
FPGA EDA

Kaihui Tu · Xifan Tang · Cunxi Yu ·
Lana Josipović · Zhufei Chu

Design Principles and Implementation

FPGA EDA

Kaihui Tu · Xifan Tang · Cunxi Yu ·
Lana Josipović · Zhufei Chu

FPGA EDA
Design Principles and Implementation

Kaihui Tu
Beijing, China

Cunxi Yu
University of Maryland, College Park
College Park, MD, USA

Zhufei Chu
Ningbo University
Ningbo, China

Xifan Tang
Los Gatos, CA, USA

Lana Josipović
ETH Zürich
Zürich, Switzerland

ISBN 978-981-99-7754-3 ISBN 978-981-99-7755-0 (eBook)
https://doi.org/10.1007/978-981-99-7755-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-99-7755-0

Foreword

As the need for highly efficient systems has grown and the performance gains from
Moore’s Law have diminished, hardware acceleration has become ever more impor-
tant. At the same time, chip design costs are skyrocketing, and application needs
are rapidly changing, putting a completely custom silicon system out of reach
for most applications. The unique, low-level hardware programmability of field-
programmable gate arrays (FPGAs) has therefore become a key part of many systems,
as a single chip can be programmed to enable a hardware solution for multiple
applications.

To architect, implement, and program FPGAs requires sophisticated electronic
design automation (EDA) tools, however, and indeed the greatest challenge of imple-
menting a new FPGA architecture and making it usable has historically been the
creation of these EDA tools. This book fills a crucial gap, as it covers all aspects
of FPGA EDA tools. Some of these tools are similar to their custom (application-
specific integrated circuit, or ASIC) cousins, but others are uniquely specialized to
the implementation or targeting of FPGAs, and this book provides both the general
overview and FPGA-specific discussion needed to fully understand FPGA EDA.

This work takes a holistic approach to FPGA EDA that is timely and impor-
tant. Uniquely, it covers three sub-areas of FPGA EDA that together enable not
only designing to and programming an FPGA, but also architecting a new FPGA
and automating much of the implementation of its circuitry and layout. The first
portion of this book explains the EDA tools needed describe a new FPGA architec-
ture and evaluate its quality—crucial steps in making sure a new FPGA is usable
and performant. Next it summarizes and compares a novel class of EDA tools that
has emerged to rapidly implement the circuitry and layout of a new FPGA archi-
tecture, verify its correctness, and model its low-level characteristics. The higher
implementation productivity enabled by these new tools is fueling wider adoption of
embedded FPGA blocks within system-on-chip (SoC) designs and the development
of application-tuned standalone FPGAs. Finally, this work details the full design
and programming flow needed by end users of an FPGA, from high-level synthesis,
through logic synthesis, physical implementation, and bitstream generation.

v

vi Foreword

This book is a key reference not only for FPGA end users and EDA developers but
also FPGA architects. Its coverage of both current industrial practice and emerging
approaches makes it relevant to both FPGA practitioners and researchers. As FPGA
designs become more complex, FPGA architectures proliferate, and embedded
FPGAs find their way into more SoCs, knowledge of the full spectrum of FPGA
EDA tools will be crucial to system architects and this book will be one of their key
resources.

Toronto, Canada
August 2023

Vaughn Betz

Preface

The electronic design automation (EDA) for field programmable gate array (FPGA)
is a special interdisciplinary study area. EDA software runs throughout the entire
life cycle of FPGA design, including chip design stage and application design stage.
With the ever-increasing demand for customized and application-specific electronic
systems, FPGAs have become a popular choice for implementing complex digital
designs and FPGA EDA is the key to make that happen.

This book aims to provide a comprehensive and up-to-date principles and imple-
mentations of FPGA EDA technology, absorbing nutrients from both industry and
academia. It is written for students, researchers, and practicing engineers who are
interested in understanding the design and optimization of FPGA EDA system.

The book begins with an introduction to two fundamental concept: FPGA and
EDA. It then covers the databases and methodologies across the whole design flow:
at chip design stage, EDA tools help chip design engineers to explore the FPGA
architecture and complete their intricate masterpiece, while at application design
stage, EDA tools help application design engineers to etch their brilliant thoughts
into circuits.

Writing a book is a challenging and rewarding experience. When writing this
book, we realized the vastness of the FPGA EDA field and the complexity of this
topic. We tried to make the book as accessible as possible by explaining the concepts
in a simple and intuitive way. However, there is always room for improvement, and
we welcome any feedback or suggestions from the readers.

Writing a book is definitely not a solitary endeavor, authors are from across Asia,
Europe, and North America, and all of them have invested their huge amount of time
and effort to finish this course. Meanwhile, I am thankful to the people who have
provided their precious assistance and support throughout the writing process: Dr.
Lijiang Gao, Dr. Borui Cai, Prof. Rui Zhang, Dr. Grace Zgheib, Dr. Colin Yu Lin,
Dr. Zhihong Huang, Dr. Yi Shu, Dr. Tianwen Li, Dr. Yuanming Zhu, Dr. Junying
Huang, Yu Bao, Dong Zhang, Jian Han, Larisa Li, Yuan Li... We also would like to
acknowledge the numerous researchers, scholars, and professionals whose work we
have drawn upon in this book. Their contributions have been invaluable in shaping
our ideas and perspectives.

vii

viii Preface

Finally, I am grateful to the readers of this book, whose interest and support
have made this project worthwhile. I hope that this book will prove to be a valuable
resource for our audience and inspire them to further explore the fascinating world
of FPGA EDA technology.

Beijing, China
April 2023

Kaihui “Kelvin” Tu

Contents

Part I Introduction

1 Introduction . 3
1.1 FPGA Hardware Brief Introduction . 3

1.1.1 FPGA Concept . 3
1.1.2 FPGA Hardware Evolution . 4
1.1.3 FPGA Compares With Other Architectures 13

1.2 FPGA EDA Brief Introduction . 15
1.2.1 FPGA EDA Concept . 15
1.2.2 FPGA Chip Design EDA . 17
1.2.3 FPGA Application Design EDA . 21

References . 21

Part II FPGA Data Modeling

2 Device (Chip Design) Modeling . 25
2.1 Device Description Levels . 25

2.1.1 Abstract Levels . 25
2.1.2 Reuse Levels . 28

2.2 Device Model Classifications . 28
2.2.1 Primary Class . 29
2.2.2 Metric Class . 32
2.2.3 Guidance Class . 37

2.3 Device Model Implementations . 38
2.3.1 Logic Resource Structure Model . 38
2.3.2 Configuration Bit Structure Model 40
2.3.3 Power Model . 41
2.3.4 Performance (Timing) Model . 42
2.3.5 Area Model . 44
2.3.6 Packing/Placement Guidance Model 44

ix

x Contents

2.3.7 Routing Guidance Model . 45
2.3.8 Bitstream Generation Guidance Model 45

References . 46

3 Design (Application Design) Modeling . 49
3.1 Design Description Levels . 49

3.1.1 Abstract Levels . 49
3.1.2 Reuse Levels . 52

3.2 Design Model Classifications . 52
3.2.1 Primary Class . 52
3.2.2 Constraint Class . 54
3.2.3 Report Class . 55

3.3 Design Model Implementations . 56
3.3.1 Logic Resource Structure Model . 56
3.3.2 Configuration Bit Structure Model 58
3.3.3 Constraint Model . 58
3.3.4 Report Model . 59

References . 60

Part III FPGA Metric Analysis

4 Power Analysis . 65
4.1 Overview . 65
4.2 Power Analysis Techniques . 68
4.3 Summary and Trends . 70
References . 70

5 Performance (Timing) Analysis . 73
5.1 Overview . 73
5.2 Timing Analysis Techniques . 75
5.3 Summary and Trends . 76
References . 77

6 Area Analysis . 79
6.1 Overview . 79
6.2 Area Analysis Techniques . 80
6.3 Summary and Trends . 81
References . 82

Part IV FPGA Chip Design EDA

7 Semi-custom EDA . 85
7.1 Overview . 85
7.2 Extended Architecture Description Language 88

7.2.1 Circuit Modeling . 89
7.2.2 Physical Mode Modeling . 91
7.2.3 Configuration Protocol . 94

Contents xi

7.3 Netlist Generator . 96
7.4 Testbench Generator . 100
7.5 Showcase . 102

7.5.1 Methodologies . 104
7.5.2 Performance Evaluation . 104

7.6 Summary and Trends . 107
References . 107

Part V FPGA Application Design EDA

8 High-Level Synthesis . 113
8.1 Overview . 113

8.1.1 From Software Program to Intermediate
Representation . 113

8.1.2 From Intermediate Representation to Hardware
Design . 115

8.2 Datapath Scheduling . 116
8.2.1 Unconstrained Scheduling . 116
8.2.2 Constrained Scheduling . 118
8.2.3 Timing Optimizations . 119
8.2.4 Resource Binding and Sharing . 120

8.3 Extracting Parallelism Through HLS Scheduling 121
8.3.1 SDC-Based Modulo Scheduling . 121
8.3.2 Polyhedral Analysis and Optimization 122
8.3.3 Dynamic Scheduling . 123

8.4 Current Status and Outlook . 127
8.4.1 HLS Frameworks . 127
8.4.2 HLS Code Restructuring and Annotations 128
8.4.3 Design Space Exploration . 129
8.4.4 Functional and Formal Verification in HLS 130
8.4.5 Frequency Estimates in HLS . 130

References . 131

9 Logic Synthesis . 135
9.1 Overview . 135
9.2 Fundamentals of Boolean Logic . 136

9.2.1 Boolean Algebra . 136
9.2.2 Functional Representation . 137
9.2.3 Directed-Acyclic-Graph (DAGs) Boolean

Network . 139
9.3 Logic Optimization . 141

9.3.1 Functional Methodologies . 141
9.3.2 DAG-Aware Logic Optimization . 142
9.3.3 Exact Logic Optimization . 144
9.3.4 Exact Synthesis Algorithm Flow . 145
9.3.5 SAT-Based Encoding . 146

xii Contents

9.3.6 Sequential Logic Optimization . 149
9.3.7 Advanced Logic Optimization Techniques 154

9.4 Technology Mapping . 155
9.4.1 Flow-Based and Cut-Based LUT Mapping 156
9.4.2 Cut-Less LUT Mapping . 156

9.5 AI in Logic Synthesis . 157
9.6 Summary and Trends . 160
References . 161

10 Physical Implementation . 165
10.1 Packing . 165

10.1.1 Overview . 165
10.1.2 Seed-Based Packing Algorithms . 169
10.1.3 Partition-Based Packing Algorithms 176
10.1.4 Summary and Trends . 179

10.2 Placement . 180
10.2.1 Overview . 180
10.2.2 Annealing Placement Algorithms 182
10.2.3 Analytical Placement Algorithms 189
10.2.4 Summary and Trends . 192

10.3 Routing . 193
10.3.1 Overview . 193
10.3.2 Negotiation-Based Routing Algorithms 195
10.3.3 Summary and Trends . 201

References . 201

11 Bitstream Configuration . 207
11.1 Bitsream Generation . 207

11.1.1 Overview . 207
11.1.2 Mode-Based Technique . 208

11.2 Bitsream Compression . 210
11.2.1 Overview . 210
11.2.2 Non-entropy Encoding . 211
11.2.3 Entropy Encoding . 213

11.3 Bitsream Encryption . 215
11.3.1 Overview . 215
11.3.2 AES-Based Technique . 216

11.4 Bitstream Programming . 217
11.4.1 Overview . 217
11.4.2 JTAG-Based Technique . 218

References . 218

Contents xiii

Part VI Summary and Outlook

12 Summary and Outlook . 225
12.1 FPGA EDA’s Crossroads . 225
12.2 Our Book’s Future Works . 226

Part I
Introduction

Chapter 1
Introduction

Abstract Field programmable gate array (FPGA) is a typical semi-custom inte-
grated circuit. The function of an FPGA is decided by both chip vendors and end
users. Just like many other semiconductors, the design process of FPGA highly
depends on Electronic Design Automation (EDA) tools. This chapter sorts out the
complicated knowledge universe of FPGA technology, highlighting the EDA systems
within. Due to FPGA’s semi-custom characteristics, FPGA EDA is very distinctive
and can be accordingly categorized into two different fields: chip design EDA and
application design EDA.

1.1 FPGA Hardware Brief Introduction

1.1.1 FPGA Concept

FPGA is a semi-custom integrated circuit, that is, programmable units within it are
pre-customized by vendors in the design house, after the device is manufactured and
delivered to the end users, it can be “field”-customized for a second time to fully
implement the desired functionality.

This characteristic makes FPGAs just like “lego” in the semiconductor world
(Fig. 1.1), which means you can assemble (program) the pre-designed blocks (pro-
grammable units) into figures (circuit functions).

However, these “pre-design” and “assemble” tasks for FPGAs are too complicated
to be carried out without computer’s help; EDA is hereby introduced in to make them
possible.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_1&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1
https://doi.org/10.1007/978-981-99-7755-0_1

4 1 Introduction

Fig. 1.1 FPGA—The electronic “lego” of the semiconductor world

Fig. 1.2 World’s first FPGA—Xilinx XC2064

1.1.2 FPGA Hardware Evolution

Xilinx Corporation (acquired by AMD in 2022) invented the first commercial FPGA–
XC2064 (Fig. 1.2) in 1985. The device contains 64 programmable logic units con-
sisting of two 3-input Look-Up Tables (LUTs) and an Flip-Flop (FF), enabling true
“field” programmability for the first time. IEEE listed Xilinx XC2064 as one of the
“25 Microchips that Shook the World” in 2009 [1] and inducted it into the “Chip
Hall of Fame” in 2017 [2].

1.1 FPGA Hardware Brief Introduction 5

From that start point, FPGA has always stayed at the forefront of semiconductor
technology and gradually forged a unique and complex knowledge system of itself,
including FPGA chip design, FPGA chip design EDA, FPGA application design,
FPGA application design EDA, FPGA foundry, FPGA assembly and testing, FPGA
sales and marketing, etc. With more and more heterogeneous units are integrated
into FPGAs, this knowledge system is expanding at an unprecedented speed. It is
conceivable that if someone wants to run an FPGA business successfully, the first and
most tricky thing to do is gathering a large group of professionals from a number of
totally different fields. FPGA vendors, especially the top ones, have led the innovation
for most of the time due to their strong ability to integrate supply chain resources
from upstream to downstream and to maintain a diversed and interdisciplinary talent
echelon.

FPGA hardware evolution can be inspected from several perspectives:

1. In terms of configuration memory
Configuration memory that stores the configuration bit data is one of the funda-
mental components of FPGA. Just like the material of lego toys can be various,
FPGAs accordingly can be categorized into several types in terms of configuration
memory:

a. SRAM (Static Random Access Memory) type
Mainstream type since FPGA was born, the configuration data should be read
into the on-chip SRAM when the power is turned on. After the configuration is
completed, the configuration data in SRAM will be lost (volatile), and the inter-
nal logic function of the FPGA will also disappear. SRAM-based FPGAs are
reusable and low-cost, but reloading may needs an external memory device’s
help.

b. Antifuse type
This type of FPGA can only be programmed once by burning the fuses within
and was first introduced in 1992. Although loses the flexibility of reprogram-
ming, it greatly improves the stability. FPGAs with this structure are more
suitable for applications in harsh environments, such as high vibration and
strong electromagnetic radiation and other aerospace fields. Because of the
fixed logic, the device powers up instantaneously and consumes less power
and size than other types of FPGAs.

c. Flash type
Flash memory is non-volatile, the FPGA of this type has the flexibility of
SRAM structure and the reliability of anti-fuse structure at the same time. The
cost of this technology is high, but the number of transistors used and leakage
current are relatively small [3]. This type of devices is also very suitable for
aerospace applications [4– 6].

d. Emerging technology
To further advance non-volatile FPGA’s PPA (Power, Performance and Area),
emerging device technology is actively researched in the last two decades.
Resistive Random Access Memory (RRAM) [7] and Magnetoeresistive Ran-
dom Access Memory (MRAM) [8] are the two representative non-volatile

6 1 Introduction

Fig. 1.3 Power consumption of a volatile (SRAM) FPGA and b non-volatile (RRAM) FPGA

memory devices, which have strong potential in substituting Flash memory in
FPGAs (Fig. 1.3).
Both technologies share common advantages over Flash memory in
i. compatibility to BEoL (Back End of Line) process, leading to significantly

higher area density. Unlike Flash transistors, RRAMs and MRAMs are
fabricated between metal layers, no longer consume transistor area [9,
10].

ii. low read/write voltages as well as current, being similar to nominal volt-
ages of logic transistors. This avoids dedicated circuits for accessing mem-
ory elements, which require different process than regular transistor and
force PPA overhead [9, 11].

iii. fast read and write speed at the level of nanoseconds, which can reduce
programming time and power of FPGA devices [12, 13].

Nowadays, FPGAs based on emerging technologies have attracted intensive
research interests and are considered as next generation of FPGA technology
(Table 1.1).
These FPGAs are suitable for:
i. IoT (Internet of Things) applications which require both ultra-lower-

power and high-performance at the same time.
ii. aerospace applications which require highly robust against radiation-

induced soft errors[14].
We refer interested readers to [15– 19].

