
Decision

Implication

IV Sweeping

EC
IV

Fig. 2: A sweeping tool with SimGen. SimGen generates OUTgold
values that aim to split the equivalence classes (EC) for one of the
two networks. Then, it generates the input vector (IV) that propagates
these values toward the inputs via decisions and implications.

a counter-example. Yet, the flipping effectiveness is difficult
to control and predict. Others [17], [3] employ a SAT solver
to generate “expressive” and “high-toggle rate” vectors, but
the newly proposed input vector still depends on SAT calls.
Reverse simulation [26] is more effective, but still prone to
conflicts, as shown in Section I. To the best of our knowledge,
industrial tools like Conformal Cadence [7] rely on analogous
strategies for CEC and, thus, face the same limitations; the
strategies we propose would also benefit them.

Automatic Test Pattern Generation (ATPG). ATPG gen-
erates input vectors to expose circuit faults [16], [11]. It identi-
fies the PI values that activate the desired fault and propagates
them to the network’s outputs to make them externally visible.

Definition 1: A propagation is the assignment of in-
put/output node values such that all previously assigned values
remain unchanged and the node’s function is respected.

In this work, we assume that propagation assigns values 0
and 1; a don’t-care is treated as an unassigned value.

ATPG algorithms [25], [10], [9] rely on the circuit’s struc-
ture for efficient test generation. If a conflict occurs during
the signal propagation, they backtrack to their last decision
and change their choice; yet, backtracking is time-consuming.
Thus, to avoid conflicts, ATPG employs forward implica-
tion [10] to assign values to internal nodes and a concept
similar to MFFCs [9] to identify independent circuit portions
and postpone the propagation of values. To reduce execution
time, SimGen omits backtracking and exploits different types
of implication and MFFCs, as we will later discuss.

We inherit implication and decision concepts from ATPG.
Definition 2: An implication is a propagation that occurs

when there is only one available input/output assignment that
respects all previously assigned values; it sets all input/output
values to respect the values of this single assignment.

In Figure 1, the propagation of D to the inputs of gate z is
an implication, as the only possible assignment is (‘1’, ‘1’).

Reverse simulation applies a subset of implication, some-
times referred to as backward implication: it sets all inputs
according to the output value when only one input assignment
is possible, as shown in Figure 1. Some implementations [6]
extend this strategy to check the subsequent (i.e., lower) level
for conflicts before making an assignment. We will consider
the more general definition above and imply values both
backward (from output to inputs) and forward (from inputs
to output), independently from the levels of a node.

2



Definition 3: A decision is a propagation that occurs when
multiple available assignments respect all previously assigned
values; it chooses one assignment according to a decision
policy. Then, it sets the values of the selected assignment.

In Figure 1, the propagation of the output of gate x is a
decision since there are three possible input assignments.

ATPG has been explored for sweeping in CEC, focusing
on addressing false negatives during ATPG proofs [16]. Sim-
ilarly, circuit-based SAT solvers include circuit information
during SAT proofs to order decision variables and for non-
chronological backtracking [19], [27]. SimGen is comple-
mentary to these sweeping improvements and could be used
alongside them, as Figure 2 suggests: we achieve better input
vectors by avoiding conflicts using ATPG techniques.

III. SIMGEN FLOW OVERVIEW

Figure 2 shows SimGen added to a sweeping tool; it inputs
the network’s equivalence classes and performs the following:

(1) OUTgold value generation. OUTgold values are the
desired output values for target nodes belonging to the same
equivalence classes. SimGen will compute an input vector that
maximizes the number of target nodes whose value is equal
to its desired OUTgold value. We elaborate on our simple
OUTgold value assignment in Section VI; more complex
strategies could be explored for OUTgold selection (e.g.,
circuit topology-aware methods or runtime-adaptive OUTgold
generation) and effortlessly integrated into SimGen.