2. In terms of component resources
Modern FPGAs are composed of various “island-type” units and “ocean-like”
interconnect resources among them. Tile, as the first-level sub-unit of FPGA,

1.1 FPGA Hardware Brief Introduction 7

Table 1.1 Comparison of FPGAs based on different programmable memory type

Memory type Volatile Programmability Latency Power Area Cost

SRAM Yes Repeatable Low Medium Large Low

Antifuse Non Once Very low Very low Very small Very high

Flash Non Repeatable High Low Small Medium

MRAM Non Repeatable Low High Small High

RRAM Non Repeatable Low High Small High

is composed of more fine-grained “Site” units. Tiles of the same type (exclud-
ing special types like I/O) are usually arranged in columns, and this layout can
help approximate the distances between each general tile and I/O tile, so that
there can be relatively high flexibility for physical implementation. Each tile
has a unique address throughout the FPGA, which is typically represented by
two-dimensional (for single-die) or even three-dimensional (for multi-die [20])
coordinates (Fig. 1.4).
The component resource types are rapidly enriched with the development of pro-
grammable technology. State-of-the-art FPGAs have even evolved into a hybrid
device with multiple types of architectures. The current mainstream component
resource types include:

a. Generic Logic Tile (Spatial Computing Tile)
Generic Logic Tile (GLT) is the fundamental programmable unit distributed
in the FPGA, and the site under this unit is called Generic Logic Site (GLS).
GLS here is generally composed of LUT/FF, and the structure of the GLT/GLS
can be various.
AMD GLT—CLB [21]:
Configurable Logic Block (CLB) is the main resource for AMD FPGA to
implement basic sequential and combinational circuit functions (Table 1.2).
Taking AMD’s Versal architecture as an example, each CLB contains 4 GLSs,
and each GLS contains 8 adaptive LUT6s and 16 FFs. AMD GLS has two types:
SliceL (Logic) and SliceM (Memory). The latter enables the LUT under the
GLS to be used as distributed memory by adding independent write addresses,
write enable and clock signals. By enabling distributed memory, the maximum
capacity of the chip memory is increased, and the memory usage efficiency is
improved.
Intel GLT—LAB/MLAB [22]:
Logic Array Block (LAB) is the main resource for Intel FPGA to imple-
ment basic sequential and combinational circuit functions (Table 1.3). MLAB
(Memory LAB) is a superset of LAB. In addition to all LAB functions, it sup-
ports dual-port SRAM up to 640 bit as a distributed memory. Taking Intel’s
Hyperflex architecture as an example, each LAB/MLAB contains 10 GLSs,
and each GLS contains 1 adaptive LUT6 and 4 FFs. Intel GLS is called Adap-
tive Logic Module (ALM), and its structure is slightly different in LAB and
MLAB.

8 1 Introduction

Fig. 1.4 Tile coordinate systems in single-die/multi-die FPGA

Table 1.2 AMD GLT resources—Versal architecture

AMD GLT AMD GLS LUT6 FF Carry chain Distributed
RAM

Shift
register

CLB 4 (2 SliceL + 2
SliceM)

32 64 4 2048 bits 1024 bits

Table 1.3 Intel GLT resources—HyperFlex architecture

Intel GLT Intel GLS LUT6 FF Carry chain Distributed
RAM

Shift
register

LAB 10 (ALM) 10 40 1 / /

MLAB 10 (ALM) 10 40 1 2048 bits 1024 bits

1.1 FPGA Hardware Brief Introduction 9

b. Input/Output Tile
Input/Output Tile (IOT), powered by groups of banks, is the interface between
FPGA and the outside world. There are many types of IO in modern FPGAs,
categorized into single-ended IO (LVTTL, LVCMOS, DDR, etc.) and differen-
tial IO (LVDS, LVPECL, SerDes, etc.). Single-ended signaling is the simplest
and most commonly used method for transmitting electrical signals between
devices. The signal is represented by a varying voltage on one wire; however,
the dynamic power consumption of single-ended IO increases exponentially
with the increase of clock frequency, so it is not suitable for application in
high-speed circuits. Then comes the differential IO, it uses two wires for each
signal (differential pair), which has better noise immunity than single-ended
IO.

c. Clock Management Tile
Clock Management Tile (CMT) is a firmware resource dedicated to clock syn-
thesis, elimination of clock skew, and clock phase and frequency adjustment
in the FPGA. By programming, high precision, low jitter frequency multipli-
cation, frequency division, duty cycle adjustment, and phase shift of the clock
can be achieved. Delay Locked Loop (DLL) and Phase Locked Loop (PLL)
are two common CMT implementations. DLL is based on the digital sam-
pling method, which inserts a delay between the input clock and the feedback
clock so that the rising edges of the input clock and the feedback clock are
consistent. It is also called a digital phase-locked loop. The PLL, also known
as an analog phase-locked loop, uses voltage to control the delay, and uses a
voltage-controlled oscillator (VCO) to achieve a delay function similar to that
in the DLL, also known as an analog phase-locked loop.

d. Memory
There are different types of memory for FPGAs (Fig. 1.5) listed below.
On-chip memory (Memory Tile, MMT):
On-chip memory means FPGA integrates the memory tile as a hard core. Block
RAM (BRAM) is a typical representative of traditional on-chip memory. This
tile can be programmed as single port, simple dual port , true dual port, read-
only memory or other modes, and the depth and width of the stored data can
also be configured with high flexibility. The Distributed RAM configured by
the look-up table is an effective supplement to the BRAM and is suitable for

Fig. 1.5 Different types of memory for FPGAs

10 1 Introduction

small storage requirements. The location of the BRAM resources in the FPGA
is fixed and generally distributed in columns, which may cause a long wiring
delay to the general logic, the use of distributed storage can help to ease the
pain.
Off-chip memory (Memory Chip):
Off-chip memory is a memory that places on the periphery of an FPGA and
provides extended storage space for it. A typical representative is DDR RAM.
System-in-Package memory (Memory Die):
System-in-Package (SiP) memory is a memory that integrated with general
logic through an interposer to further expanding storage space. The typical
representative is High Bandwidth Memory (HBM), which compactly connects
stacked Dynamic Random Access Memory (DRAM) and FPGA through an
interposer. This technology makes it possible for AI algorithms to be com-
pletely run on-chip, at the same time as the integration level is improved, the
bandwidth is no longer limited by the number of interconnections of chip pins,
so that the IO bottleneck is solved to a certain extent.

e. Scalar Computing Tile
SCT (Scalar Computing Tile), typically represented by Central Processing
Unit (CPU) and Micro Controller Unit (MCU), has their unique advantages
that traditional FPGA cannot achieve. Traditional FPGAs are good at parallel
processing, and scalar engines are good at running control, the combination
of the two can achieve a higher performance/watt ratio. Embedding SCTs in
FPGA has become a common practice (e.g., ARM in AMD Zynq family/RISC-
V in Microchip PolarFire family). Apart from such hard core implementations,
some scalar engines are designed as soft cores (e.g., Intel’s NIOS/AMD’s
MicroBlaze).

f. Vector Computing Tile
VCT (Vector Computing Tile), typically represented by Digital Signal Pro-
cessing (DSP) unit and Graphics Processing Unit (GPU), is more efficient on
processing a narrower set of parallel computing functions; however, it suffers
from limited latency and efficiency due to inflexibility of memory hierarchies.

g. Matrix Computing Tile
Matrix Computing Tile (MCT) are purpose-built tiles that offer dramatic leaps
in performance for AI workloads (matrix multiplication).

h. Other Analog/ASIC Tiles
Except for the tiles above, in modern FPGAs, many analog or application spe-
cific units are integrated, such as analog-to-digital/digital-to-analog conversion
(ADC/DAC) units, video codec units, etc.

i. Clock Tree Resources
CTR (Clock Tree Resources) is a special set of signal paths inside the FPGA,
like its vascular network. The clock signal on the clock network can ensure a
relatively small signal skew, that is, make sure the time that the clock signal
reaches each flip-flop is as close as possible.

j. Interconnect Resources
ICR (Interconnect Resources) provide communication channels that connect

1.1 FPGA Hardware Brief Introduction 11

Fig. 1.6 World’s first SoC FPGA—Altera excalibur

all tiles together inside the FPGA, like its neural network. Traditional intercon-
nect resources are controlled by programmable switches, which allow signals
to switch to different paths. Modern FPGAs also use Network on Chip (NoC)
interconnects that act like highways to accelerate the inner data transfer pro-
cess.
Since the first heterogeneous computing engines (ARM SCT) was integrated
into FPGA by Altera (acquired by Intel in 2015) in 2000 (Fig. 1.6), the era
of SoC FPGA has begun. More and more types of architectures have been
successfully coupled under the same umbrella (Fig. 1.7), and in [23], FPGA
architecture progression has been well reviewed. Until 2019, Xilinx finally
merges nearly all popular architectures in a single chip (Versal series) and
pushing adaptive SoCs to a whole new level. Here is a brief history of FPGA
resource evolution (Table 1.4).

3. In terms of process technology
FPGA always pursuits the most advanced process node, since the beginning of
21st century, the big two (AMD/Xilinx and Intel/Altera) alternately lead the node
shrinking race.

a. Bulk/SOI
Bulk is the traditional technology for FPGA. It is built on a standard sili-
con wafer. In contrast to bulk, Silicon-On-Insulator (SOI) makes use of SOI
wafers, which incorporate a thin insulating layer within the substrate to sup-
press leakage. There are two types of SOI devices: partially depleted (PD-SOI)
and fully depleted SOI (FD-SOI). Lattice (28 nm) and Quicklogic (22 nm) are
on FD-SOI technology.

b. Planar/FinFET/GAAFET
Complementary metal-oxide semiconductors (CMOS) technology introduced
planar transistors in the mid-20th century; however, the downsizing of pla-
nar transistors also brought numerous problems such as gate leakage currents,
short channel effects, quantum tunneling leakage, variability, mobility degra-
dation, etc. New technologies then come out to ease the pain, such as FinFET
and GAAFET.
FinFET (Fin Field Effect Transistor) technology is for relatively high-end

12 1 Introduction

Fig. 1.7 Increasing heterogeneity of Intel/Altera FPGAs[24]

Table 1.4 FPGA resource-type evolution history

Resource type First introduced family Time (year)

GLT (LUT/FF) Xilinx XC2000 1985

IOT (Basic) Xilinx XC2000 1985

ICR (Basic) Xilinx XC2000 1985

GLT (Carry chain/distributed RAM) Xilinx XC4000 1991

MMT (BRAM) Altera FLEX 1995

CMT (PLL) Altera FLEX 1996

CMT (DLL) Xilinx Virtex 1998

SCT (ARM) Altera Excalibur 2000

VCT (Fixed point DSP) Xilinx Virtex-II 2001

IOT (DDR IO) Xilinx Virtex-II 2001

IOT (SerDes IO) Xilinx Virtex-II 2001

SCT (PowerPC) Xilinx Virtex-II Pro 2001

VCT (Float point DSP) Intel Arria10 2015

VCT (GPU) Xilinx Zynq Ultrascale+ MPSoC 2015

Other (RF) Xilinx Zynq Ultrascale+ RFSoC 2017

MMT (HBM) Intel Stratix10 MX 2017

ICR (NoC) Achronix Speedster7t 2019

MCT (AI) Xilinx Versal 2019

SCT (RISC-V) Microchip PolarFire 2022

1.1 FPGA Hardware Brief Introduction 13

FPGAs (such as 16nm/14nm and beyond). It has a fin-shaped body – the
silicon fin that forms the transistor’s main body. FinFET devices display supe-
rior short-channel behavior and have considerably lower switching times, and
higher current density than planar technology.
GAAFET (Gate-All-Around Field Effect Transistor) is a promising and futur-
istic transistor candidate to replace FinFET, since the channel width variations
could cause undesirable variability and mobility loss as the fin width in a fin-
FET approaches 5 nm (Fig. 1.8).
Just like planar technology, the source, gate, and drain can sit on an insulating
layer (SOI) or on bare silicon (bulk). Most of the advanced Intel/AMD FPGAs
(below 20 nm) are on bulk FinFET technology at the moment.

4. In terms of package technology

a. Wire-bond/Flip-chip
Wire-bond is the oldest and most common assembly technology. In a wire-
bond FPGA, the IC is mounted to the substrate with the “active face” the face
where the circuitry has been built-up. Small wires arch from the inputs and
outputs (“I/Os”) on the outside edges–known as the “periphery” of the IC to a
specific on the substrate.
Flip-chip has emerged as the best alternative to wire bond. The defining feature
of the flip-chip package is a “flipped” IC, with the active side facing downward
or toward the substrate. The interconnects in a flip-chip FPGA are much shorter
than wire-bond, meaning that electrical losses and heat generation will be less
severe.

b. Planar/2.5D/3D
Instead of traditional planar package solutions (single die), 2.5D package inte-
grates multiple dies on a single interposer and interconnecting those chiplets on
that interposer using metal interconnect. Intel/AMD’s advanced FPGA devices
commonly adopted this type of technology.
True 3D package is a very advanced technology that splits FPGAs into multiple
chips and stacks them. It still needs some time for true 3D FPGA to embrace
mass production.

1.1.3 FPGA Compares With Other Architectures

1. A prototype platform for other architectures
The coolest Bugatti sports car in the world can be built with “lego” blocks (in
fact, modern automobile manufacturing is also based on modularity), just like a
cutting-edge architecture being prototyped by an FPGA. Using “lego” blocks to
build a car that can actually drive will face many handicaps, for example, complex
engine is difficult to implement, the solution would be installing a real engine (like

14 1 Introduction

Fig. 1.8 FPGA giants’ technology node cadence (as of 2023)

Fig. 1.9 “Lego” Bugatti Chiron and real Bugatti Chiron

1.2 FPGA EDA Brief Introduction 15

Fig. 1.10 FPGA compares with other computation architectures

embedding scalar computing tile) in it; tyres are also a problem, yet the simplest
way is just put four real rubber tyres (like embedded analog circuit components)
on it. This is another practice of heterogeneous integrating—put some “real car”
parts in a “lego car”.

Due to its hardware programmability, FPGA is an ideal prototype platform to
simulate chip functions of any architectures in theory. When the shipment is not
so huge (below around $3m/400,000 pieces) or the function still needs iteration,
FPGA, with zero Non-Recurring Engineering (NRE) cost and relatively high flex-
ibility, is the choice (Fig. 1.9).

2. A computation platform with other architectures
In terms of flexibility and easy of use, traditional FPGA has advantages over
ASIC but cannot compete with software programmable scalar/vector architec-
tures, however, if you look at performance and power efficiency or cost per unit,
the story comes the opposite way. That’s something called trade-offs (Fig. 1.10).

1.2 FPGA EDA Brief Introduction

1.2.1 FPGA EDA Concept

Electronic Design Automation, as its name suggests, is using computers to help
electronic circuits design and therefore crowned as the “mother of chips”. FPGA
designs highly depend on EDA without exception.

The full design process of FPGA is divided into two stages: the chip design stage
and the application design stage. The former is completed by the FPGA vendors, and

16 1 Introduction

Fig. 1.11 FPGA design full flow: from vendors to users

Fig. 1.12 FPGA EDA full flow: from vendors to users

the latter is handed over to the FPGA users. Both full-custom and semi-custom design
methods are adopted during the chip design. Full-custom design requires designers
to complete circuit design from the bottom-level, while another design approach,
semi-custom design, uses pre-designed macros to simplify the effort (Fig. 1.11).

Correspondingly, FPGA EDA can also be divided into two parts: FPGA chip
design EDA (to assist vendors in chip design stage) and FPGA application design
EDA (to assist end users in application design stage) (Fig. 1.12). For FPGA chip
design EDA, EDA vendors such as Cadence/Synopsys/Siemens provide univer-

1.2 FPGA EDA Brief Introduction 17

Table 1.5 Different EDA systems for heterogeneous hardware architecture

Hardware architecture Chip design EDA Application design EDA

Spatial (Vanilla FPGA) Virtuoso, Fusion compiler, etc. Vivado, Quartus, etc.

Scalar Virtuoso, Fusion compiler, etc. Keil, IAR, etc.

Vector Virtuoso, Fusion compiler, etc. CUDA, etc.

Matrix Virtuoso, Fusion compiler, etc. TensorFlow Compiler, PyTorch
JIT, etc.

ASIC Virtuoso, Fusion compiler, etc. /

sal design tools, and for FPGA application design EDA, FPGA vendors such as
AMD/Intel/Microchip provide proprietary tools that only serve their own chips.

For modern SoC FPGAs, the integrated heterogeneous scalar/vector/matrix com-
puting tiles have their own application design EDA systems different from vanilla
FPGAs (Spatial). Although the industry is trying to unify them altogether (Intel
oneAPI and AMD Vitis), vanilla FPGA EDA technology is currently still a self-
contained system that cannot be replaced in a short period of time. The following
chapters of this book mainly focus on vanilla FPGA EDA (Table 1.5).

1.2.2 FPGA Chip Design EDA

In FPGA chip design, full-custom method (designing based on transistors) is like
“elaborately carving a painting on stones”, so the performance of the chip can be max-
imized without wasting too much chip area; however, this design method consumes
more labor and time; while semi-custom method (designing based on standard cells
or IPs) runs through the classic synthesis-implementation flow and is much more
quicker due to the higher level of automation, but sometimes cannot achieve the best
result. Considering these trade-offs, only the integrated circuits that require extremely
high performance, low power consumption and limited area will use the full-custom
approach.

Figure 1.13 shows the brief flow of FPGA chip design. At the beginning of
it, designers will evaluate the architecture based on the requirements and then do
the module partition, deciding which modules should be designed with full-custom
method and which modules should be designed with semi-custom method. After
each module is finished on their own way, they are merged at the top level to form
the final design.

Legacy EDA tools for FPGA chip design are abundant, and (Table 1.6) lists the
most popular ones.

18 1 Introduction

Fig. 1.13 Vanilla FPGA chip design EDA flow

1.2 FPGA EDA Brief Introduction 19

Table 1.6 Iconic vanilla FPGA chip design EDA frameworks

Frameworks Type Maintainer License Description

Virtuoso Full-custom Cadence Commercial A holistic, system-based
solution that provides
functionality to do the custom
IC design and sign-off

Fusion compiler Semi-custom Synopsys Commercial RTL-to-GDSII implementation
system architected to address
the complexities of advanced
process node design

Calibre / Siemens EDA Commercial Well known IC sign-off
verification and DFM (Design
For Manufacturability)
optimization tool

OpenFPGA Semi-custom CHIPS Alliance MIT The first open-source FPGA IP
generator supporting highly
customizable homogeneous
FPGA architectures

COFFE Full/Semi-
custom

University of
Toronto

MIT An open-source FPGA design
toolset for automatic FPGA
circuit design

Australis Semi-custom QuickLogic Commercial Built on the OpenFPGA
open-source framework that
enables rapid prototyping of
customizable FPGA
architectures

Table 1.7 Iconic vanilla FPGA application design EDA frameworks

Frameworks Maintainer License Description

VTR University of
Toronto

MIT A world-wide collaborative effort to provide an
open-source framework for conducting FPGA
architecture and EDA research and development

F4PGA CHIPS Alliance Apache-2.0 A Verilog-to-Bitstream EDA flow targeting commercial
FPGAs

RapidWright AMD/Xilinx Apache-2.0 Provide Vivado Interface for users to build customized
FPGA implementations

Vivado AMD/Xilinx Commercial A Classic FPGA EDA design suite that supports
AMD/Xilinx devices

Quartus Intel/Altera Commercial A Classic FPGA EDA design suite that supports
Intel/Altera devices

Synplify Synopsys Commercial Industry standard logic synthesis tool for producing
high-performance, cost-effective FPGA designs

ModelSim Siemens Commercial A multi-language environment for simulation of
hardware description languages and includes a built-in
C debugger

20 1 Introduction

Fig. 1.14 Vanilla FPGA application design EDA flow

References 21

1.2.3 FPGA Application Design EDA

The traditional FPGA application design EDA process includes high-level synthe-
sis, logic synthesis, physical implementation, bitstream configuration, and simula-
tion/debugging. The FPGA device data (Device Library) and design data (Design
Checkpoint) are the two major data sources for the EDA system. More specifically,
high-level synthesis converts the user’s high-level abstract description (High-Level
Language, HLL) design into a low level hardware description (Hardware Description
Language, HDL) design; logic synthesis converts the low level hardware description
design into a design database that contains a design netlist composed of FPGA design
units and their interconnections; physical implementation further decides how the
design is physically implemented on the target FPGA; bitstream configuration con-
verts the final implemented design into an bitstream of a specific format, and then
downloads it into the target device according to the configuration protocol. After each
process above is done, the simulation tools and PPA analysis tool can be invoked
to sign-off the design. Simulation and debugging activities are carried out through-
out the application design process to ensure that the original idea of the designer is
implemented properly.

There is a lot of legacy practices constructing FPGA application design EDA
flow both from industrial and academic world. Table 1.7 lists some of the most
iconic frameworks (Fig. 1.14).

References

1. IEEE, 25 microchips that shook the world (2009). https://spectrum.ieee.org/25-microchips-
that-shook-the-world

2. IEEE, Chip hall of fame: Xilinx xc2064 FPGA (2017). https://spectrum.ieee.org/chip-hall-of-
fame-xilinx-xc2064-fpga

3. M. Abusultan S.P. Khatri, Exploring static and dynamic flash-based FPGA design topologies,
in 2016 IEEE 34th International Conference on Computer Design (ICCD) (2016), pp. 416–419

4. N. Rezzak, J.-J. Wang, D. Dsilva, N. Jat, TID and see characterization of Microsemi’s 4th
generation radiation tolerant rtg4 flash-based FPGA, in 2015 IEEE Radiation Effects Data
Workshop (REDW) (2015), pp. 1–6

5. P.R.C. Villa, R.C. Goerl, F. Vargas, L.B. Poehls, N.H. Medina, N. Added, V.A.P. de Aguiar,
E.L.A. Macchione, F. Aguirre, M.A.G. da Silveira, E.A. Bezerra, Analysis of single-event
upsets in a Microsemi proasic3e FPGA, in 2017 18th IEEE Latin American Test Symposium
(LATS) (2017), pp. 1–4

6. J. Greene, S. Kaptanoglu, W. Feng, V. Hecht, J. Landry, F. Li, A. Krouglyanskiy, M. Morosan,
V. Pevzner, A 65 nm flash-based FPGA fabric optimized for low cost and power, in Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA
’11) (ACM, New York, NY, USA, 2011), pp. 87–96

7. H.S.P. Wong, H.Y. Lee, S. Yu, Y.S. Chen, Y. Wu, P.S. Chen, B. Lee, F.T. Chen, M.J. Tsai,
Metal-oxide RRAM, Proc. IEEE 100(6), 1951–1970 (2012)

8. D. Apalkov, B. Dieny, J.M. Slaughter, Magnetoresistive random access memory. Proc. IEEE
104(10), 1796–1830 (2016)

https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/25-microchips-that-shook-the-world
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga
https://spectrum.ieee.org/chip-hall-of-fame-xilinx-xc2064-fpga

22 1 Introduction

9. X. Tang, E. Giacomin, G.D. Micheli, P.E. Gaillardon, Circuit designs of high-performance and
low-power RRAM-based multiplexers based on 4T(ransistor)1R(RAM) programming struc-
ture. IEEE Trans. Circ. Syst. I: Regul. Pap. 64(5), 1173–1186 (2017)

10. B. Govoreanu, G.S. Kar, Y.Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I.P. Radu, L. Goux,
S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois,
H. Bender, L. Altimime, D.J. Wouters, J.A. Kittl, M. Jurczak,.10× 10 nm2.H f /.H f Ox crossbar
Resistive RAM with excellent performance, reliability and low-energy operation, in 2011
International Electron Devices Meeting, Dec 2011, pp. 31.6.1–31.6.4

11. X. Tang, G. Kim, P.-E. Gaillardon, G. De Micheli, A study on the programming structures
for RRAM-based FPGA architectures. IEEE Trans. Circ. Syst. I: Regul. Pap. 63(4), 503–516
(2016)

12. O. Turkyilmaz, S. Onkaraiah, M. Reyboz, F. Clermidy, C.A. Hraziia, J. Portal, M. Bocquet,
RRAM-based FPGA for “Normally off, instantly on” applications, in 2012 IEEE/ACM Inter-
national Symposium on Nanoscale Architectures (NANOARCH), July 2012, pp. 101–108

13. J. Cong, B. Xiao, FPGA-RPI: a novel FPGA architecture with RRAM-based programmable
interconnects. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(4), 864–877 (2014)

14. R. Rajaei, Radiation-hardened design of nonvolatile MRAM-based FPGA. IEEE Trans. Magn.
52(10), 1–10 (2016)

15. X. Tang, P.E. Gaillardon, G.D. Micheli, A high-performance low-power near-.Vt RRAM-based
FPGA, in 2014 International Conference on Field-Programmable Technology (FPT), Dec
2014, pp. 207–214

16. S. Tanachutiwat, M. Liu, W. Wang, FPGA based on integration of CMOS and RRAM. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 19(11), 2023–2032 (2011)

17. Y.Y. Liauw, Z. Zhang, W. Kim, A. El Gamal, S.S. Wong, Nonvolatile 3D-FPGA with monolith-
ically stacked RRAM-based configuration memory, in Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2012 IEEE International (IEEE, 2012), pp. 406–408

18. Y.C. Chen, W. Wang, H. Li, W. Zhang, Non-volatile 3D stacking RRAM-based FPGA, in 22nd
International Conference on Field Programmable Logic and Applications (FPL), Aug 2012,
pp. 367–372

19. K. Huang, R. Zhao, W. He, Y. Lian, High-density and high-reliability nonvolatile field-
programmable gate array with stacked 1D2R RRAM array. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 24(1), 139–150 (2016)

20. X. Wu, 3d-IC technologies and 3d FPGA, in 2015 International 3D Systems Integration Con-
ference (3DIC) (2015), pp. KN1.1–KN1.4

21. AMD, Versal ACAP configurable logic block architecture manual. https://docs.xilinx.com/r/
en-US/am005-versal-clb/CLB-Architecture (2021)

22. Intel, Intel stratix 10 logic array blocks and adaptive logic modules user guide (2022). https://
www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html

23. A. Boutros, V. Betz, FPGA architecture: principles and progression. IEEE Circ. Syst. Magazine
21(2), 4–29 (2021)

24. S. Yazdanshenas, V. Betz, Automatic circuit design and modelling for heterogeneous FPGAs,
in 2017 International Conference on Field Programmable Technology (ICFPT) (2017), pp.
9–16

https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.xilinx.com/r/en-US/am005-versal-clb/CLB-Architecture
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/lab.html

Part II
FPGA Data Modeling

Chapter 2
Device (Chip Design) Modeling

Abstract This chapter provides the principles and implementations of FPGA device
(chip design) modeling. FPGA device information can be derived from the output
of chip design data and then will become the input for application design. There are
two practices in the FPGA EDA full flow that can share a common set of device
models, one is for architecture exploration in the chip design stage, the other is for
implementing end user’s circuit in the application design stage.

2.1 Device Description Levels

2.1.1 Abstract Levels

FPGA chip design is the output of the chip design EDA stage, it begins with a design
description, which is quite similar to ASIC chip design. FPGA chip design can be
described at different abstraction levels: natural level [1], high level [2], low level
[3], machine level [4], and physical level, forming a pyramid (Fig. 2.1) from top to
bottom.

FPGA device library comes from the chip design to some extent, yet is another
different concept. It carries the FPGA chip design data that only will be used in the
application design EDA stage. Therefore, describe an FPGA device at natural level,
high level, or physical level is not yet wide spread in industry due to the immaturity
of related tools, most of the existing research works about FPGA device description
mainly stay at low level and machine level (Fig. 2.2).

1. Physical-Level Description
The device physical-level description refers to the layout of targeted technology,
representing geometric shapes, text labels, etc. It is the final interface between
chip designer and foundry. GDSII is the de facto industry standard format to carry
messages at this level.

2. Machine-Level Description
The device machine-level description refers to the structure of underlying bit-
stream. It can be further divided into two sub-level descriptions: the “logical”
description expresses each configuration bit’s logical address—the correlation

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_2&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2
https://doi.org/10.1007/978-981-99-7755-0_2

26 2 Device (Chip Design) Modeling

Fig. 2.1 Abstract levels of chip design

Fig. 2.2 FPGA device description abstract levels

between bits and hardware units; the “physical” description presents each config-
uration bit’s physical address—the bit physical organization format decided by
configuration protocol.

3. Low-Level Description
The device low-level description refers to the characterization of hardware, and
three sub-level descriptions are demarcated: the “vanilla” description, the “higher”
description and the “lower” description.
At “vanilla” level, traditional vendor-neutral hardware descriptions (such as
VHDL, Verilog, Schematic, or SPICE) are very common to represent the hard-

2.1 Device Description Levels 27

Table 2.1 Feature comparison of XML and JASON

Feature XML JASON

Format Format that has tags to define elements Format written in JavaScript

Data storage As a tree structure Like a map with key value pairs

Speed Bulky and slow in parsing, leading to
slower data transmission

Very fast as the size of file is
considerably small, faster parsing by
the JavaScript engine and hence faster
transfer of data

File size Size is bulky, the tag structure makes it
huge and complex to read

Compact and easy to read, no redundant
or empty tags or data, making the file
look simple

Security Document Type Definition (DTD)
validation and external entity expansion
are enabled by default, making
structures disposed to some attacks

Safe at all times, although it might be
more at risk when JSONP (JSON with
Padding) is used since it can result in a
Cross-Site Request Forgery (CSRF)
attack

ware details.
At “higher” level, more abstracted hardware descriptions (such as XML, JASON)
(Table 2.1) are very suitable for FPGA structure exploration in the early stage of
design. Because if the promising structure is not ideal in the subsequent verifica-
tion, designers can modify it at a higher level to quickly establish a new fine-tuned
structure. However, description from this level may not fully reflect all special
details of the hardware.
At “lower” level, more detailed hardware descriptions (such as AMD-XDLRC,
EDIF) is used to specify detailed units in the FPGA device.

4. High-Level Description
The device high-level description refers to algorithmic languages (such as C++).
High-level synthesis (HLS) EDA engine is needed to convert descriptions at this
level into lower level.

5. Natural-Level Description
In addition to the above levels of device descriptions, industry’s pursuit of higher
abstraction (to a certain extent, also to reduce the labor cost of circuit design)
has never stopped. The final form of device description is the language used by
humans (English, Chinese, etc.). Natural language is the main tool for human
communication and thinking, it is the crystallization of human wisdom. Natu-
ral language processing is also one of the most difficult problems in artificial
intelligence [5].

28 2 Device (Chip Design) Modeling

Fig. 2.3 FPGA device description reuse levels

2.1.2 Reuse Levels

Considering the design reusability, modern FPGA vendors usually design a series of
chips based on the same technology platform (process node, infrastructure features,
cell libraries, etc.), which we call it “family”. Under the same family, each device
has a unique resource scale. Take AMD’s FPGA as an example, there are dozens of
devices in its Virtex-7 family that shares the same technology platform.

Considering there are common components (IPs) in an FPGA device from the
same family, in order to simplify the complexity and improve the efficiency, the
design features can be accordingly modeled at two levels: family level that shared
by the entire family, and device level that only suitable for a specific single device
(Fig. 2.3).

2.2 Device Model Classifications

The device models of an FPGA partly come from the chip design. The “device
library”, built from these models, contains the device architecture-related EDA infor-
mation that serves the application design flow. Device models can be categorized into

2.2 Device Model Classifications 29

Fig. 2.4 FPGA device model classifications

several classes: primary, metric, and guidance (Fig. 2.4). When doing chip design,
constraint models and report models are required, however, they are irrelevant with
the device modeling.

2.2.1 Primary Class

The device primary models include logical resource structure model and configu-
ration bit structure model. These models are essential inputs to application design
EDA, and can be derived from the chip design process.

1. Logic Resource Structure (LRS) Model
The logic resource structure of an FPGA device contains the core, the package,
and the interconnect among them (Fig. 2.5).
The FPGA core has a traditional structural hierarchy: core-tile-site-primitive-gate-
transistor. In chip design EDA, the full-custom method designs from the bottom
transistor-level, while the semi-custom method designs from the relatively upper
gate-level. In application design EDA, the situation is similar to semi-custom chip
design, gate-level is the lowest noteworthy level since that is where logic synthesis

30 2 Device (Chip Design) Modeling

Fig. 2.5 FPGA device logical resource structure hierarchy

could possibly reach. It is worth mentioning that the design of modern clock net-
works could partition tile resources into different “regions”, and some multi-chip
packaged devices also define each stacked silicon as a “die”, nonetheless, both
these “dies” and “regions” are made of tiles. In order to simplify the illustration,
we uses tile as the first-level sub-unit of a device.
The FPGA package has a much simpler structural hierarchy: package-bank-pad.
A bank is a group of I/O pads that share a common resource such as one power
supply or one output current reference, each group can independently support
different I/O standards that can adapt to different electrical characteristics. At
pad-level, pad arrangement/layout is required to make the package information
intact.
The FPGA interconnect resources organically combine all kinds of logic units
together. These programmable interconnect resources can be abstracted as a net-
work composed of wires and programmable switches. Wire is the carrier for signal
transmission, and switch controls the flow direction of signals by switching on
and off. They together form the device’s routing architecture.

2. Configuration Bit Structure (CBS) Model
The configuration bit structure of an FPGA device can be defined from two per-
spectives: logical and physical.
Logical CBS gives every bit a “logical address”, that is, which logic resource it
belongs to (Fig. 2.6).
Physical CBS gives every bit a “physical address”, that is, which position it lies
in the final bitstream sequence according to the configuration protocol.
Configuration protocol depends on the circuitry designed to program an FPGA. It
could be in different structures based on the application context, providing differ-

2.2 Device Model Classifications 31

Fig. 2.6 FPGA device configuration bit structure hierarchy (logical)

ent trade-offs between speed and area. In industry, FPGA devices from the same
family usually share the same configuration protocol. Here are some representa-
tive structures:

a. Chain-based
In this structure, configurable memories are connected in one or multiple chains
and bitstream is loaded serially to program the FPGA.

b. Unit-based
The configuration memory is organized by logical units (such as tiles and sites)
in which it resides, each configuration memory can be accessed by an address
decoder. Due to the hierarchical structure of logical units, unit-based physical
bit structure is also hierarchical.

c. Region-based
The configuration memory is organized in the form of a matrix area on the
FPGA chip, and each configuration memory can be accessed through the Bit
Line/Word Line address decoder.

Bitstream is more than the bits to configure an FPGA, it also contains certain
human-readable fields (meta) to describe those bits and an assembly-like instruc-
tion set (command) to guide the FPGA configuration process. Packet-Frame-Bit
hierarchy, borrowed from networking OSI(Open Systems Interconnection) model
(Fig. 2.7), is used for the configuration data:

a. Packet
Packet is the basic unit of communication between a source and a destination
in a network. In the OSI model, packets are data units within the network layer.

b. Frame
Just like packets, frames are small parts of a message in the network. The
main difference between a packet and a frame is the association with the OSI
layers—frames are data units within the data link layer.

32 2 Device (Chip Design) Modeling

Fig. 2.7 Communication data in OSI model

c. Bit/Byte/Word
Configuration memory stores the data in bits at the bottom level. Each bit
stores the value either 0 or 1. Each byte has 8 bits, and each word can has a
different length in different systems (such as 8/16/32 bits). Registers are used
to store a small piece of information (byte/word) while doing the calculations
or processing the data. It is helpful to improve the performance of the system
while doing the calculation or processing.

As discussed above, FPGA physical bit structure has a general hierarchy in
(Fig. 2.8).
After the logical and physical structure are proper defined, the logical–physical
address correlation for each bit is then established (Fig. 2.9).

2.2.2 Metric Class

There are several metrics that must be concerned during the FPGA design process,
and PPA (Power/Performance (Timing)/Area) is the most critical ones among them.
In order to monitor these metrics accurately and sign off effectively, analysis is a
conventional activity that every EDA system cannot get around. There are two ways
to do the analysis: measurement and estimation.

Measurement can only be carried out after the FPGA chip is configured and ready
to work. It is essentially a testing procedure that could achieve the most accurate
analysis results, at the price of extra efforts such as time-consuming full chip design,
manufacturing and external test instrumentation setups.

2.2 Device Model Classifications 33

Fig. 2.8 FPGA device configuration bit structure level (physical)

Fig. 2.9 FPGA device configuration bit correlation

Estimation, on the other hand, can be performed before the chip design is com-
plete or even at the very early design stage. Models are used to approximate the
result, which makes estimation a less costly and fairly efficient alternative to the
measurement solution.

For FPGA, there are estimations and measurements at different stages to ensure
the design objectives are met (Fig. 2.10). In terms of EDA part, we only discuss the
PPA models used by the estimation tasks here.

Metric models are software-based representation of the physical parameters in
the FPGA. There are different statuses for metric models in the FPGA design cycle:
advance, preliminary, and final. Advance models are typically available soon after the
device design specifications are frozen and may change as silicon characterization

34 2 Device (Chip Design) Modeling

Fig. 2.10 FPGA metric models during the development life cycle

data becomes available. Preliminary models are based on early production silicon
and all the units in the device are characterized. Final models correlate to production
devices with thousands of designs and are not expected to change. Besides, metric
models can be constructed at different abstract levels (such as transistor-level, switch-
level, gate-level, register transfer-level, high-level, etc.). Higher abstractions allow for
quicker estimations, but with reduced accuracy. For large-scale FPGAs, estimations
only at gate-level or lower could guarantee the sufficient accuracy, however, running
at bottom transistor-level will also make calculation time intolerable. The generation
of FPGA metric model is also a complicated process (Fig. 2.11) is a typical flow
from Intel.

Except for how these metric models are represented in the FPGA architecture
file, another important issue, which will be detailed in the following chapters—
[Part. III], is how these models are properly built. Among the best practices to build
these metric models, simulation/layout-based methods offer the best accuracy, while
equation-based methods trade it off with efficiency (thus mostly used during archi-
tecture exploration). The main problem with power/timing model for FPGAs is that
the power/timing depends on inputs and configuration bits which maintain circuit’s
behavior, temperature, process, voltage, etc.