(2) Input vector generation. SimGen iterates through the
target nodes of an equivalence class in decreasing network
depth order. For each target node, it performs the following
steps: (a) Assign the desired OUTgold value to the target node.
(b) Propagate the value using implications. If a conflict occurs
at any implication, terminate the process and restart with a
new target node. Otherwise, continue implying until no further
implication is possible. (c) Once all implication opportunities
are exhausted, make a decision to enable further implications.
(d) Repeat steps (b) and (c) until all PIs in the target node’s
fanin cone are set or a conflict occurs.

After completing the process for all target nodes of an
equivalence class, we evaluate the resulting input vector (i.e.,
obtained PI values). If the vector respects at least a pair
of target nodes of the desired OUTgold values, we use it
to simulate the circuit and partition the equivalence class.
Otherwise, we skip the simulation and repeat the process
with another equivalence class. This procedure is conceptually
similar to classic reverse simulation and we extend it to multi-
bit OUTgold values accordingly [26]; the main novelties of
SimGen are the implication and decision strategies used in
steps (b) and (c) above. We describe these strategies and their
effectiveness in the remainder of the paper.

IV. HOW MUCH TO IMPLY?

In this section, we investigate the effectiveness of standard
implication and propose a more powerful alternative.

To apply implication from Definition 2, we consider the
truth table of the node’s function and its already assigned
input/output values. We iterate through the truth table rows and

0

B

A C E

F G

f1 f1

D

1

1

- 1 0
- 0 0
1 - 1
0 - 1

1 
0 
1 
0 

I1I2I3 f1

0 1

2 1 3 1

41

f2:and

Fig. 3: Implication example. The truth table on the right describes
f1; f2 is an and gate. F, C, and D have initial values ‘0’, ‘0’, and
‘1’. Standard implication can only assign ‘1’ to the left node f1’s
output. Advanced implication uses the truth table to determine that
f1’s output can be only ‘1’. This enables new implications (red).

identify those that match the set values. If only one row is a
match, we assign the row’s values to the previously unassigned
inputs/output. This may create new implication opportunities.

An implication example is shown in Figure 3. On the left,
there is a portion of a circuit with different propagation steps.
On the right, the table shows the truth table of node f1. The
symbol ‘-’ represents a don’t-care. We assume that node f2
implements a logical and function. We also assume an initial
value assignment in the graph: the output F has value ‘0’
and the inputs C and D have values ‘0’ and ‘1’. We start the
propagation from output F; given its value, the only possible
inverter input value is ‘1’; hence, we imply this value for
input B at step 1. This assignment generates a sequence of
implication opportunities. If we consider the left f1 node, its
inputs fully respect only the first row of the truth table of f1
since B (I2) and C (I3) have values ‘1’ and ‘0’ respectively;
thus, we imply the value of node’s output as 1 accordingly at
step 2. As the row has a don’t-care for A, in line with our
propagation definition, we keep A’s value unassigned.

It is desirable to continue implying across the rest of the
network; however, the current implication strategy will not be
able to proceed. We cannot imply the value of the output of
node f2 without first knowing the output value of the right f1
node. The inputs B (I1) and D (I2) of the right f1 node are
evaluated to ‘1’; both the first and the third table rows match
these input values. Hence, we cannot apply an implication
as we cannot identify a single suitable row. A typical way
to proceed would be to employ a decision; yet, as discussed
before, decisions may set an unsuitable value—we should
employ them as late and as rarely as possible.

There is an alternative, though: if we analyze the truth
table, we notice that the already existing input assignments
match only rows where f1 evaluates to ‘1’. Meanwhile, the
second and fourth rows (in which f1 evaluates to ‘0’) cannot
be fulfilled. Therefore, the only possible output value for the
right f1 node is ‘1’ and we can safely assign the node’s output
value, even if we cannot set all the input values. We define
this type of implication as advanced implication:

Definition 4: An advanced implication is a propagation that
occurs when multiple assignments respect all previously set
values and have the same output value. It sets all previously
unassigned inputs/outputs whose values are equal in all match-

3



A B C

D

z

x y

E

t

0

0

1

1

A B C

D

z

x y

E

t

1

1 1

0

0

1 2 1 2 3

E

z

x y

n

m

A B C D

(a) (b)

(c)

0

3

4

3

2

1

0

1

x y z
0 - 0
- 0 0
1 1 1

row1
row2
row3

(d)

dcsize mffcrank
1
1
0

0
1
1

Fig. 4: MFFC heuristic. In Figure a, a decision without the MFFC
heuristic causes a conflict at y. In Figure b, we identify the MFFC (the
orange-dotted triangle) and assign the DC to y’s output as it does not
belong to any MFFC. In Figure c, assigning ‘0’ to the deeper right
MFFC and a DC to the left minimizes conflicts.

ing assignments and leaves the different values unassigned.
In the example above, advanced implication sets the output

of the right f1 node to 1 at step 3 as both the first and the third
rows contain this value. E remains unassigned as its values in
the two rows are different. The benefit of advanced implication
is, intuitively, clear: assigning more values will enable other
implications and postpone the usage of undesired decision-
making. For instance, in the example above, the advanced
implication now enables the implication of G to 1 at step 4.
We will quantitatively evaluate this benefit in Section VI.

V. WHICH ROW IS THE BEST?

When no further implications can be done, we have to make
a decision by picking one out of multiple possible assignments
from the candidate node’s truth table. Yet, it is not always
possible to predict the influence of a decision on the rest of the
circuit. In this section, we propose a set of decision heuristics
to increase the probability of avoiding a future conflict.

Don’t-cares. Truth table rows can have don’t cares (DCs).
Choosing a row with DCs provides more flexibility for future
propagations: leaving a particular input unassigned reduces the
chance of conflict with other assignments at this network point.
Consider an and gate whose output is set to ‘0’, and the input
values need to be decided on. One input must certainly be set
to ‘0’. If we were to decide on a ‘0’ or ‘1’ value for the other
input, this value could potentially conflict with some future
propagation (e.g., if the same input is connected to another
node that requires the opposite value); leaving it unassigned
prevents this issue, while still enforcing the desired and gate
function. In other words, selecting a truth table row with
the largest number of DCs reduces the number of decision-
assigned values and, consequently, the chance of conflict.

For every decision, SimGen ranks candidate truth table rows
based on the number of DCs that each row contains, dcsize :

dcsize(rowi) =

Ninputs∑
j=0

dc(rowi(j )), (1)

where dc(rowi(j )) is 1 if the value in rowi of j-th input is
a DC. SimGen then prioritizes the row with the largest dcsize .

Max fanout free cones. A function’s truth table may have
rows with equal DCs amount. We propose using Max Fanout-
Free Cones (MFFC) as an additional metric.

Figure 4a shows a circuit with initial assignments ‘0’ and
‘1’ to D and E. Assume that we first propagate the value of
D. There are two possible assignments for the inputs of gate
z, as the truth table below suggests: ‘0’ to the output of x and
DC to the output of y, and vice versa. Since they both have
one DC, we randomly select one of the two—for instance,
a DC to the output of x and ‘0’ to y. The next step is the
propagation of E. It is an implication since t is an and gate
and both inputs must be ‘1’. Yet, this causes a conflict with the
previous assignment to the output of y, which belongs to the
fanin cones of both z and t. Assigning a DC to the output of y
during the propagation of D would have been a wiser choice,
as it would allow the subsequent assignment to set this value
without a conflict, as shown in Figure 4b.

The key to avoiding conflicts is to identify gates that are
shared across different fanin cones—they will be reached
during propagations from different POs and, thus, conflicts
may occur. Hence, it is favorable to assign them a DC when
deciding. To this end, we rely on the concept of MFFC from
Section II. Gates that are in the MFFC of the gate under
decision lead exclusively to this gate and, thus, conflicts cannot
occur—this is the case for x, which is the output of the MFFC
of z (dashed in Figure 4b). Gates that are not in any MFFC lead
to other gates as well and, thus, may be points of conflict—
this is the case for y. Our strategy favors the assignment of a
DC to the latter and, more generally, to smaller MFFCs.

We now describe our algorithm and illustrate it on Figure 4c.
Like in the previous example, the initial assignment of output
E is ‘0’; we have to propagate it down the and gate and there
are two possible input combinations.