1. Power Model
Power model is prerequisite for power analysis and power-aware EDA engines
[7].

a. Equation-based
In equation-based methods, power model is build by analytical calculations
via predefined equations [8, 9].

b. Simulation-based
In simulation-based methods, as its name suggests, power model is obtained
by simulations. The information in the model (including current and voltage
values, capacitance, etc.) is different depending on the abstraction level of
the simulator. SPICE is the most used transistor-level simulator [10].

2. Timing Model
Timing model is essential for timing analysis and timing-driven EDA engines.

a. Equation-based
In equation-based methods, the Elmore delay is the most frequently employed
during architecture exploration[11– 15].

2.2 Device Model Classifications 35

Fig. 2.11 Typical flow of FPGA metric models generation [6]

b. Simulation-based
In industry, circuit simulator is used to get the final timing metrics. The circuit
simulator (such as SPICE) extracts all electrical data, such as capacitance and
resistance, and all nonlinear and linear components, to determine the expected
delays.

3. Area Model
Just like ASIC design, chip area is a metric that must be concerned. Advanced
process nodes can shrink the area dramatically, more specific, parameters such

36 2 Device (Chip Design) Modeling

Fig. 2.12 Minimum-width transistor area model [16]

as the transistor size and the number of metal layers are taken into account to
estimate the chip area [16]. This estimation only occurs at chip design stage; once
the FPGA is manufactured, the end user cannot change the chip area; however,
they can still evaluate how many logic resources their design will utilize.

a. Equation-based
In equation-based methods, minimum-width transistor area model (MWTA)
is popular for academia. A minimum-width transistor is defined as the small-
est possible contactable transistor for a specific process technology and one
minimum-width transistor area is the area of this transistor plus the spacing
to neighboring transistors (Fig. 2.12).
For example, a 1.× (unit-sized) CMOS inverter consists of two minimum
width transistors (a PMOS pull-up, and NMOS pull-down). This model
ignores the differences between different semiconductor processes, which
could lead to a rough result [17].

b. Layout-based
In layout-based methods, FPGA chip area can be metered precisely by layout
EDA tools (such as Cadence Virtuoso).

2.2 Device Model Classifications 37

2.2.3 Guidance Class

Some application design in EDA engine has their dedicate device architecture depen-
dencies that cannot directly obtained from the chip design process. These special
device characteristics fall into the last class: guidance. Models of guidance class
only serve the application design process.

1. Packing/Placement Guidance Model
Except for device LRS, packing/placement guidance information is required for
the packing/placement engine. This information (such as which design units can
be packed together, placed together/at specific location, etc.) should be modeled
in advance.
Modern FPGA device units (tiles/sites, etc.) are designed to operate in vari-
ous modes, so as to provide best performance for different applications. Pack-
ing/placement engines will work out optimized solutions for each design unit to
accommodate in the proper device unit by choosing these modes wisely.

2. Routing Guidance Model
Except for device LRS, routing guidance information is required for the routing
engine. This information (such as logically equivalent of routing nodes and edges,
etc.) should be modeled in advance.

3. Bitstream Generation Guidance Model
The bitstream generation guidance model is the device architecture information
that a bitstream generator must concern. Programmable point (PP) is the most
important concept in this model. PP, usually controlled by one or several con-
figuration bits, is a programming unit in FPGA that could run a basic function
independently. Each PP can be programmed into several modes, and each possible
programming state is called a bitstream configuration mode of the PP.
In terms of resource type they belong, PPs can be divided into two categories:

a. Programmable Logic Point (PLP)
PLP represents the programming point within a logical unit resource, and its
bitstream configuration mode can be defined as a data pair: parameter and its
multi-option values.

b. Programmable Interconnect Point (PIP)
PIP represents the programming point of interconnect resources, and its bit-
stream configuration mode can also be defined as a data pair: output pin/wire
and its multi-option input pin/wire.

Configuration modes for a PP can be described in two ways:

a. Enumeration
When the configuration modes of a programming point are relatively few, and
the configuration value under each mode configuration is a certain value, its
configuration modes then can be listed by enumerating all the possibilities.

38 2 Device (Chip Design) Modeling

b. Formulation
When the configuration modes of a programming point are too many to be enu-
merated (such as the mask value of LUT, the duty cycle of PLL, each possible
value can be regarded as a configuration mode). Under this circumstances,
only one mode is listed, and the configuration value can be calculated by a
pre-defined formula.

2.3 Device Model Implementations

The previous section listed all the device model classes: primary class, metric class
and guidance class. In this section, we will present typical implementation practices
for each model at proper level (Table 2.2).

2.3.1 Logic Resource Structure Model

FPGA device LRS model includes device, core, package, and interconnect models.

1. Device

1. Device basic information
Device basic information includes: device name, family name, core name,
package name, speed grade, temperature grade, etc.
Implementation Example: (Fig. 2.13)

2. Core

a. Core information
Core information contains: core name, family name, the height/width of the
array, and the coordination of its internal tile-level resources. Tile/Site infor-
mation can be similar.
Implementation Example: (Fig. 2.14)

Table 2.2 Comparison of FPGA device model implementations

Model name Abstract level Reuse level Class

Logic resource structure Low Hybrid Primary

Configuration bit structure Machine Hybrid Primary

Power Low Family Metric

Timing Low Family Metric

Area Low Family Metric

Packing/placement guidance Low Family Guidance

Routing guidance Low Family Guidance

Bitstream generation guidance Low Family Guidance

2.3 Device Model Implementations 39

Fig. 2.13 Example of XML syntax for device basic information

Fig. 2.14 Example of XML syntax for core information

Fig. 2.15 Example of XML syntax for tile information

Fig. 2.16 Example of XML syntax for site information

b. Tile information
Tile is the sub-module of core.
Implementation Example: (Fig. 2.15)

c. Site information
Site is the sub-module of tile.
Implementation Example: (Fig. 2.16)

3. Package

a. Package information
Package information contains: package name, family name, the height/width
of the array, and the coordination and bank name of its pad resources.
Implementation Example: (Fig. 2.17)

40 2 Device (Chip Design) Modeling

Fig. 2.17 Example of XML syntax for package information

Fig. 2.18 Example of XML syntax for interconnect information
4. Interconnect

a. Wire/Switch information
Input and output information are essential for interconnects.
Implementation Example: (Fig. 2.18)

2.3.2 Configuration Bit Structure Model

FPGA device CBS model includes logical information, physical information, and
the correlation between them.

1. Logical CBS information
Logical CBS information contains: each memory port’s logical address.
Implementation Example (for a tile): (Fig. 2.19)

2. Physical CBS information
Physical CBS information contains: each memory port’s physical address.
Implementation Example: (Fig. 2.20)

3. CBS correlation information
CBS correlation information contains: each memory port’s logical–physical
address correlation.
Implementation Example (for a tile): (Fig. 2.21)

2.3 Device Model Implementations 41

Fig. 2.19 Example of XML syntax for logical CBS information of a tile

Fig. 2.20 Example of XML syntax for physical CBS information of a device

Fig. 2.21 Example of XML syntax for CBS correlation information of a tile

2.3.3 Power Model

Power model in the architecture description refers to the reference power character-
istics of each FPGA units.

Implementation example: VTR (Fig. 2.22)
The most basic representation specifies both the dynamic and static power of an

FPGA unit as absolute values (in Watts). This is done using the following construct:
Implementation example: Industrial

42 2 Device (Chip Design) Modeling

Fig. 2.22 Example of XML syntax for power information of a primitive

Fig. 2.23 Example of XML syntax for setup time model

Fig. 2.24 Example of XML syntax for hold time model

1. Liberty (.lib) [18]
The Liberty (LIB) format from Synopsys is an ASCII file that describes an FPGA
unit’s characterized data in a standard way. The Liberty model contains power
data such as leakage power, internal power, etc.

2.3.4 Performance (Timing) Model

Timing model in the architecture description refers to the reference delay character-
istics of each FPGA units.

Implementation example: VTR

1. Setup timing model (Fig. 2.23)
Attributes:
value—The setup time value.
port—The port name the setup constraint applies to.
clock—The port name of the clock the setup constraint is specified relative to.

2. Hold timing model (Fig. 2.24)
Attributes:
value—The hold time value.
port—The port name the setup constraint applies to.
clock—The port name of the clock the setup constraint is specified relative to.

3. Clock to Q timing model (Fig. 2.26)
Attributes:

2.3 Device Model Implementations 43

Fig. 2.25 Example of XML syntax for constant timing model

Fig. 2.26 Example of XML syntax for clock to Q time model

max—The maximum clock-to-Q delay value.
min—The minimum clock-to-Q delay value.
port—The port name the delay value applies to.
clock—The port name of the clock the clock-to-Q delay is specified relative to.

4. Constant timing model (Fig. 2.25)
Specifies a maximum and/or minimum delay from input port to output port. Note
that the path from input port to output port can be combinational or sequential.
Attributes:
max—The maximum delay value.
min—The minimum delay value.
in_port—The input port name.
out_port—The output port name.

Implementation example: Industrial

1. Liberty (.lib) [18]
The Liberty (LIB) format from Synopsys is an ASCII file that describes an FPGA
unit’s characterized data in a standard way. The Liberty model contains timing
data such as setup time, hold time, recovery time, removal time, etc.

2. Parasitics (.spef) [19]
Standard Parasitic Exchange Format (SPEF) is an IEEE standard for specifying
chip parasitics. Specifically, it defines the design parasitics of a set of nets as a
resistive-capacitive (RC) network, which will be used to calculate routing delay.

3. Standard Delay Format (.sdf) [20]
Standard Delay Format (SDF) is an IEEE specification to represent circuit delays.
The LIB only has the cell delays in a table form, and the SPEF file has the inter-
connect parasitics. SDF file combines these information and gives out accurate
delays for each component in the layout database, for the given constraints.

44 2 Device (Chip Design) Modeling

Fig. 2.27 Example of XML syntax for constant area model

Fig. 2.28 Example of XML syntax for packing/placement guidance model

2.3.5 Area Model

Area model in the architecture description refers to the reference area characteristics
of each FPGA units.

Implementation example: VTR
The default area used by each .1× 1 grid tile (in MWTAs) can be specified by

(Fig. 2.27), excluding routing. It can be used for an area estimate of the amount of
area taken by all the functional units.

2.3.6 Packing/Placement Guidance Model

Packing/placement guidance information contains: operation mode of all FPGA
device units (deciding how many kinds of design units can be placed in this device
unit).

Implementation Example: VTR (for a generic logic site) (Fig. 2.28)
A Generic Logic Site (GLS) often contains numbers of LUTs and FFs. The LUT

can be fracturable, so it can be operate as either a big LUT or two smaller LUTs with
shared inputs.

2.3 Device Model Implementations 45

Fig. 2.29 Example of XML syntax for routing guidance model

Fig. 2.30 Example of XML syntax for enumeration type bitstream generation guidance model of
a 4-input MUX

2.3.7 Routing Guidance Model

Routing guidance information contains: logically equivalent of RRG nodes and
edges. For example, an AND gate has logically equivalent inputs because you can
swap the order of the inputs and it’s still correct; an adder, on the other hand, is
not logically equivalent because if you swap the MSB with the LSB, the results are
completely wrong. LUTs are also considered logically equivalent since the logic
function (LUT mask) can be rotated to account for pin swapping.

Implementation Example: VTR (for a generic logic tile) (Fig. 2.29)

2.3.8 Bitstream Generation Guidance Model

Bitstream generation guidance information contains: configuration mode of all pro-
grammable points.

1. Enumeration
Implementation Example: (Fig. 2.30)

2. Formulation
Implementation Example: (Fig. 2.31)

46 2 Device (Chip Design) Modeling

Fig. 2.31 Example of XML syntax for formulation type bitstream generation guidance model of a
4-input LUT

References

1. Wikipedia, Natural language (2022). https://en.wikipedia.org/wiki/Natural_language
2. Wikipedia, High level language (2022). https://en.wikipedia.org/wiki/High-level_

programming_language
3. Wikipedia, Assembly language (2022). https://en.wikipedia.org/wiki/Assembly_language
4. Wikipedia, Machine code (2022). https://en.wikipedia.org/wiki/Machine_code
5. C.C. Aggarwal, Machine Learning for Text (The Name of the Publisher, 2018)
6. Intel, Guaranteeing silicon performance with FPGA timing models. https://cdrdv2-public.intel.

com/650314/wp-01139-timing-model.pdf
7. Y. Nasser, J. Lorandel, J.-C. Prévotet, M. Hélard, Rtl to transistor level power modeling and

estimation techniques for FPGA and ASIC: a survey. IEEE Trans. Comput.-Aided Des. Integr.
Circ. Syst. 40(3), 479–493 (2021)

8. K.K.W. Poon, S.J.E. Wilton, A. Yan, A detailed power model for field-programmable gate
arrays. ACM Trans. Des. Autom. Electron. Syst. 10(2), 279–302 (2005). Available https://doi.
org/10.1145/1059876.1059881

9. F. Li, Y. Lin, L. He, D. Chen, J. Cong, Power modeling and characteristics of field programmable
gate arrays. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 24(11), 1712–1724 (2005)

10. X. Tang, E. Giacomin, G.D. Micheli, P.-E. Gaillardon, FPGA-spice: a simulation-based archi-
tecture evaluation framework for FPGAs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
27(3), 637–650 (2019)

11. E. Hung, S.J.E. Wilton, H. Yu, T.C.P. Chau, P.H.W. Leong, A detailed delay path model for
FPGAs, in 2009 International Conference on Field-Programmable Technology (2009), pp.
96–103

12. Q. Liu, H. Qian, Fast and accurate circuit delay model for FPGA architectural exploration. IET
Comput. Digital Tech. 11, 12 (2016)

13. J. Lu, N. Xu, J. Yu, T. Weng, Research on cell timing modeling based on FPGA cell configu-
rations, in 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and
Automation Control Conference (IMCEC) (2018) pp. 2408–2413

14. Z.-J. Qi, Q. Duan, L.-R. Hu, X.-X. Tao, J. Wang, M. Yang, J.-M. Lai, Timing model for
GRM FPGA based routing, in 2018 14th IEEE International Conference on Solid-State and
Integrated Circuit Technology (ICSICT) (2018), pp. 1–3

15. P. Maidee, C. Neely, A. Kaviani, C. Lavin, An open-source lightweight timing model for
RapidWright. 12 171–178 (2019)

16. M. Al-Qawasmi, A.G. Ye, An investigation of the accuracy of the VPR and COFFE area models
in predicting the layout area of FPGA lookup tables, in 2020 SoutheastCon (2020), pp. 1–9

https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://doi.org/10.1145/1059876.1059881
https://doi.org/10.1145/1059876.1059881
https://doi.org/10.1145/1059876.1059881
https://doi.org/10.1145/1059876.1059881
https://doi.org/10.1145/1059876.1059881
https://doi.org/10.1145/1059876.1059881
https://doi.org/10.1145/1059876.1059881

References 47

17. Y. Pang, J. Xu, Z. Lu, Z. Li, Y. Zhang, J. Lai, Research on area modeling methodology for
FPGA interconnect circuits, in 2019 IEEE 13th International Conference on ASIC (ASICON)
(2019), pp. 1–4

18. Synopsys, Liberty user guides and reference manual suite version 2017.06. https://www.
academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_
2017_0620200514_69980_1frn721

19. IEEE standard for integrated circuit (IC) delay and power calculation system, in IEEE Std.
1481-1999 (2000), pp. 1–400

20. IEEE standard for standard delay format (SDF) for the electronic design process, in IEEE Std.
1497-2001 (2001), pp. 1–80

https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721
https://www.academia.edu/43052430/Liberty_User_Guides_and_Reference_Manual_Suite_Version_2017_0620200514_69980_1frn721

Chapter 3
Design (Application Design) Modeling

Abstract Application design is the bridge between end user’s idea and FPGA’s
functional units. Modeling it will build up application design data structure—the
ballast stone of any EDA engine in this stage. This chapter dives into the principles
and implementations of FPGA design (application design) modeling, showing that
how these models are classified and described.

3.1 Design Description Levels

3.1.1 Abstract Levels

FPGA application design’s abstract levels are quite similar to CPU’s: natural level
[1], high level [2], low level [3], machine level [4] and physical level (Fig. 3.1).

In the field of CPU (scalar computing) application design, machine language is
a series of instruction sequences composed of “0” and “1”, directly interacting with
the hardware at the bottom layer (for FPGA application design, the binary bitstream
system); assembly language use abbreviated identifiers in its instructions to operate
on the hardware (for FPGA application design, hardware description language is
widely used to describe hardware circuits, requiring developers to have a consider-
able degree of low-level hardware knowledge); high-level language is more or less
independent to a particular type of computing architecture and has already been the
first choice for most computer programmers (for FPGA application design, it is also
getting more and more commonly used); natural language is the way of communi-
cation between humans and considered to be the ultimate way to communicate with
computing engines; there has been lots of research works in processing it (for FPGA
application design, there is still a long way to go).

Just like chip design models (Sect. 2.1), application design models can also be
theoretically described at similar abstract levels (Fig. 3.2). Related formats and stan-
dards have been intensively studied in this field to improve the design productivity.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_3&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3

50 3 Design (Application Design) Modeling

Fig. 3.1 Abstract levels of application design

Fig. 3.2 FPGA design description abstract levels

1. Machine-Level Description
The machine-level description of an application design refers to the expression of
the bitstream (generally in binary), which directly controls the hardware behav-
ior of the FPGA. Similar to device models, the “logical” description presents
the correlation between every programmable bits in the bitstream and hardware
resources (such as the FASM format file [5]); the “physical” description then is the
final value of each configuration bits in a physical order determined by the con-
figuration protocols (such as AMD’s BIT format file and Intel’s SOF format file).

3.1 Design Description Levels 51

2. Low-Level Description
Identical to device models, three sub-levels are shown here:
At “vanilla” level, traditional hardware description (such as Verilog, VHDL, or
Schematics) is widely used to build the design model.
At “higher” level, design descriptions with higher abstraction (such as Scala HDL,
Python HDL, Haskell HDL, XLS HDL) could be a powerful complement to
traditional descriptions.
At “lower” level, more detailed hardware descriptions (such as AMD-XDL, Intel-
VQM, BLIF, EDIF) is used to specify lower units in the FPGA design.

3. High-Level Description
The high-level description for FPGA application design refers to software-
oriented languages (such as C/C++, OpenCL, SystemC, DPC++).
Inspired by the Open Computing Language (OpenCL) programming for heteroge-
neous systems, Intel has defined the Data Parallel C++ (DPC++) design language
as its cross-architecture (CPU, GPU, FPGA) programming.

4. Natural-Level Description
The automatic conversion of natural language into a language that FPGA can
“understand” is also the future research direction of the academic community.

Fig. 3.3 FPGA design description reuse levels

52 3 Design (Application Design) Modeling

3.1.2 Reuse Levels

From application design perspective, IP-based design methodology is the mainstream
way of increasing reusability. IP (both soft ones and hard ones embedded in the
FPGA) is generally family shared, which means it can be called when using any
device under the supported families (Fig. 3.3). In modern FPGA application design
EDA tools, IP integrator is an standard function that will not be absent, enabling
users to get fast access to these predefined units.

3.2 Design Model Classifications

Similar to device (chip design) information, the design (application design) infor-
mation of an FPGA can also be organized in classes: primary class, constraint class
and report class. The “design checkpoint”, built from these models, contains all the
EDA information related to the application design.

The primary information is the torso of the design, the constraint information is
set to direct the working strategy of EDA engines, then the report information shows
the concerned metrics, helping designers to better analyze the current situation. If the
reported results are not satisfactory, the design will be modified and then recurrently
approaches the optimized goal.

3.2.1 Primary Class

Identical to device models, the primary models of application design EDA also
include logical resource structure model and configuration bit structure model. Never-
theless, the substantial contents of them are quite different from the previous chapter.
Again, the same with device models, we introduce design primary models at low
abstract level (Fig. 3.1) for the same reason.

1. Logical Resource Structure (LRS) Model
The LRS of an FPGA application design is usually presented by netlist—a term
that describes the components and connectivity of the design. A simplified hier-
archy of the design logic resource model is shown in (Fig. 3.4).
The design core logic resources in the netlist can be divided into clusters(will
accommodate in tiles in the device logic resources), each cluster is composed
of molecules(will accommodate in sites in the device logic resources), and each
molecule is composed of atoms(will accommodate in primitives in the device
logic resource). Similarly, atom is also composed of gate-level units.
The design interconnect logic resources in the netlist is composed of nets, and
a net represents the connections between FPGA units (the edges of the netlist

3.2 Design Model Classifications 53

Fig. 3.4 FPGA design logical resource structure level

Fig. 3.5 FPGA application design netlist example

hyper-graph). Each net has a single driver pin, and a set of sink pins (will accom-
modate in wires/switches in the device logic resource).
The design IO will accordingly accommodate in Pad units in the device logic
resource.
Take (Fig. 3.5) as an example, there are 12 atoms(1 LUT, 1 MUX, 8 inputs and 2
outputs) and 10 nets joining them altogether.

2. Configuration Bit Structure (CBS) Model
The CBS of an FPGA application design can also be defined from two perspec-
tives: logical and physical.
Logical bit structure collects every active configuration bit’s “logical address” of
the design, that is, which logic resource it belongs to (Fig. 3.6).

54 3 Design (Application Design) Modeling

Fig. 3.6 FPGA design configuration bit structure level (logical)

Fig. 3.7 FPGA design configuration bit structure level (physical)

Physical bit structure collects every active configuration bit’s “physical address”,
that is, which position it lies in the final bitstream according to the programming
protocol (Fig. 3.7).
After the logical and physical structure are properly identified, the configuration
data can be outputted as the desired bitstream format (Fig. 3.8).

3.2.2 Constraint Class

FPGA application design constraints work at specific stage of the design flow, for
example, routing constraints are used during the routing stage. Over-constraining or
under-constraining the design both may cause sign-off difficulties.

3.2 Design Model Classifications 55

Fig. 3.8 FPGA design configuration bit correlation

TCL (Tool Command Language), pronounced “tickle”, is an easy-to-learn script-
ing language and can run by scripts from either the Windows or Linux command-line.
The language is easily extended with new function calls and has been expanded to
support new tools and technology since its inception and adoption in the early 1990s.
It has been adopted as the standard application programming interface, or API, among
most EDA vendors to control and extend their applications.

Most of the FPGA vendors have adopted TCL as the design constraint format for
their application EDA tools, as it is easily mastered by designers who are familiar
with this industry standard language. The TCL interpreter inside the tool provides
the full power and flexibility of TCL to control the flow or set the constraints.

Modern FPGA application design constraints have the following properties:

1. Inherit from industry standard SDC (Synopsys Design Constraint) commands and
have its own expansions.

2. They are not simple strings, but are commands that follow the TCL semantic.
3. They can be interpreted like any other TCL command by the TCL interpreter.
4. They are read in and parsed sequentially the same as other TCL commands.

3.2.3 Report Class

Based on the objective (or EDA process) it addressed, the design reports can be
divided into many categories: high-level synthesis report, logic synthesis report,
physical implementation (packing/placement/routing...) report, analysis
(timing/power/resource...) report, bitstream configuration (generation/download)
report, and so on.

56 3 Design (Application Design) Modeling

Fig. 3.9 FPGA application design report helps designers to sign-off properly

Design report offers information in human readable format from a specific per-
spective to help designers focus on the metrics they concern, if any sign-off require-
ment is not met, iterative modifications can be done until getting the proper solution
(Fig. 3.9).

3.3 Design Model Implementations

The previous section listed all the design model classes: primary class, constraint
class, and report class. In this section, we will present typical implementation prac-
tices of each model (Table 3.1).

3.3.1 Logic Resource Structure Model

In FPGA application design flow, the design netlist carries different information at
different EDA stages. At logic synthesis stage, elaboration process turn the design

3.3 Design Model Implementations 57

Table 3.1 Comparison of FPGA design model implementations

Model name Abstract level Reuse level Class

Logic Resource Structure High/Low Design Primary

Configuration Bit Structure Machine Design Primary

Constraint High/Low Design Constraint

Report High/Low Design Report

Table 3.2 FPGA application design netlist formats and the EDA information they could carry
(. a is closed source)

Format Generic netlist Synthesized
netlist

Implemented
netlist

Adopter

RTLIL Yes / / Yosys

BLIF Yes Yes / Academia

GTECH.a Yes / / Synplify

EDIF Yes Yes / Industry

VQM / Yes / Quartus

XDL / Yes Yes ISE

XDEF.a / Yes Yes Vivado

VPR-Verilog / / Yes VPR

F4PGA-JASON / Yes Yes NextPnR

into gate-level representation (Generic Netlist), mapping process turn the design into
atom-level representation (Synthesized Netlist); at physical implementation stage,
cluster-level representation (Implemented Netlist) is generated.

There is no universal FPGA netlist format that can be used throughout the whole
EDA process by the time this book is written, however, (Table 3.2) still listed the
most popular legacy netlist formats and the EDA stages they could go through.

Implementation example: BLIF [6]
Berkeley Logic Interchange Format (BLIF) aimed to describe a logic-level hier-

archical circuit in textual form.
Implementation example: EDIF [7]
Electronic Design Interchange Format (EDIF) is a format that could capture all

features of circuit design. It has been accepted as a communications medium to
manufacturing equipment and an interchange format between EDA systems.

Implementation example: Intel/Altera VQM [8]
Verilog Quartus Mapping (VQM) is the Intel/Altera version text file that contains

a atom-level netlist. VQM files are typically generated by Intel/Altera Quartus.
Implementation example: AMD/Xilinx XDL [9, 10]
Xilinx Design Language (XDL) is the AMD/Xilinx version text file that repre-

sents a design netlist after mapping to the FPGA primitives. XDL files are typically
generated by AMD/Xilinx ISE.

58 3 Design (Application Design) Modeling

Table 3.3 SDC Syntax

Command Supported arguments

Mostly [Verb]_[Noun] Object / [-argument object]

Fig. 3.10 Example XML syntax for post-synthesis design report

3.3.2 Configuration Bit Structure Model

1. Logical CBS information
Implementation example: VTR-FASM [11]
FPGA Assembly (FASM) is a textual representation of a bitstream. By assigning
a symbolic name to each configurable thing in the FPGA, the resulting FASM file
shows what features are specifically configured “on”. These files provide an easy
way to write programs that manipulate bitstreams. Modifying a textual FASM file
is far easier than trying to modify a binary bitstream.

2. Physical CBS information
Implementation example: AMD/Xilinx-BIT [12, 13]
BIT files are AMD/Xilinx FPGA configuration files containing configuration
information. In this file, each four bytes is a packet (analogous to CPU instruction).
The packet could be a special header, or only carrying normal data. The header
packet follows a simple assembly-like instruction set to dictate the configuration
process.

3.3.3 Constraint Model

Synopsys’s design constraint model (SDC) (Table 3.3) is the heart of all modern
FPGA application design constraint models.

Implementation example: xDC (“x” represents the vendor)
FPGA vendors usually extend their constraint syntax based on SDC (because

SDC cannot cover some FPGA specific syntax, such as physical constraints).

3.3 Design Model Implementations 59

Fig. 3.11 Example XML syntax for packing report

Fig. 3.12 Example XML syntax for placement report

Fig. 3.13 Example XML syntax for routing report

Universal FPGA constraint syntax still needs time to be standardized across ven-
dors.

3.3.4 Report Model

Each FPGA vendor or academic organization has its own reporting style. Universal
FPGA report syntax still needs time to emerge.

60 3 Design (Application Design) Modeling

Fig. 3.14 Example XML syntax for power report

Fig. 3.15 Example XML syntax for timing report

1. Post-synthesis report
Implementation example: (Fig. 3.10)

2. Post-implementation report
Implementation example: (Figs. 3.11, 3.12 and 3.13)

3. Power report
Implementation example: (Fig. 3.14)

4. Timing report
Implementation example: (Fig. 3.15)

References

1. Wikipedia, Natural language (2022). https://en.wikipedia.org/wiki/Natural_language
2. Wikipedia, High level language (2022). https://en.wikipedia.org/wiki/High-level_

programming_language
3. Wikipedia, Assembly language. (2022) https://en.wikipedia.org/wiki/Assembly_language
4. Wikipedia, Machine code (2022). https://en.wikipedia.org/wiki/Machine_code
5. F4PGA, FPGA assembly (FASM) (2021). https://fasm.readthedocs.io/en/latest/
6. U. of California Berkeley, Berkeley logic interchange format (1992). https://people.eecs.

berkeley.edu/~alanmi/publications/other/blif.pdf
7. H.J. Kahn, R.F. Goldman, The electronic design interchange format EDIF: present and future,

in Proceedings of the 29th ACM/IEEE Design Automation Conference, Series DAC ’92 (IEEE
Computer Society Press, Washington, DC, USA, 1992), pp. 666–671

8. A. QUIP, VQM extractor and language functional description (2005)

https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf

References 61

9. C. Beckhoff, D. Koch, J. Torresen, The Xilinx design language (XDL): tutorial and use cases,
in 6th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC) (2011), pp. 1–8

10. B.J.P. Tomas, Xilinx design language (2012). http://www.ee.unlv.edu/~selvaraj/ecg707/
lecture/XilinxDesignLanguage.pdf

11. B.J.P. Tomas, FPGA assembly (FASM). https://fasm.readthedocs.io/en/latest/
12. AMD/Xilinx, Xilinx bit bitstream files. http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
13. Y. Shan, FPGA bitstream explained. http://lastweek.io/fpga/bitstream/

http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://lastweek.io/fpga/bitstream/
http://lastweek.io/fpga/bitstream/
http://lastweek.io/fpga/bitstream/
http://lastweek.io/fpga/bitstream/
http://lastweek.io/fpga/bitstream/

Part III
FPGA Metric Analysis

Chapter 4
Power Analysis

Abstract Power dissipation has become one of the top concern in the development
of new integrated circuits. In this chapter, power analysis techniques for FPGA are
introduced. The power consumption of an FPGA depends on both chip design and
application design, and as the capacities of FPGAs continue to grow, the challenge
of power efficiency will only increase.

4.1 Overview

For any electronic device, power is an eternal topic that must be faced. In most
cases, FPGA consumes much more power than their ASIC counterparts because
extra resources are utilized to ensure its programmability [1].

Figure 4.1 gives the composition of power dissipation of general CMOS circuits,
and it is also suitable for FPGAs.

Accordingly, the total power usage of an FPGA device (.PTotal) can be broken
down as Eq. 4.1.

.PTotal = PStatic + PDynamic = Pswitching + Pshort-circuit + Pleakage (4.1)

FPGA static power is the transistor leakage power (pleakage) when the device is
powered and and configured. It is proportional to the static current—the current that
flows regardless of gate switching (transistor is ON “biased” or OFF “unbiased”).
As technology advances, this power is becoming non negligible due to the shrinking
of transistors’ size as well as the thickness of the oxides.

FPGA dynamic power is the additional power consumption caused by application
design’s signal activities. Switching power (.Pswitching) is dissipated when charging
or discharging internal and net capacitance, short-circuit power (.Pshort-circuit) is the
power dissipated by an instantaneous short-circuit connection between the supply
voltage and the ground at the time the gate switches state.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_4&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4
https://doi.org/10.1007/978-981-99-7755-0_4

66 4 Power Analysis

Fig. 4.1 Power dissipation type of CMOS circuits

Fig. 4.2 Power dissipation of some classic FPGAs. Source Microchip/Microsemi

Researchers have investigated the power dissipation for each part of an FPGA
[2, 3], and apart from academia, power distribution is also one of the top concerns
in industry (Fig. 4.2).

Power analysis engines use basic theories (Eqs. 4.2–4.4) to calculate the power
consumption for every FPGA unit and add them up together to get the final result.
Power analysis engines can run at different abstract levels (introduced in Sect. 3.1.1),
such as high level [4– 6],

.Pswitching = α · C · V 2
dd · f (4.2)

where . α = switching activity factor, C = the effective capacitance, .Vdd = the supply
voltage, and f = switching frequency.

4.1 Overview 67

Fig. 4.3 Typical inputs and outputs in power analysis flow

.Pshort-circuit = Isc · Vdd · f (4.3)

where .Isc = the short-circuit current during switching, .Vdd = the supply voltage and
f = switching frequency.

.Pleakage = Vdd · Ileakage (4.4)

where .Vdd = the supply voltage, .Ileakage = the leakage current.
As Fig. 4.3 illustrates, the target design checkpoint (containing signal activities and

operation condition constraints) and device library (containing power models) are the
main inputs that a power analysis engine generally needs. Most FPGA companies
provide power spreadsheets for their customers to estimate power dissipation for
particular devices [7, 8]. Instead of design checkpoint and device library previously
mentioned, these manual spreadsheets basically covered all the information that a
power estimator needs and could be very useful at the early stage of the design. The
final output is a power report showing the power details of FPGA.

Given that device power model has been discussed in Sect. 2.2.2, design oper-
ation conditions (such as temperature, voltage, process) can be easily obtained by
constraints, the remaining pillar of the engine—signal activities—is coming under
the spotlight.

Different techniques can be applied to get signal activities in an FPGA [9]—
simulation-based and probabilistic-based. Simulation-based techniques are used by
most of the EDA tools due to their precision and generosity [10, 11]. They simulate
the target design for a predetermined operation condition by applying data stimuli to
the inputs. Sometimes, these input patterns can be randomly generated and simulation
results are calculated statistically until a desired precision is achieved [12– 15]. On
the other hand, probabilistic-based techniques use input characteristics instead of
the real input vectors. They generally rely on the static probability and the transition
probability of each signal [2, 16, 17].

68 4 Power Analysis

4.2 Power Analysis Techniques

Both dynamic and static power estimations are dependent on the behavior of the appli-
cation design. These designs usually do not fully utilize the available programmable
resources in the FPGA. The dynamic power will vary according to the resource
utilization and algorithmic function of the application design.

The QoR (quality of results) of power analysis is strongly influenced by the quality
of the signal activity data.

1. Simulation-based
For simulation-based techniques, it often performs at lower level of the circuit
design and results in better accuracy. One of the most popular simulation tools
is at transistor level—Simulation Program with IC Emphasis (SPICE).
The general analysis technique can be summarized as follows [18]:

a. Run logic simulation with a set of input vectors.
b. Monitor the switching activity of each unit (depends on the simulation

level), then calculate the dynamic and static power using equations (e.g.,
Eqs. 4.2–4.4).

c. Determine the total power dissipation by summing the dynamic and static
power obtained in previous step.

Simulation-based technique is widely used in industry. Both AMD and Intel’s
FPGA power tools calculate signal activities from dedicated simulation output
files, such as Value Change Dump(VCD) or Switching Activity Interchange
Format (SAIF). There is a great deal of information present in VCD waveform
files, and this can be reduced to a smaller dataset for average power estimation
and for power optimization. The SAIF file format is used for this purpose.

a. VCD
VCD file contains value changes of signals, for example, at what times
signals changes their values. VCD format is part of the IEEE standard for
Verilog (discussed starting on page 325) [19].

b. SAIF
SAIF file contains toggle counts and time information like how much time
a signal was in 1 state, 0 state, or x state.

VCD file can be converted into SAIF file using Synopsys vcd2saif tool, because
effectively VCD file is a superset of SAIF file. Power estimation with time stamps
of individual value changes must use VCD file. If you have a VCD file which
is simulated between 0 and 10ns, then you can do power analysis for any time
range between 0 and 10ns, for example, power for 2-5ns, 3-7ns...but for SAIF
file, you can not do the same thing. You have to regenerate SAIF files for these
time intervals.

2. Probabilistic-based
For probabilistic-based techniques, the behavior of the inputs can be character-
ized by parameters:

4.2 Power Analysis Techniques 69

Fig. 4.4 Examples of signals represented static probabilities and transition densities

a. The static probability,.Pl .Pl is the long-term probability that a signal is logic
high. For example, a clock signal with a 50% duty cycle will have..Pl(clk) =
0.5.

b. The transition density, .Td .Td is the average number of times the signal will
switch during each clock cycle. For example, a clock signal with a 50% duty
cycle will have .Td(clk) = 2.0.

Figure 4.4 shows examples of how these parameters are defined.
After these parameters are known for all FPGA units, power estimation can then

do the calculation. For example, dynamic power is directly proportional to .As, and
static power is dependent on . Pl.

3. Simulation/Probabilistic hybrid
There are many academic exploration in simulation/probabilistic hybrid meth-
ods. ACE-2.0 algorithm [20] is the representative one, and it uses both simulation
and static analyses to determine the parameters (. Pl, .As) that probabilistic-based
techniques would use.

70 4 Power Analysis

4.3 Summary and Trends

In this section, we dived into the composition of power consumption of FPGA
and analyzed each component in theory. Except for power-related information in
FPGA device model, signal activities derived from FPGA design model/checkpoint
is another important data source for power estimation.