(1) Calculate the MFFC for each node input under decision.
Figure 4c shows the gate z’s MFFCs as dotted orange triangles.

(2) Compute the depth of each MFFC. The depth represents
the average distance between each MFFC leaf and its output:

depth(mi) =

∑Nleaves

j=0 (lev(out(mi))− lev(leaf (mi , j )))

Nleaves
,

(2)
where mi represents the MFFC of the i-th input of the

node under decision, Nleaves is the number of leaves of the
MFFC, out(mi) is the highest-level node of the MFFC mi,
leaf (mi , j ) is the j-th leaf node of the MFFC mi, and lev(j)
is a function that returns the level of node j. Figure 4c shows
the level next to each gate. The left MFFC has only one leaf,
gate x, with level 3; its depth is 0. The right MFFC has
three leaves, m, n, and y, with levels 1, 2, and 3; its depth
is ((3− 1)+ (3− 2)+ (3− 3))/3 = 1. The higher the MFFC
depth, the more conflicts are potentially avoided by a non-DC
assignment at its output; thus, we prefer to assign DC values
to outputs of MFFCs with lower depths.

(3) Compute the rank of each truth table’s row based on
MFFC depths. We compute the ranks of the rows as follows:

rank(rowi) =

Ninputs∑
j=0

(1 − dc(rowi(j )))× depth(mj ) (3)

4



where dc and depth are the functions defined in Equations 1
and 2, and mj is the MFFC of the j-th input. The truth table of
z in Figure 4 has two rows for which z is ‘0’, row1 and row2 ;
their ranks are 0 and 1, respectively. We prioritize rows with a
higher rank—in this case, row2 . As this metric on its own does
not differentiate rows with different DC counts, (e.g., although
not acceptable for an assignment of ‘0’ to z, row3 ranks the
same as row2 , even though it has no DCs), we combine it
with the previously described DC metric.

(4) Calculate row priority based on DC and MFFC ranking.
Our final row priority metric is:

priority(rowi) = α× dcsize(rowi) + β × rank(rowi) (4)

where α and β are coefficients. We choose α >> β to
prioritize the DC over the MFFC metric. We incorporate our
priorities into a roulette wheel selection algorithm [18], where
the priorities serve as probabilities of selecting a truth table
row; the algorithm prefers rows with the fewest input value
assignments and targets inputs with the lowest conflict chance.

VI. EVALUATION

In this section, we evaluate SimGen. In Section VI-B,
we analyze the effectiveness of our implication and decision
strategies. In Section VI-C, we evaluate the impact of SimGen
on SAT calls and runtime. We demonstrate the benefits of
combining random simulation and SimGen in Section VI-D.

A. Methodology and Benchmarks
SimGen is open-sourced [1] and integrated into ABC [6]

via the command “&adv sim gen”. We evaluate SimGen on
100 benchmarks from VTR [23], EPFL [2], and ITC’99
benchmark suites [8] and from a previous work [26]. We
omit benchmarks whose SAT sweeping runtime is under 1 ms.
We use SAT sweeping with “&fraig -x” in ABC via the
Glucose SAT solver [4] and we disable Cec4 ManSimulate
in Cec4 ManSweepNode to avoid SAT counter-example sim-
ulations. For the OUTgold values, we use 3 vectors: all zeroes,
all ones, and alternating zeroes and ones.

We use the ABC command “if -K 6” for technology
mapping. Then, the sweeping tool receives as input the LUT-
mapped version of the benchmark. Firstly, ABC executes a
series of random simulations; in Section VI-B, we use a single
round of random simulation, whereas we tune this number in
Section VI-D. Once random simulation terminates, SimGen
receives the equivalence classes, the LUT-mapped circuit, and
the OUTgold values, and runs for 20 iterations. We evaluate
the cost of the classes after separation as:

cost =

N∑
i=0

(size(i)− 1 ), (5)

where N is the number of equivalence classes and size(i)
is the number of LUTs in class i. The function computes the
number of SAT calls to execute in the worst-case scenario
if the SAT tool does not generate useful counter-examples
(e.g. if the nodes are all equivalent). Lower cost corresponds
to a lower number of SAT calls and better class separation,
indicating a better quality of input vectors. Due to the intrinsic

RevS SI+RD AI+RD AI+DC AI+DC+MFFC

Cost 1.000 0.991 0.888 0.888 0.864 (-14.6%)

Simulation Runtime 1.000 1.204 1.263 1.262 1.130 (+13.0%)

TABLE I: Average normalized Cost and Simulation Runtime of our
methods with respect to reverse simulation show cost improvement
with minimal runtime increase, proving practicality.

runtime variability of the Glucose SAT solver, we repeat all
benchmark runs 5 times and report the average values.