Simulation-based (vector dependent) and probabilistic-based (vector indepen-
dent) techniques are the most popular approaches to achieve signal activities. How-
ever, pros and cons of these two methods are obvious: simulation-based techniques
have high accuracy and generality but consumes more time and memory resources,
whilst probabilistic-based techniques are quite opposite—better time efficiency but
less accuracy. To trade off estimation speed and accuracy, a hybrid of the two tech-
niques is the way relatively easy to think of.

With the increasing complexity of FPGA designs and the need for low-power
designs, several trends have emerged in FPGA power analysis:

1. Power analysis using AI (machine learning)
Machine learning techniques are being used to optimize the power consumption
of FPGA designs. These techniques analyze the design and provide recommen-
dations to optimize the power consumption.

2. Power analysis at higher levels of abstraction
Power analysis is being performed at higher levels of abstraction such as system-
level and behavioral level. This approach enables early power estimation and
optimization, reducing the overall design time.

3. Power analysis for heterogeneous architectures
FPGA designs are increasingly using heterogeneous architectures such as CPU-
FPGA, GPU-FPGA, and ASIC-FPGA. Power analysis for these architectures is
challenging and requires the development of new power analysis techniques.

4. Power analysis for security
Power analysis is being used for security purposes such as side-channel analysis
and fault injection analysis. These techniques analyze the power consumption
of the FPGA to detect security vulnerabilities.

References

1. I. Kuon J. Rose, Measuring the gap between FPGAs and ASICs, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2 (2007), pp. 203–215

2. T. Osmulski, J.T. Muehring, B. Veale, J.M. West, H. Li, S. Vanichayobon, S.-H. Ko, J.K.
Antonio, S.K. Dhall, A probabilistic power prediction tool for the Xilinx 4000-series FPGA,
in Parallel and Distributed Processing, ed. by J. Rolim (Springer, Berlin, Heidelberg, 2000),
pp. 776–783

3. L. Shang, A.S. Kaviani, K. Bathala, Dynamic power consumption in Virtex.TM-II FPGA
family, in Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-
Programmable Gate Arrays, series FPGA ’02 (Association for Computing Machinery, New
York, NY, USA, 2002), pp. 157–164. Available https://doi.org/10.1145/503048.503072

https://doi.org/10.1145/503048.503072
https://doi.org/10.1145/503048.503072
https://doi.org/10.1145/503048.503072
https://doi.org/10.1145/503048.503072
https://doi.org/10.1145/503048.503072
https://doi.org/10.1145/503048.503072
https://doi.org/10.1145/503048.503072

References 71

4. D. Chen, J. Cong, Y. Fan, Z. Zhang, High-level power estimation and low-power design space
exploration for FPGAs, in 2007 Asia and South Pacific Design Automation Conference (2007),
pp. 529–534

5. Z. Lin, Z. Yuan, J. Zhao, W. Zhang, H. Wang, Y. Tian, PowerGear: early-stage power estimation
in FPGA HLS via heterogeneous edge-centric GNNs, in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE) (2022), pp. 1341–1346

6. Z. Lin, T. Liang, J. Zhao, S. Sinha, W. Zhang, Hl-pow: learning-assisted pre-RTL power
modeling and optimization for FPGA HLS. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 1–1 (2023)

7. Intel, Early power estimator user guide (2021). https://www.intel.com/programmable/
technical-pdfs/683272.pdf

8. Xilinx, Xilinx power estimator user guide (2022). https://www.xilinx.com/support/documents/
sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf

9. J.B. Goeders, S.J.E. Wilton, VersaPower: Power estimation for diverse FPGA architectures, in
2012 International Conference on Field-Programmable Technology (2012), pp. 229–234

10. X. Tang, P.-E. Gaillardon, G. De Micheli, FPGA-spice: a simulation-based power estimation
framework for FPGAs, in 2015 33rd IEEE International Conference on Computer Design
(ICCD), (2015), pp. 696–703

11. S. Seeley, V. Sankaranaryanan, Z. Deveau, P. Patros, K.B. Kent, Simulation-based circuit-
activity estimation for FPGAs containing hard blocks, in 2017 International Symposium on
Rapid System Prototyping (RSP) (2017), pp. 36–42

12. N. Burch, Yang, Trick, McPOWER: a Monte Carlo approach to power estimation, in 1992
IEEE/ACM International Conference on Computer-Aided Design (1992), pp. 90–97

13. E. Todorovich, E. Boemo, F. Angarita, J. Vails, Statistical power estimation for FPGAs, in
International Conference on Field Programmable Logic and Applications, 2005 (2005), pp.
515–518

14. Y.A. Durrani, T. Riesgo, Efficient power analysis approach and its application to system-
on-chip design, Microprocess. Microsyst. 46(PA):11–20 (2016). Available https://doi.org/10.
1016/j.micpro.2016.09.003

15. G. Verma, C. Dabas, A. Goel, M. Kumar, V. Khare, Clustering based power optimization of
digital circuits for FPGAs, J. Inf. Optim. Sci. 38(6), 1029–1037 (2017)

16. F. Najm, A survey of power estimation techniques in VLSI circuits, IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2(4), 446–455 (1994)

17. S. Garg, S. Tata, R. Arunachalam, Static transition probability analysis under uncertainty, in
IEEE International Conference on Computer Design: VLSI in Computers and Processors,
2004. ICCD 2004. Proceedings (2004), pp. 380–386

18. G. K. Yeap, Practical Low Power Digital VLSI Design (Kluwer Academic Publishers, USA,
1998)

19. IEEE standard for Verilog hardware description language, in IEEE Std. 1364-2005 (Revision
of IEEE Std. 1364-2001) (2006), pp. 1–590

20. J. Lamoureux, S.J. Wilton, Activity estimation for field-programmable gate arrays, in 2006
International Conference on Field Programmable Logic and Applications (2006), pp. 1–8

https://www.intel.com/programmable/technical-pdfs/683272.pdf
https://www.intel.com/programmable/technical-pdfs/683272.pdf
https://www.intel.com/programmable/technical-pdfs/683272.pdf
https://www.intel.com/programmable/technical-pdfs/683272.pdf
https://www.intel.com/programmable/technical-pdfs/683272.pdf
https://www.intel.com/programmable/technical-pdfs/683272.pdf
https://www.intel.com/programmable/technical-pdfs/683272.pdf
https://www.intel.com/programmable/technical-pdfs/683272.pdf
https://www.intel.com/programmable/technical-pdfs/683272.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug440-xilinx-power-estimator.pdf
https://doi.org/10.1016/j.micpro.2016.09.003
https://doi.org/10.1016/j.micpro.2016.09.003
https://doi.org/10.1016/j.micpro.2016.09.003
https://doi.org/10.1016/j.micpro.2016.09.003
https://doi.org/10.1016/j.micpro.2016.09.003
https://doi.org/10.1016/j.micpro.2016.09.003
https://doi.org/10.1016/j.micpro.2016.09.003
https://doi.org/10.1016/j.micpro.2016.09.003
https://doi.org/10.1016/j.micpro.2016.09.003
https://doi.org/10.1016/j.micpro.2016.09.003

Chapter 5
Performance (Timing) Analysis

Abstract Timing analysis can be static or dynamic. Dynamic timing analysis (DTA)
verifies functionality of the design by applying input vectors and checking for correct
output vectors whereas static timing analysis (STA) checks static delay requirements
of the circuit without any input or output vectors. In this chapter, STA techniques
is focused since it is widely used in FPGA design flow to make sure the timing
requirements are met.

5.1 Overview

Dynamic timing analysis (DTA), also known as simulation-based timing analysis
technique, is complicated for even small FPGAs because of huge number of input
vectors and unbearable long simulation time, while static timing analysis (STA),
which could analyze a design in a very short time, is then thriving. As a mainstay of
modern FPGA design flows, STA breaks a design down into timing paths, calculates
the signal propagation delay along each path, and checks for violations of timing
constraints inside the design and at the input/output interface. STA also has been
integrated with timing-driven EDA engines to optimize FPGA’s timing performance.

The target design checkpoint (containing timing constraints and timing graph) and
device library (containing timing models) are the main inputs that a timing analysis
engine needs. The final output is the timing report (Fig. 5.1).

Standard Delay Format (SDF) is another optional output of timing engine. SDF is
an IEEE standard for the representation and interpretation of timing data (both cell
delays and interconnect delays) for use at any stage of the electronic design process
[1]. This can be used along with the netlist in a simulator to verify that design meets
its functional and timing requirements.

Given that device timing model has been discussed in Sect. 2.2.2, timing con-
straints has been discussed in Sect. 3.2.2, another main input–timing graph, derived
from target design checkpoint, will be introduced in the following section.

Before we dive into the timing calculation algorithms, here are some basic con-
cepts about STA. Figure 5.2 is the most common used picture to illustrate this.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_5&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5

74 5 Performance (Timing) Analysis

Fig. 5.1 Typical inputs and outputs in timing analysis flow

Fig. 5.2 Typical setup/hold timing analysis

Equations 5.1 and 5.2 can accurately represents the calculations of setup time
slack (.Slacksetup) and hold time slack (.Slackhold).

.Slacksetup = Tperiod − (Tcq + Tlogic + Tnet + Tsetup − Tclkskew) (5.1)

.Slackhold = Tcq + Tlogic + Tnet − Thold − Tclkskew) (5.2)

where .Tperiod is clock period, .Tcq is defined as time it takes for data to appear on
output Q once clock is triggered (pos edge or neg edge), .Tlogic is the delay of the
combinational logic, .Tnet is the delay of the routing net, .Tclkskew is the time difference
between the clock arriving time at the two flip-flops.

To simplify the equation, .Tnet and .Tclkskew can be ignored. In order to make sure
that .Slacksetup and .Slackhold are positive, we can derive Eqs. 5.3 and 5.4 (plus . Tsetup
on both sides) from Eqs. 5.1 and 5.2.

.Tperiod > Tcq + Tlogic + Tsetup (5.3)

5.2 Timing Analysis Techniques 75

.Tcq + Tlogic + Tsetup > Thold + Tsetup (5.4)

Combine Eqs. 5.1 and 5.2, we can have Eq. 5.5.

.Thold + Tsetup < Tcq + Tlogic + Tsetup < Tperiod (5.5)

.Tcq + Tlogic + Tsetup is the data propagation delay, if it is greater than .Tperiod, the
data will not arriving when the second register is sampling, on the other hand, if it
is smaller than the register sampling window (.Thold + Tsetup), the registers could fall
into metastability.

In FPGA design, STA can be performed in different stages: post-synthesis (logical
level) and post-implementation (physical level). Post-synthesis STA (based on ideal
implementation information) is faster but less accurate than post-implementation
STA (based on real implementation information).

5.2 Timing Analysis Techniques

STA usually requires a timing graph that describes the target design from the timing
perspective, identifying all the timing paths. The timing graph consists of nodes
and edges, nodes correspond to component pins or input/output ports, and edges are
the timing path between them. Edges have attached weights that can denote some
characteristics such as delay values [2].

Timing Graph Definition: A timing graph G = N, E, s, t is a directed graph
having exactly one source node s and one sink node t , where N is a set of nodes,
and E is a set of edges. The weight associated with an edge corresponds to either the
gate delay or the interconnect delay (Fig. 5.3).

Traditional STA is deterministic (DSTA) and compute the circuit delay for a spe-
cific condition. In practice, the worst-case slow or best-case fast process is typically
used and this could lead to over-design, leaving a lot of margin on the table in terms
of PPA. Statistical STA (SSTA) then come out to address this problem. It combines

Fig. 5.3 Example of timing graph

76 5 Performance (Timing) Analysis

the delays along the timing paths which is expressed statistically (with mean and
standard deviations) to obtain the overall delay data.

SSTA is also employed by Intel in its Quartus Prime software to mitigate the effect
of random variation on longer paths [3]. By discounting the minimum/maximum
delay spread on these paths, the FPGA performance reported by STA may increase.
There are two main categories of SSTA techniques–path-based and block-based.

1. Path-based
In path-based STA technique, critical path is searched in an exhaustive way. The
statistical calculation is simple, but the paths of interest must be identified prior
to running the analysis [4– 6].

2. Block-based
In block-based STA technique, the circuit timing graph is traversed in a topo-
logical manner. In [7], two basic graph traversal algorithms–depth first search
(DFS) and breadth first search (BFS) are applied to STA module and the runtime
efficiencies is compared by testing a large number of sequential circuit instances.
The conclusion is that BFS algorithm can implement STA module more effi-
ciently than DFS algorithm. Due to its runtime advantage, many research [8– 11]
and commercial efforts have taken the block-based approach. The advantage is
completeness, and no need for path selection, however, to compute statistical max
(or min) of random variables is not trivial.

The choice of using path-based analysis or block-based analysis depends on sev-
eral factors, such as the design complexity, stage, and goal. Generally, path-based
analysis is more suitable for small or medium-sized designs, where the number of
paths is manageable and the accuracy is important. It can also be used for final verifi-
cation or optimization, where the timing margins are tight and the details are needed.
On the other hand, block-based analysis is more suitable for large designs, where the
number of paths is overwhelming and the runtime is important. It can also be used
for FPGA architecture exploration, where the timing budget is loose and the trends
are sufficient.

In some cases, it could be more optimized to combine both techniques and use
them in different stages or levels of the design. For example, one can use block-based
analysis for the system-level design, where the blocks are abstracted and the overall
timing is estimated. Then, one can use path-based analysis for the block-level design,
where the paths are detailed. The balance between accuracy and efficiency can be
obtained in this way [12].

5.3 Summary and Trends

The state-of-the-art STA engines still can not replace DTA (simulation) completely
because there are some aspects of timing verification that cannot yet be completely
captured and verified in STA [13]. Some of these limitations include:

References 77

1. Inaccurate timing models
The timing models used in FPGA STA may not accurately represent the behavior
of the actual circuit due to the complexity of the FPGA architecture.

2. Lack of support for dynamic circuits
FPGA STA assumes that the circuit is static and does not take into account
dynamic circuits such as state machines or circuits with feedback paths.

3. Impact of environmental conditions
FPGA STA assumes ideal environmental conditions, such as constant tempera-
ture and voltage, which may not hold true in the real world.

Although FPGA STA has been matured for many years, it still benefits from
emerging technologies. The following are some of the recent trends in FPGA STA:

1. Parallel acceleration
Parallel STA on different computing platforms is one of the researching hot
spots, such as multi-core CPUs [4, 14– 17] and GPUs [16, 18].

2. AI (machine learning) acceleration
ML algorithms are increasingly being used to analyze the timing characteristics
of FPGA designs [19– 21]. ML-based timing analysis can quickly identify critical
paths in the design, predict the timing behavior of the design, and optimize the
design for timing performance.

References

1. IEEE standard for standard delay format (SDF) for the electronic design process, in IEEE Std.
1497-2001 (2001), pp. 1–80

2. J.L.M. Lee, A scalable method to measure similarity between two EDA-generated timing
graphs, in 2015 International Conference on Computer, Communications, and Control Tech-
nology (I4CT) (2015), pp. 44–48

3. Intel, Guaranteeing silicon performance with FPGA timing models. https://cdrdv2-public.intel.
com/650314/wp-01139-timing-model.pdf

4. T.-W. Huang, M.D.F. Wong, UI-timer 1.0: an ultrafast path-based timing analysis algorithm for
CPPR. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(11), pp. 1862–1875 (2016)

5. D. Mishagli, E. Koskin, E. Blokhina, Path-based statistical static timing analysis for large
integrated circuits in a weak correlation approximation, in 2019 IEEE International Symposium
on Circuits and Systems (ISCAS) (2019), pp. 1–5

6. L.-W. Chen, Y.-N. Sui, T.-C. Lee, Y.-L. Li, M.C.-T. Chao, I.-C. Tsai, T.-W. Kung, E.-C. Liu,
Y.-C. Chang, Path-based pre-routing timing prediction for modern very large-scale integration
designs, in 2022 23rd International Symposium on Quality Electronic Design (ISQED) (2022),
pp. 1–6

7. J. Lu, N. Xu, J. Yu, T. Weng, Research of timing graph traversal algorithm in static timing anal-
ysis based on FPGA, in 2017 IEEE 3rd Information Technology and Mechatronics Engineering
Conference (ITOEC) (2017), pp. 334–338

8. L. Zhang, Y. Hu, C.-P. Chen, Block based statistical timing analysis with extended canonical
timing model, in Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation
Conference, 2005., vol. 1 (2005), pp. 250–253

https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf

78 5 Performance (Timing) Analysis

9. R. Chen, H. Zhou, New block-based statistical timing analysis approaches without moment
matching, in Proceedings of the ASP-DAC 2007—Asia and South Pacific Design Automa-
tion Conference 2007, Series. Proceedings of the Asia and South Pacific Design Automation
Conference, ASP-DAC (2007), pp. 462–467

10. G. Luo, B. Jin, W. Zhang, A fast and simple block-based approach for common path pessimism
removal in static timing analysis, in 2015 14th International Conference on Computer-Aided
Design and Computer Graphics (CAD/Graphics) (2015), pp. 234–235

11. L. Jin, W. Fu, Y. Zheng, H. Yan, A precise block-based statistical timing analysis with max
approximation using multivariate adaptive regression splines, in 2019 IEEE 13th International
Conference on ASIC (ASICON) (2019), pp. 1–4

12. T.-W. Huang, M.D.F. Wong, OpenTimer: a high-performance timing analysis tool, in 2015
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2015), pp. 895–
902

13. J. Bhasker, R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach,
1st edn. (Springer, 2009)

14. Y.-M. Yang, Y.-W. Chang, I.H.-R. Jiang, iTimerC: common path pessimism removal using
effective reduction methods, in 2014 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) (2014), pp. 600–605

15. T.-W. Huang, M.D.F. Wong, D. Sinha, K. Kalafala, N. Venkateswaran, A distributed timing
analysis framework for large designs, in Proceedings of the 53rd Annual Design Automation
Conference, Series DAC ’16 (Association for Computing Machinery, New York, NY, USA,
2016). Available https://doi.org/10.1145/2897937.2897959

16. K. E. Murray, V. Betz, Tatum: parallel timing analysis for faster design cycles and improved
optimization, in 2018 International Conference on Field-Programmable Technology (FPT)
(2018), pp. 110–117

17. T.-W. Huang, G. Guo, C.-X. Lin, M.D.F. Wong, OpenTimer v2: a new parallel incremental
timing analysis engine. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 40(4):776–789
(2021)

18. Z. Guo, T.-W. Huang, Y. Lin, GPU-accelerated static timing analysis, in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD) (2020), pp. 1–9

19. S. Bian, M. Shintani, M. Hiromoto, T. Sato, LSTA: learning-based static timing analysis for
high-dimensional correlated on-chip variations, in Proceedings of the 54th Annual Design
Automation Conference 2017, Series DAC ’17 (Association for Computing Machinery, New
York, NY, USA, 2017). Available https://doi.org/10.1145/3061639.3062280

20. A.B. Kahng, U. Mallappa, L. Saul, Using machine learning to predict path-based slack from
graph-based timing analysis, in 2018 IEEE 36th International Conference on Computer Design
(ICCD) (2018), pp. 603–612

21. M.A. Savari, H. Jahanirad, NN-SSTA: a deep neural network approach for statistical static
timing analysis, Expert Syst. Appl. 149, 113309 (2020). Available https://www.sciencedirect.
com/science/article/pii/S0957417420301342

https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342

Chapter 6
Area Analysis

Abstract At FPGA chip design stage, area analysis/estimation is essential, just like
ASIC chips. State-of-the-art FPGA area estimation techniques will be discussed in
this chapter. However, once the FPGA is manufactured, the chip area is fixed, and
the “area problem” turns into resource utilization analysis, which can be accurately
reported after implementation at FPGA application design stage.