B. Cost and Simulation Runtime Analysis

We use reverse simulation (RevS) as a baseline to eval-
uate different combinations of our implication and decision
strategies. We consider simple and advanced implication (Sec-
tion IV) with random decisions (respectively, SI+RD and
AI+RD); we then combine advanced implication with the DC
heuristic (AI+DC) and with both DC and MFFC heuristics
(AI+DC+MFFC) for decision-making.

Table I shows the average cost value (Equation (5)) achieved
by the different techniques and the average simulation time
across all benchmarks after one round of random simulation.
We normalized both values with respect to RevS. All SimGen’s
methods outperform RevS in terms of cost at the price of a
slight simulation runtime increase. This outcome is expected
since SimGen performs additional graph and logic function
analyses to imply more aggressively and make informed
decisions; this overhead will be compensated by SAT time
reductions, as we will see in the next section. The last method
achieves the best average cost, indicating the usefulness of all
the methods we introduced. In the rest of the paper, we further
evaluate AI+DC+MFFC and refer to it as SimGen.

C. SAT Calls and Runtime

In Table II and Figure 5, we compare the SAT calls and
sweeping time of the SAT tool (Glucose) employed by RevS
and SimGen for 47 benchmarks with the largest SAT runtime.

The SAT time and SAT calls follow similar trends: Sim-
Gen’s decrease in SAT calls, generally, results in a decrease in
SAT time with respect to RevS. The occasional discrepancies
between the two metrics arise from variations in execution
time for each call, stemming from differences in circuit
complexities and target nodes, as well as Glucose’s runtime
variability. In only three cases (i.e., 6s392r, 6s203b41 and
vga lcd), effective SAT counter-examples reduce the number
of SAT calls in RevS more than in SimGen; this accidental
effect in Glucose is orthogonal to the particular simulation
strategy. The fact that SimGen improves SAT sweeping time
in all but three benchmarks indicates its effectiveness.

In Figure 5, the columns for each benchmark indicate
the normalized difference of cost (Equation (5)), number of
SAT calls, SAT runtime, and total runtime (i.e., the sum
of simulation and SAT runtime) of SimGen with respect to
RevS. Generally, all metrics improve and follow the same
decreasing trend as the cost, which is exactly what we aim
to achieve. The reduction of total runtime in almost all bench-
marks indicates that the occasional simulation time increases
of SimGen (implied by Table I) are negligible compared to

5



6s
10

0

6s
20

2b
00

6s
20

3b
41

6s
28

1b
35

6s
32

2r
b6

46

6s
34

2r
b1

22

6s
34

2r
b1

31

6s
35

0r
b3

5

6s
35

0r
b4

6

6s
38

2r

6s
38

7r
b1

81

6s
38

7r
b2

91

6s
39

2r
RIS

C

b0
7(

10
0)

b0
7(

50
)

b1
5

b1
5_

C

b1
5_

C 2
b1

7

b1
7_

C

b1
7_

C 2

b1
8(

10
)

b1
9(

5)

b1
9(

7)
b2

0

b2
0_

C

b2
0_

C 2
b2

1

b2
1_

C

b2
1_

C 2
b2

2

b2
2_

C

b2
2_

C 2

ex
10

10

le
on

2
lo
g2

m
em

_c
trl

ne
tc

ar
d

pd
c

s3
59

32
(2

0)

s3
85

84
(1

0)

s3
85

84
(1

5) sin sp
la

vg
a_

lc
d

vo
te

r

Ave
ra

ge

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
N

o
rm

a
liz

e
d

 D
if
fe

re
n
ce

s 
w

rt
 R

e
v
S

Cost Results

SAT calls

 Runtime

Total Runtime

SAT

Fig. 5: Normalized difference of cost, SAT calls, SAT runtime, and total runtime of SimGen with respect to reverse simulation. SimGen
achieves significant improvements in cost, SAT calls, and SAT runtime, at an occasional total time penalty due to prolonged simulations.

0 100 200 300 400
Iterations

0

2

4

6

8

R
u
n
ti

m
e
 (

s)

RandS

RevS

SimGen

0 100 200 300 400
Iterations

2500

3000

3500

4000

C
o
st

RandS

RevS

SimGen

S
im

u
la

ti
o
n

Fig. 6: Simulation runtime and cost across iterations for random
simulation (RandS) and its combination with SimGen or RevS on
benchmark mem ctrl. RandS stalls in a local minimum after a few
iterations. Switching to SimGen lowers cost despite higher runtime,
highlighting SimGen’s value.

SimGen’s significant SAT runtime savings. The main takeaway
is that, in most benchmarks, SimGen Pareto dominates RevS
by reducing cost, SAT calls, SAT runtime, and total runtime.
Occasionally, it achieves Pareto-optimality by achieving lower
cost at a minor runtime expense; notably, it is never Pareto-
dominated by RevS. This shows SimGen’s broad usefulness
and effectiveness. In Section VI-D, we propose a practical
way to combine SimGen with random simulation to exploit
SimGen’s benefits while also improving simulation time.

D. Random Simulation and SimGen
Random simulation (see Section II) is fast but lacks circuit

insight and hinders class separation, while guided simulation
(reverse simulation and SimGen) improves class splitting with
efficient inputs but can be slower (see Table I). We show that
combining these techniques, especially random simulation and
SimGen, effectively leverages their complementary benefits.

Figure 6 compares the cost and simulation runtime of three
types of simulation runs for the benchmark mem ctrl: (1) Only
random simulation (RandS), (2) RandS followed by reverse
simulation (RevS), and (3) RandS followed by SimGen. In the
second and third scenarios, we switch to RevS and SimGen,
respectively, after random simulation achieves the same cost
in three consecutive iterations. As the figure shows, RandS
quickly reduces the number of SAT calls in the first iterations,
but it soon reaches a local minimum and all subsequent
simulations improve the cost only marginally or not at all.
In contrast, SimGen and RevS continue splitting equivalence
classes and reducing the overall cost, but at a runtime increase;
the cost achieved by SimGen is superior to that of RevS.

Bmk SAT calls SAT time (s) Bmk SAT calls SAT time (s)
RevS SGen RevS SGen RevS SGen RevS SGen

6s100 8.04e3 6.71e3 1.08 0.63 b19(7) 48.22e3 40.15e3 187.63 207.96
6s202b00 1.29e3 1.21e3 0.04 0.02 b20 162 140 0.02 0.01
6s203b41 817 818 0.04 0.04 b20 C 170 156 0.01 0.01
6s281b35 5.19e3 4.69e3 1.08 1.15 b20 C2 250 231 0.04 0.02
6s322rb646 28.09e3 20.67e3 0.65 0.28 b21 218 216 0.03 0.01
6s342rb122 1.58e3 1.58e3 0.09 0.05 b21 C 252 236 0.02 0.01
6s342rb131 1.64e3 1.57e3 0.09 0.10 b21 C2 221 200 0.03 0.01
6s350rb35 42.38e3 38.86e3 0.98 0.84 b22 310 279 0.05 0.02
6s350rb46 56.69e3 41.52e3 1.21 0.85 b22 C 220 194 0.03 0.01
6s382r 9.96e3 9.70e3 1.71e3 489.95 b22 C2 277 262 0.03 0.02
6s387rb181 974 939 0.04 0.03 ex1010 1.91e3 1.66e3 0.03 0.02
6s387rb291 978 942 0.04 0.04 leon2 70.31e3 67.34e3 2.74 1.43
6s392r 2.38e3 2.51e3 0.28 0.19 log2 287 233 826.50 454.71
RISC 714 504 0.05 0.02 mem ctrl 886 813 0.14 0.08
b07(100) 1.69e3 1.54e3 15.32 6.05 netcard 32.92e3 31.37e3 0.78 0.70
b07(50) 836 801 1.79 0.65 pdc 1.35e3 1.29e3 0.04 0.02
b15 414 356 0.08 0.03 s35932(20) 1.23e3 902 2.62 1.91
b15 C 438 402 0.06 0.03 s38584(10) 2.53e3 2.38e3 12.94 10.66
b15 C2 460 402 0.08 0.04 s38584(15) 4.29e3 3.89e3 78.05 59.02
b17 1.05e3 898 0.18 0.07 sin 105 95 2.33 1.52
b17 C 1.15e3 967 0.17 0.09 spla 1.12e3 1.02e3 0.03 0.01
b17 C2 1.47e3 1.23e3 0.24 0.11 vga lcd 4.52e3 4.57e3 0.09 0.06
b18(10) 35.39e3 29.87e3 685.06 270.19 voter 524 518 1.25 0.52
b19(5) 32.75e3 27.31e3 87.96 70.58