6.1 Overview

After FPGA is manufactured, the chip area is fixed. Different application could
occupy different resources. To predict how many resources an application could use
under a given FPGA architecture is another topic [1– 4]. Here we only discuss about
FPGA area analysis/estimation at chip design stage. Its objective is to accurately
predict the fabric area before the chip is manufactured. This process is important
because it offers:

1. Cost estimation
Estimating the area of a chip can provide an approximate idea of its manufac-
turing cost. The larger the chip, the more expensive it is to produce. Therefore,
accurate area estimation helps in determining the cost of the chip, which can be
useful in budgeting and decision-making.

2. Performance optimization
The area of a chip can impact its performance. For instance, a smaller chip
generally has a shorter propagation delay, which means it can operate faster. By
estimating the area of the chip accurately, chip designers can optimize the layout
of the chip to achieve the desired performance.

3. Yield prediction
The yield of a chip refers to the number of good chips that can be obtained from
a single wafer. Accurate area estimation helps in predicting the yield of a chip,
which can be useful in planning the production process.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_6

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_6&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6
https://doi.org/10.1007/978-981-99-7755-0_6

80 6 Area Analysis

Fig. 6.1 Typical inputs and
outputs in area analysis flow

A typical area analysis engine use device library (containing area models and
device resource information) as its input and then output the chip area report (Fig. 6.1).
Based on different area models, there can be different analysis methods: layout-based
and minimum width transistor area (MWTA)-based.

6.2 Area Analysis Techniques

The most accurate way to analyze the area of an FPGA is layout-based technique—
getting a complete layout. However, during the iterative FPGA design process, fast
approximation techniques, for example, MWTA-based techniques, are also widely
accepted to estimate the area of an FPGA.

1. Layout-based
Once FPGA layout is complete, area of each part of the FPGA can be calculated
(width times length). Example layouts are shown in (Fig. 6.2).

2. Minimum Width Transistor Area (MWTA)-based
MWTA-based technique aims to fast approximate the FPGA area at transistor
level and has been intensively studied in academia [6– 10]. Based on MWTA
model, which has been introduced in device (area) modeling chapter, this tech-
nique counts the transistors of the target circuit and compute the tile area by
multiplying the minimum width transistor area count by the actual minimum
width transistor area. Then, the final chip area is the product of the area of an
individual tile and the number of tiles.
The VTR model estimates the area of one minimum width transistor using the
equation (Eq. 6.1).

.Area(x) = 0.5 + 0.5x (6.1)

6.3 Summary and Trends 81

Fig. 6.2 Example layout of FPGA component: 2-LUT, 3-LUT, and 4-LUT [5]

where . x is the transistor drive-strength. According to COFFE [11], this model
over-predicts transistor area by up to 143% when compared to area measure-
ments extracted from layouts with TSMC 65nm rules.

COFFE [10, 11] calculates the area of NMOS pass-transistors with (Eq. 6.2)
and the area of CMOS transistors (e.g., inverters) with (Eq. 6.3).

.Area(x) = 0.447 + 0.128x + 0.391
√
x (6.2)

.Area(x) = 0.518 + 0.127x + 0.428
√
x (6.3)

However, works in [12] revised these models in a more realistic environment—
taking metal layers into consideration. Correction factors are applied to adjust the
equations above, and more accurate results are achieved in return.

6.3 Summary and Trends

Layout-based technique has set a golden benchmark for any other area estimation
methods in terms of quality of results. However, accuracy and efficiency are trade
off again in this scenario—more efficient yet less accurate methods are studied as a
supplement to layout-based technique. Finding out chip area for each FPGA units
and then sum them up is the easiest way to think of, no matter which type of area
model is adopted.

82 6 Area Analysis

MWTA-based techniques have set good examples for these efforts above. It dra-
matically increases the area analysis speed by using universal models, based on that,
following studies try to find a better balance between accuracy and efficiency by
adding more model details such as targeting a wider range of FPGA components and
considering multiple metal layers [12, 13].

References

1. D. Kulkarni, W. Najjar, R. Rinker, F. Kurdahi, Fast area estimation to support compiler optimiza-
tions in FPGA-based reconfigurable systems, in Proceedings in 10th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (2002), pp. 239–247

2. S.-K. Lam, W. Li, T. Srikanthan, High level area estimation of custom instructions for FPGA-
based reconfigurable processors, in 2007 6th International Conference on Information, Com-
munications & Signal Processing (2007) pp. 1–5

3. M.B. Abdelhalim, S.E.-D. Habib, Fast FPGA-based delay estimation for a novel hard-
ware/software partitioning scheme, in 2007 2nd International Design and Test Workshop
(2007), pp. 175–181

4. X. Wei, J. Chen, Q. Zhou, Y. Cai, J. Bian, X. Hong, Macromap: a technology mapping algorithm
for heterogeneous FPGAs with effective area estimation, in 2008 International Conference on
Field Programmable Logic and Applications (2008), pp. 559–562

5. F.F. Khan, Towards accurate FPGA area models for FPGA architecture evalua-
tion (2021). [Online]. Available: https://rshare.library.torontomu.ca/articles/thesis/Towards_
accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364

6. A. Marquardt, V. Betz, J. Rose, Speed and area tradeoffs in cluster-based FPGA architectures,
IEEE Transactions on Very Large Scale Integration Systems, vol. 8, no. 1 (2000), p. 84–93
[Online]. Available: https://doi.org/10.1109/92.820764

7. E. Ahmed, J. Rose, The effect of LUT and cluster size on deep-submicron FPGA performance
and density, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 3
(2004), pp. 288–298

8. A.M. Smith, G.A. Constantinides, P.Y.K. Cheung, Area estimation and optimisation of FPGA
routing fabrics, in 2009 International Conference on Field Programmable Logic and Applica-
tions (2009), pp. 256–261

9. I. Kuon, J. Rose, Exploring area and delay tradeoffs in FPGAs with architecture and automated
transistor design, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19,
no. 1 (2011), pp. 71–84

10. S. Yazdanshenas, V. Betz, Coffe 2: automatic modelling and optimization of complex and
heterogeneous FPGA architectures, vol. 12, no. 1 (2019). [Online]. Available: https://doi.org/
10.1145/3301298

11. C. Chiasson, V. Betz, Coffe: fully-automated transistor sizing for FPGAs, in 2013 International
Conference on Field-Programmable Technology (FPT) (2013), pp. 34–41

12. M. Al-Qawasmi, A.G. Ye, An investigation of the accuracy of the vpr and coffe area models
in predicting the layout area of FPGA lookup tables, in 2020 SoutheastCon (2020), pp. 1–9

13. A.M. Smith, G.A. Constantinides, P.Y.K. Cheung, Area estimation and optimisation of FPGA
routing fabrics, in 2009 International Conference on Field Programmable Logic and Applica-
tions (2009), pp. 256–261

https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://rshare.library.torontomu.ca/articles/thesis/Towards_accurate_FPGA_area_models_for_FPGA_architecture_evaluation/14660364
https://doi.org/10.1109/92.820764
https://doi.org/10.1109/92.820764
https://doi.org/10.1109/92.820764
https://doi.org/10.1109/92.820764
https://doi.org/10.1109/92.820764
https://doi.org/10.1109/92.820764
https://doi.org/10.1109/92.820764
https://doi.org/10.1145/3301298
https://doi.org/10.1145/3301298
https://doi.org/10.1145/3301298
https://doi.org/10.1145/3301298
https://doi.org/10.1145/3301298
https://doi.org/10.1145/3301298

Part IV
FPGA Chip Design EDA

Chapter 7
Semi-custom EDA

Abstract In modern computing systems, FPGAs are used as dedicated program-
mable accelerators (Che et al. [1], Zhang et al. [2], Cong et al. [3]). General-purpose
FPGAs are well optimized to fit a wide range of applications with a reasonable trade-
off on performance, power, and area, but are seriously sub-optimal in application-
specific contexts (Cong et al. [3], Neshatpour et al. [4]). In such case, customized
FPGA architectures, which are highly tailored for a specific set of applications as
well as seamless integration to other computing resources in the system, become a
proper solution. However, developing a FPGA layout through full custom approaches
is a time-consuming process even for industrial vendors, whose may take years to
finalize (Greenhill et al. [5]). In addition, design tools such as mapping algorithms
and bitstream generation have to be customized for different FPGA architectures,
which lead to another time-consuming development task. Driven by the strong need,
fast prototyping technology for customize FPGAs, especially semi-custom design
approaches, has been insensitively researched in recent years. As such, development
cycles of custom FPGAs can be comparable to modern ASICs, which opens the door
to tightly integrating FPGAs to SoCs. In this section, we will first review existing EDA
tools and then focus on critical EDA techniques that enable semi-custom designed
FPGAs.

7.1 Overview

In the past two decades, fast prototyping techniques for customized FPGA archi-
tectures have been proven by many researches through semi-custom design flows
[6– 14]. These works share the same principles when generating FPGA layouts:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_7

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_7&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7

86 7 Semi-custom EDA

Fig. 7.1 An illustrative example that compares on engineering time and effort to prototype an
FPGA using OpenFPGA (an open-source EDA tool that enables semi-custom approaches) and
full-custom approaches

1. Model an FPGA architecture in synthesizable HDL netlists.
2. Use sophisticated ASIC design tools to implement the HDL netlists into physical

layouts.

As illustrated in Fig. 7.1, the fast prototyping technology through semi-custom
design flows accelerates and automates the development process of FPGAs.

Early works rely on handcrafted HDL netlists for FPGA architectures which even
include low-level details down to transistor-level circuit designs [6, 7]. However, such
methodology requires still significant manual effort, being inefficient in designing
diverse FPGA fabrics targeting domain-specific applications. Moreover, early works
focus only on developing fabric generators without associated compiler support, e.g.,
HDL-to-Bitstream generation [6, 7]. Recent works aim to build “FPGA generators”
in the similar concept as the memory compilers in ASIC world [8– 14]. The FPGA
generators integrate both netlist generators and bitstream generators in a unified
framework, on top of the well-known FPGA architecture exploration tool, e.g., VTR
[15, 16]. Major technical features of existing FPGA generators are summarized in
Table 7.1.

However, to implement production quality FPGA fabrics, layout generation is only
a small part (Fig. 7.2), when compared to other essential aspects, such as testbench
generator and bitstream support. For example, to verify the correctness of FPGA
fabrics before taping out, design verification is a mandatory step. Note that design
verification for FPGAs is mainly a software problem rather than a hardware problem,
as functionality of an FPGA is determined by a bitstream file. Therefore, to ensure
a high coverage in verification, a number of bitstream files are required to verify
different operating modes and utilization rates of an FPGA device. As a result, a

7.1 Overview 87

Table 7.1 Comparison on EDA tools enabling semi-custom FPGA design

Tool/metric Open
source

Architecture
language

Netlist
generation

Bitstream
generation

Testbench
generation

SDC
generation

Kuon et al. [6] .× .√ Automatic.a .× .× . ×
Ova et al. [7] .× .× Hand-

crafted
.× .× . ×

Archipelago [10] .√ .× Automatic .√ .× . ×
Anderson et al.
[8, 9]

.× .√ Automatic .√ .√ . √

Mohan et al. [13] .× .√ Automatic .√ .√ . √
PRGA [11] .√ .√ Automatic .√ .× . ×
FABulous [12] .√ .√ Automatic.b .√ .√ . ×
OpenFPGA [14] .√ .√ Automatic .√ .√ . √

. aOnly netlists of a tile is automatically generated

. bNetlists of primitive circuits, e.g., LUT and routing multiplexers, have to be hand crafted

Fig. 7.2 Semi-custom design flow for FPGA fabrics: a production flow and b end-user flow

functional HDL-to-Bitstream generator is a required component, being as important
as a netlist generator. In addition, a testbench generator is required to simulate the
bitstream downloading w.r.t. a configuration circuits, as well as check the functional
correctness of an FPGA under different I/O mapping and bitstreams. Actually, the
complexity of a HDL-to-Bitstream flow is significantly higher than a netlist generator,
which covers many NP hard problems in EDA, such as placement and routing.
In recent years, with the growth of open-source HDL-to-Bitstream tools, design
verification has been seriously considered and included in recent EDA tools, as
shown in Table 7.1. In short, design verification for FPGA should not only validate
the correctness of layout but also the correctness of associated software tool chains.

Beyond the essential components, to enable high-quality FPGA fabrics, timing
constraints for physical design are critical. Nowadays, timing constraints are typically
in the Synopsys Design Constraints(SDC) format, which are used to constrain timing
paths when ASIC tools generate FPGA layouts. Without timing constraints, pin-to-
pin delays, such as LUT delays and routing delay, may be too large to satisfy the
target performance of an FPGA. Note that, a key difference between FPGAs and
ASICs on timing paths is that an FPGA only has critical paths when mapped to a

88 7 Semi-custom EDA

specific HDL design. When implementing FPGA layouts, timing constraints cannot
be biased to an HDL design because it may probably cause performance degradation
on another HDL design. Therefore, the principle of the timing constraints is keep
pin-to-pin delays on each timing path as uniform as possible, which indicates that
every timing path is critical. Considering the large number of timing paths in a FPGA
fabric, a SDC generator is required to avoid huge manual effort. Nowadays, to achieve
high-performance FPGA fabrics, SDC generators are available in semi-custom EDA
tool chains (Table 7.1).

As architecture of FPGAs can be really different depending on their application
context, a key value of FPGA generators is to support versatile FPGA architectures.
Therefore, FPGA architecture description languages are needed to model compli-
cated and large-scale FPGA device in compact and human readable representations.
By leveraging the University of Toronto FPGA Architecture Language(UTFAL) [17],
FPGA generators can convert a high-level FPGA description to synthesizable HDL
netlists, and then implement layouts through ASIC design tools. Thanks to UTFAL’s
enriched syntax, FPGA generators can support a wide range of FPGA architec-
tures. To unlock more possibility in device modeling, extended architecture descrip-
tion language (set of architecture guidance models) has been proposed [18], In this
chapter, we focus on introducing the extended architecture description language
while UTFAL has been covered in Chap. 2.

In short, a netlist generator, a bitstream generator and a testbench generator are
three indispensable components in a basic semi-custom EDA framework for FPGA,
with which designers can accomplish a functional FPGA fabric. However, as the
growing needs of domain-specific FPGA fabrics, an expressive architecture lan-
guage is now becoming important, because it is a must-have for designers to rapidly
evaluate and prototype innovative FPGA architectures. As researchers have proven
the feasibility of FPGA generators with silicon results (Fig. 7.3), future trends lie on
improving PPA of the FPGA fabrics. This drives SDC generators to be an strategi-
cally important tool, which can constrain PPA of each segment in an FPGA fabric
through semi-custom design tools w.r.t. performance goals.

7.2 Extended Architecture Description Language

In this part, we focus on the extended architecture description language(set of archi-
tecture guidance models conceptualized in Chap. 2) adopted by the OpenFPGA
framework [18]. Other architecture description languages may have different syntax
when modeling FPGA fabrics but share similar principles [11, 12]. Therefore, we
focus more on general principles when designing an FPGA architecture descrip-
tion language than detailed syntax, with which we believe it is easier for readers to
understand other architecture description languages.

UTFAL is designed for a detailed logical representation of FPGA architectures,
providing sufficient information for EDA engines to perform packing, placement, and
routing. However, to enable netlist generation and bitstream generation, a detailed

7.2 Extended Architecture Description Language 89

(a) A 20x20 FPGA fabric (courtesy by [8]) (b) A 16x16 FPGA chip (courtesy by [13])

Fig. 7.3 Showcase FPGA layouts through semi-custom design approaches

physical representation of complete FPGA fabric is required. The extended architec-
ture description language is designed to provide supplementary information on top of
the UTFAL. It fills the blank of UTFAL when modeling circuit-level implementation
of programmable resources (see Sect. 7.2.1), physical mode of programmable blocks
(see Sect. 7.2.2), and configuration scheme (see Sect. 7.2.2). Therefore, the extended
architecture description language is complementary to UTFAL without overlapping
in syntax and information. Similar to UTFAL, the extended architecture descrip-
tion language is XML-based. Full documentation about UTFAL and the extended
architecture description language is available on [19, 20], respectively.

7.2.1 Circuit Modeling

As circuit design is a dominant factor impacting FPGA’s PPA, the extended archi-
tecture description language provides enriched syntax to model circuit-level details
of primitives in FPGAs, e.g., LUT, routing multiplexers. Figure 7.2 illustrates the
different focus on modeling LUTs and routing multiplexers between UTFAL and the
extended architecture description language. For EDA usage only, primitives can be
treated as a black box with limited information, e.g., number of ports, port direction
as well as pin-to-pin delays. However, to generate netlists, detailed circuit designs
of primitives have to be modeled. On the other side, upon practical applications,
hardware engineers may select various circuits to implement their FPGA fabrics.
For instance, a ultra-low-power FPGA may be built with ultra-low-power circuit
cells while a high-performance FPGA may use absolutely different circuit cells. As
a result, the extended architecture description language is capable of modeling highly

90 7 Semi-custom EDA

Fig. 7.4 Examples of extended XML syntax for LUTs

flexible circuit design topology even down to transistor level and allows designers
to customize any component in an FPGA.