TABLE II: SAT calls and SAT time of the SAT sweeping tool for
47 benchmarks of Table I with highest SAT times. RevS and SGen
are reverse simulation and SimGen. Generally, the reduction in the
number of SAT calls translates into decreased SAT time.

These results show the synergy between random simulation
and SimGen: RandS enables fast class division, while SimGen
excels when RandS is stuck, highlighting the need to integrate
SimGen into sweeping simulators.

VII. CONCLUSION

Simulation can accelerate CEC and SAT sweeping; yet, it
is only effective if provided with appropriate input vectors.
We propose SimGen, a framework for effective simulation
input vector generation. SimGen borrows ATPG concepts to
leverage structural and logic information of the network under
simulation, thus generating input vectors that are customized
to the network at hand and suitable for separating its equivalent
classes. We explore several ATPG concepts and their interac-
tions, and demonstrate their success over prior strategies (i.e.,
random and reverse simulation): at a modest runtime increase,
SimGen leverages simulation more effectively and reduces the
number and runtime of SAT calls. Our open-source framework
serves as a foundation for implementing and exploring further
simulation vector generation strategies.

6



REFERENCES

[1] ”SimGen: Simulation Pattern Generation for Efficient Equivalence
Checking” source code, https://doi.org/10.5281/zenodo.12735762, July
2024.

[2] L. Amarú, P.-E. Gaillardon, and G. De Micheli. The EPFL combinational
benchmark suite. In 24th International Workshop on Logic & Synthesis,
pages 1–5, Mountain View, CA, June 2015.

[3] L. Amarú, F. Marranghello, E. Testa, C. Casares, V. Possani, J. Luo,
P. Vuillod, A. Mishchenko, and G. De Micheli. SAT-sweeping enhanced
for logic synthesis. In Proceedings of the 57th ACM/IEEE Design
Automation Conference, pages 1–6, Virtual Event, July 2020.

[4] G. Audemard and L. Simon. On the glucose SAT solver. International
Journal on Artificial Intelligence Tools, 27:1–25, Feb. 2018.

[5] D. Brand. Verification of large synthesized designs. In Proceedings
of the 12th International Conference on Computer-Aided Design, pages
534–537, Santa Clara, CA, Nov. 1993.

[6] R. Brayton and A. Mishchenko. ABC: an academic industrial-strength
verification tool. In Proceedings of the 22nd International Conference
on Computer-Aided Verification, page 24–40, Berlin, July 2010.

[7] Cadence Design Systems. Conformal Equivalence Checker Datasheet,
https://www.cadence.com/en US/home/resources/datasheets/conformal-
equivalence-checker-ds.html, 2024.

[8] F. Corno, M. Reorda, and G. Squillero. RT-level ITC’99 benchmarks
and first ATPG results. IEEE Design & Test of Computers, 17(3):44–53,
Aug. 2000.

[9] H. Fujiwara. FAN: A fanout-oriented test pattern generation algorithm.
In Proceedings of the 18th IEEE International Symposium on Circuit
and Systems, pages 671–674, Kyoto, Japan, June 1985.

[10] P. Goel and B. C. Rosales. PODEM-X: An automatic test generation
system for VLSI logic structures. In Proceedings of 18th Design
Automation Conference, pages 260–268, Nashville, TN, June 1981.

[11] R. Hulle, P. Fiser, J. Schmidt, and J. Borecky. SAT-ATPG for application-
oriented FPGA testing. In Proceedings of 15th Biennal Baltic Electron-
ics Conference, pages 83–86, Tallinn, Nov. 2016.

[12] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri. DeltaSyn: An efficient
logic difference optimizer for ECO synthesis. In Proceedings of the 28th
International Conference on Computer-Aided Design, pages 789–796,
San Jose, CA, Nov. 2009.

[13] A. Kuehlmann. Dynamic transition relation simplification for bounded
property checking. In Proceedings of the 23rd International Conference
on Computer-Aided Design, pages 50–57, San Jose, CA, Nov. 2004.

[14] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and
heaps. In Proceedings of the 34th Design Automation Conference, pages
263–268, New York, NY, June 1997.

[15] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust Boolean
reasoning for equivalence checking and functional property verification.

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 21(12):1377–1394, Dec. 2002.

[16] R. P. Lajaunie and M. S. Hsiao. An effective and efficient ATPG-based
combinational equivalence checker. In Proceedings of the 15th ACM
Great Lakes Symposium on VLSI, page 248–253, Chicago, Illinois, Apr.
2005.

[17] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli.
A simulation-guided paradigm for logic synthesis and verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 41(8):2573–2586, Aug. 2022.

[18] A. Lipowski and D. Lipowska. Roulette-wheel selection via stochastic
acceptance. Physica A: Statistical Mechanics and its Applications, 2012.

[19] F. Lu, L.-C. Wang, K.-T. Cheng, and R.-Y. Huang. A circuit SAT solver
with signal correlation guided learning. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, pages 892–
897, Munich, Mar. 2003.

[20] A. Mishchenko, S. Chatterjee, and R. Brayton. Improvements to
technology mapping for LUT-based FPGAs. In Proceedings of the
ACM/SIGDA 14th International Symposium on Field Programmable
Gate Arrays, pages 41—-49, Monterey, CA, Feb. 2006.

[21] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Een. Improvements
to combinational equivalence checking. In Proceedings of the 25th
International Conference on Computer-Aided Design, pages 836—-843,
San Jose, CA, Nov. 2006.

[22] A. Mishchenko, J. Zhang, S. Sinha, J. Burch, R. Brayton, and
M. Chrzanowska-Jeske. Using simulation and satisfiability to compute
flexibilities in Boolean networks. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 25(5):743–755, May 2006.

[23] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng, P. Pa-
tros, J. Luu, K. B. Kent, and V. Betz. VTR 8: High performance CAD
and customizable FPGA architecture modelling. ACM Transactions on
Reconfigurable Technology and Systems, 13(2):1–55, Jun. 2020.

[24] H. Pan, R. Zhang, Y. Xia, L. Wang, F. Yang, X. Zeng, and Z. Chu.
A semi-tensor product based circuit simulation for SAT-sweeping. In
Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition, pages 1–6, Valencia, Mar. 2024.

[25] J. Roth. Diagnosis of automata failures: A calculus and a method. In
IBM Journal of Research and Development, pages 278–291, USA, July
1966. IBM Corp.

[26] H.-T. Zhang, J.-H. R. Jiang, L. Amarú, A. Mishchenko, and R. Brayton.
Deep integration of circuit simulator and SAT solver. In Proceedings
of 58th ACM/IEEE Design Automation Conference, pages 877–882, San
Francisco, CA, Dec. 2021.

[27] H.-T. Zhang, J.-H. R. Jiang, and A. Mishchenko. A circuit-based SAT
solver for logic synthesis. In Proceedings of the 40th International
Conference On Computer-Aided Design, pages 1–6, Munich, Dec. 2021.

7