Among the programmable resources in an FPGA, there are two types of circuits
whose structures have prominently impact on PPA and bitstream generator: LUTs
and routing multiplexers. LUTs are used to implement logic functions while routing
multiplexers are used to route signals between LUTs. In some FPGA devices, LUTs
and routing multiplexers take 90% of chip area, critical path delays, and power
consumption [21]. The choice of the circuit implementation may also impact the PPA
of standalone circuit by .2× [22]. Therefore, the extended architecture description
language provides fruitful syntax to support diverse circuit design topology and
details for LUTs and routing multiplexers.

Table 7.3 lists the mainstream circuit topology for LUTs and routing multiplex-
ers that are frequently used by modern FPGAs. Figure 7.4 shows an example about
how the extended architecture description language models the internal structure
of a fracturable 4-input LUT. Users can specify which inputs are disabled dur-
ing fracturable mode in the XML property tri_state_map. The levels and
positions of fracturable outputs can be freely defined through the XML proper-
ties lut_frac_level and lut_output_mask. To support mode switching of
fracturable LUTs, the port map includes a special port mode rather than the regular
configuration port. Figure 7.5 shows another example about how a tree-like 4-input
routing multiplexer (see Table 7.2 for schematic) is modeled by the extended archi-
tecture description language. The multiplexing structures can be customized through
an XML property structure. Note that both input, output and even intermediate
buffers can be customized through XML syntax, which are needed for LUTs and
routing multiplexers in different location of an FPGA. With these modeling, a netlist
generator can output RTL and even gate-level netlists for the LUTs and routing
multiplexers, meanwhile bitstream generator can decode configuration bits.

In addition to the detailed modeling, black-box modeling is also supported, where
users can provide their own circuit implementation for primitives. When black-box
modeling is adopt, the path to netlist should be defined through the XML property
verilog_netlist, and only necessary information such as port list is required.

7.2 Extended Architecture Description Language 91

Fig. 7.5 Examples of extended XML syntax for MUXes

Such modeling is also frequently used as modern FPGAs are built with various third-
party IPs, e.g., Digital Signal Processor (DSP), Random Access Memory (RAM) and
Serializer/Deserializer (SerDes).

7.2.2 Physical Mode Modeling

To simplify EDA algorithms, UTFAL focus on compact description of Logic Element
(LE) architectures instead of a complete schematic-level representation. For instance,
a complex multi-mode LE in Fig. 7.6a is modeled by multiple abstract-level operating
modes in Fig. 7.6b, c. The abstraction indeed eases the EDA algorithms in mapping
to FPGA resources but hides important details required by netlist and bitstream gen-
eration for the physical LEs. For example, netlist generators cannot identify which
mode in Fig. 7.6 denotes the physical implementation of the LE. Bitstream genera-
tors may miss configuration bits to be decoded in physical mode when the operating
modes in Fig. 7.6b, c only include a part of programmable routing resources. More-
over, configuration bits of an operating mode should be properly reorganized for the
physical mode. For example, the configuration bits of the two 3-LUT in Fig. 7.6c
should be mapped to the fracturable 4-LUT in Fig. 7.6a. Without a detailed circuit-
level implementation of the fracturable 4-LUT, bitstream generators cannot even
decode configuration bits of the two 3-LUT from logic synthesis results.

Therefore, to enable both netlist and bitstream generators, extended syntax is
developed to

1. distinguish between physical mode and operating modes;
2. link the components in the various operating modes to physical mode
3. establish the relationship between primitives in physical mode and their circuit-

level modeling (see Sect. 7.2.1).

To be intuitive, we take the example of the multi-mode CLB shown in Fig. 7.6
and present XML description in Fig. 7.7. The physical implementation of the LE
is specified to be the mode phy, through syntax physical_mode_name. The
detailed architecture of the physical LE follows the same style as the UTFAL.
Under the physical mode, users can link primitive blocks to circuit implementa-
tions using a XML property circuit_model_name. Figure 7.7 shows how a

92 7 Semi-custom EDA

Table 7.2 Different objectives between UTFAL and extended architecture description language:
logical vs. physical modeling

UTFAL Extended architecture description language

7.2 Extended Architecture Description Language 93

Table 7.3 Various circuit designs of LUTs and routing multiplexers

Circuit Design topology

LUT 1. Single-output LUTs

2. Fracturable (multi-output) LUTs

3. LUT with hard logic, e.g., carry

4. LUT built with standard cells

5. LUT with RAM/ROM

Routing multiplexer 1. One-level multiplexer

2. Multi-level multiplexer

3. Tree-like multiplexer

4. Standard-cell multiplexer

5. Multiplexer with local encoder

6. Multiplexer with constant input

. ∗Input and output buffering can be fully customized for both circuits

Fig. 7.6 a Physical implementation of a LE and b, c two operating modes

fracturable LUT flut is linked to a defined circuit model frac_lut4 in Fig. 7.4.
Under the operating modes, each virtual pb_type has to be linked to its phys-
ical implementation through XML properties physical_pb_type_name and
physical_mode_port. Consider the example in Fig. 7.7, the operating modes
dlut3 and slut4, which correspond to the illustration in Fig. 7.6b, c, are linked to
the physical mode phy which correspond to the illustration in Fig. 7.6a. The inputs
in and outputs out of the pb_type lut4 in mode slut4 are linked to the inputs
in[0:3] and outputs lut4_o of the pb_type flut in its physical mode phy, as
highlighted by red dash lines in Fig. 7.6. XML syntax mode_bits allows users to
customize the configuration bits applied to fracturable LUTs in any operating mode.
For example, in Fig. 7.7, when the lut4 is used, the mode_bits="1" will be
applied to the port mode of its physical module frac_lut4 in Fig. 7.4. As such,
without modifying packing or synthesis engines, the XML syntax can map the con-

94 7 Semi-custom EDA

Fig. 7.7 Examples of extended XML syntax for a LE

Fig. 7.8 Examples of memory-bank-based configuration protocol modeling

figuration bits from any operating mode to its physical implementation. In addition,
such multi-mode modeling enable users to define a simplified BLE architecture in
operating modes than physical mode, which reduces CPU time for packing.

7.2.3 Configuration Protocol

Programmable resources in an FPGA have to be configured through a protocol. How-
ever, configuration protocols are not modeled in UTFAL because they are well decou-
pled from packing, placement, and routing algorithms. Configuration scheme directly
impacts bitstream generators, which is essential to a complete tool chain. More impor-
tantly, configuration protocol could be really different in FPGAs, depending on the
application context. Extended architecture description language is developed to sup-
port versatile configuration protocols. Figure 7.8 shows an example of modeling a
memory-bank-based configuration protocol, where other types of configuration pro-
tocol can be specified through XML property type. Through memory banks, each
configuration memory cell can be accessed by enabling dedicated Bit-Line (BL) and
Word-Line (WL). Note that the circuit implementation of a memory cell can be not

7.2 Extended Architecture Description Language 95

Fig. 7.9 Example of a, a memory organization using decoders; b single memory bank across the
fabric; and c multiple memory banks across the fabric

limited to a SRAM, as shown in Fig. 7.9. For example, flip-flops or latches can also
used as the fundamental cell in memory banks. The circuit model of configuration
memory cell can be specified through XML property circuit_model_name. In
addition, as FPGA size grows, multiple configuration regions are adapted to avoid
long configuration time as well as challenges in physical design due to large para-
sitic in BL/WL interconnection. Figure 7.9b, c shows illustrative examples of single-
region and 4-region memory banks, respectively. Therefore, the number of configu-
ration regions can be customized through the XML property num_regions. Note
that other configuration protocols, such as configuration chains and frame-based,
are parameterized as memory banks, where different number of regions and various
circuit implementation may also be applied.

In practice, configuration scheme for each tile or lower level primitive may need
full customization. Take the example of memory bank, chip designer may need
to customize which tiles to share BLs and WLs, in order to optimize in physical
design and configuration time. Figure 7.10 shows an example file where designers
can specify BL and WL sharing for each tile in each configuration region of an FPGA
fabric. Two tiles share the same BL when their column index are same. Two tiles
share the same WL when their row index are same. Consider the example in Fig. 7.10,
the two tiles grid_io_bottom_1__0_ and grid_io_bottom_2__0_ are
configured by the same WL but through two different BLs, where the BLs and WLs

96 7 Semi-custom EDA

Fig. 7.10 Examples of fabric key file modeling BL/WL sharing

Fig. 7.11 Flowchart of netlist generator and graph-based modeling for modules

are controlled by region 0. For each region, different set of BLs and WLs are
used to control the tiles under it. A tile can only be controlled by a configuration
region. We refer interested reader to [20] for details.

7.3 Netlist Generator

As a cornerstone of the semi-custom design tools, netlist generators aim to translate
a high-level architecture description to HDL netlists which can be adapted by ASIC
tools to implement physical layouts. In early works, netlist generators is a simple

7.3 Netlist Generator 97

HDL code generator [6– 10], which outputs internal device modeling to a synthesiz-
able HDL format in a straightforward way. However, such native HDL translation
of FPGA fabric imposes strong limitation when implementing physical layouts. For
example, considering the HDL netlist which model a complete routing fabric as a flat-
ten graph, the file sizes of netlists increase exponentially when FPGA size increases,
which causes a long runtime in physical design. Furthermore, flatten netlists force a
high design complexity when implementing an FPGA fabric, since a 4K-LUT FPGA
may contain 8+ millions of logic gates. As a result, the physical design runtime of
a medium sized FPGA is more than 24 h [8], while the physical design may fail for
large sized FPGAs [23]. Modern netlist generators are designed to not only a simple
code generator but also contain many features which make outputted netlists to be:

1. physical design friendly;
2. compatible with multiple HDL format and their standards;
3. human-readable, easy to debug and backtrace errors.

To enable these features, as depicted in Fig. 7.11, the implementation of the netlist
generators is based on two steps:

1. Create a graph of modules which represent the complete FPGA fabric;
2. Build a number of netlist writers which output the module graph into selected

file formats.

In the graph-based modeling, the whole FPGA fabric is represented as a tree of
modules and their instances, as shown in Fig. 7.11. Modeling an FPGA fabric in a
graph allows EDA tool to easily adjust hierarchy of netlists. For example, through
graph merging, sub-modules can be merged which unlocks more opportunity in
physical design optimization. It is also straightforward to profile the FPGA fabric,
e.g., get the depth of netlists, count number of unique modules, etc., which can
provide critical information for physical designers. A graph can be outputted to
different file formats through various netlist writers, such as Verilog writer. As such,
netlist writers consider a graph as an input, being decoupled from rest of engines
in netlist generators. This can avoid massive code changes in core engine when
developing a new netlist writer.

The auto-generated fabric netlists include both a programmable fabric with con-
figuration protocol embedded. To be physical design friendly, netlist generators are
capable of outputting netlist in different levels, e.g., Register-Transfer Level (RTL)
and Gate-level (GL). Netlists at different levels of details unlock optimization oppor-
tunities through different design flows. As illustrated in Fig. 7.12, RTL (behavioral)
netlists can be optimized through synthesis tools to standard cells and then physi-
cally implemented to layouts. Alternatively, GL (denoted as technology-mapped in
Fig. 7.12) netlists are preferred as an direct input to physical design tool, when chip
designers require specific standard cells to implement primitive circuits which are not
synthesizable. The choice of design flows really depends on the PPA requirements and
expertise of chip designers. For example, for ultra-high-performance FPGA, some
specific cells are required in gate-level netlists and synthesis should be skipped.

98 7 Semi-custom EDA

Fig. 7.12 An example of physical-design-friendly netlist generators

Fig. 7.13 An example of hierarchical Verilog netlists modeling a FPGA fabric

On the other side, the hierarchy of netlists also impact the physical design signif-
icantly. Figure 7.13 illustrates an example of Verilog netlists which are outputted by
the OpenFPGA, which models a complete FPGA fabric in a hierarchical way. Note
that highly hierarchical fabrics are generated, where large FPGAs can be built with
a small number of repeatable tiles including routing blocks. Tiles and routing blocks
are built with common primitive blocks, located in the sub_module directory,
which can maximize the reuse of primitive netlists. Repeatable tiles can efficiently
reduce the file sizes, total runtime, and design complexity of physical design flow.
For example, in a physical design methodology, only unique tiles are placed and

7.3 Netlist Generator 99

Fig. 7.14 An example of auto-generated human-readable netlists corresponding to architecture
definition

routed, while the top-level fabric is only an assemble of the tiles which are treated
as black boxes [23].

Note that different physical design tools may require different HDL formats and
their specific variants. Verilog is a popular HDL format for most physical design
tools, while VHDL is more popular as a strict behavioral modeling for FPGA fabrics.
Modern netlist generators include various netlist writers to convert a graph represen-
tation of FPGA fabric to the file format which meets downstream tool requirements.
Even when considering Verilog format, various netlist styles may be demanded,
in order to be compatible with latest Verilog standards. For instance, the syntax
default_nettype is introduced to force strict wire definition in Verilog 2001.
Supporting diverse syntax allows the auto-generated netlists to be more human read-
able and easier to back-trace errors for chip designers, especially when there are
implementation errors during physical design flow. To further improve readability of
outputted netlists, names of modules, ports, and nets should be human readable and
correspond to architecture description. Figure 7.14 shows an example how the out-
putted netlist can be easy to correlated to the architecture description. In Fig. 7.14a,
a programmable block clb with two input ports and one output is defined using
the UTFAL. Figure 7.14b presents the Verilog codes which are outputted by OpenF-
PGA, corresponding to the programmable block clb. The port name and port size
are consistent between the architecture description and the netlists, through which
chip designer can backtrace the changes in netlists to a specific portion of architecture
file. For instance, the port I of clb in Fig. 7.14a is named as clb_I in Fig. 7.14b.

We refer interested readers to [20] for a detailed implementation of netlist gener-
ator.

100 7 Semi-custom EDA

Fig. 7.15 Principles of Verilog testbenches: (1) using common input stimuli; (2) applying bitstream;
(3) checking output vectors

Table 7.4 Auto-generated testbench features

Testbench Runtime Test vector Test coverage

Full Long Random stimulus Full fabric

Preconfigured Short Random
stimulus/formal
method

Programmable fabric
only

7.4 Testbench Generator

It is essential to validate the correctness of FPGA fabrics before tape-out. However,
a key difference between the design verification for FPGAs and ASICs lies on bit-
streams. As highlighted in Fig. 7.15, an FPGA carries a specific functionality only
when an associated bitstream is loaded. To ensure a high verification coverage, chip
designers need a number of bitstream files, each of which is designed to validate
a specific part of the FPGA. The bitstream files could be either synthetic (not syn-
thesizable through HDL-to-bitstream tools) or based on a user’s RTL design. To
validate the various bitstream on an FPGA, testbenches have to be generated with
dedicated I/O mapping for each configuration. Note that for most applications, only
part of FPGA I/Os are used and for each application, each FPGA I/O may be used
in a different way. Testbench generators assign the I/O mapping based on the results
from HDL-to-Bitstream results. To enable self-testing, the FPGA and user’s RTL
design (simulated using an HDL simulator) are driven by the same input stimuli, and
any mismatch on their outputs are reported as errors.

To trade-off runtime and coverage, as listed in Table 7.4, two types of testbenches
are typically generated to validate the correctness of the fabric before tape-out:
full and preconfigured. Full testbench aims at simulating an entire FPGA operat-
ing period, consisting of two phases:

1. the configuration phase, where the bitstream file is loaded to the programmable
fabric through a configuration protocol, as highlighted by the green rectangle of
Fig. 7.16;

2. the operating phase, where random input vectors are applied to drive both Devices
Under Test (DUTs), as highlighted by the red rectangle of Fig. 7.16.

7.4 Testbench Generator 101

Fig. 7.16 Illustration on the waveforms in full testbench

Using the full testbench, chip designers can validate both the configuration circuits
and programming fabric of an FPGA. However, the random testing vectors used in the
full testbench may result in only a small set of functional coverage. On the other side,
as the bitstream size increases exponentially with the FPGA size, the number of clock
cycles required to load the bitstream becomes a dominating factor (more than 90%)
in the verification runtime. For instance, HDL simulation of a full testbench including
a 800k-bit bitstream consumes a 24-hour runtime when using a commercial state-
of-the-art simulator. In short, even there are significant limitations, the full testbench
remains a must-run verification, since it fully validates the configuration protocol.

To improve the coverage, the preconfigured testbench is proposed, which skips the
time-consuming configuration phase and focus on the operating phase. As a result,
sufficient number of testing vectors can be applied to ensure functional correctness
of a mapped FPGA design, while simulation runtime is fairly small. To apply testing
vectors to mapped I/Os of an FPGA, a preconfigured FPGA, which is instantiated
with the user’s bitstream, is encapsulated with the same port mapping as the user’s
RTL design, as illustrated in Fig. 7.17. Note that beyond the functional verification
show in Fig. 7.15, the preconfigured FPGA module can be also fed to a formal tool
for a 100% coverage formal verification against user’s RTL design. Compared to the
full testbench, the preconfigured testbench significantly accelerates the functional
verification especially for large FPGAs.

We believe that with proper use of the two types of testbenches, the verification
process for FPGAs can be significantly simplified or even automated.

102 7 Semi-custom EDA

Fig. 7.17 Internal structure of a pre-configured FPGA module

7.5 Showcase

In this part, three FPGA fabrics produced by semi-custom EDA approaches are
presented and then compared to a commercial baseline Stratix IV [24]:

1. a.20 × 20 homogeneous FPGA using a commercial 40 nm technology, built with
standard cells only [8] (see layout in Fig. 7.3a);

2. a.20 × 20 homogeneous FPGA using a commercial 40 nm technology, built with
standard cells only [18] (see layout in Fig. 7.18a);

3. a .32 × 32 heterogeneous FPGA using a commercial 12 nm technology, built
with a mix of standard cells and custom cells [14] (see layout in Fig. 7.18b).

Note that through semi-custom approaches, the layout generation of the FPGA fabrics
are within 24 h, but their architectures, technologies, and detailed methodologies
are different. In all the FPGAs, each tile includes 10 Logic Elements (LEs) and a
local routing architecture with 50% connectivity. The LE of homogeneous FPGAs
consists of a 6-input fracturable LUT, a 4-input LUT, two 1-bit adders, and two flip-
flops, which can operate in 6 different modes. The heterogeneous FPGA employs a
simplified LE but without the 4-input LUT and also consists of a column of 512 Kb
Block RAMs (BRAMs), generated by a foundry memory compiler. Full details about
the showcased FPGA fabrics are listed in Table 7.5.

7.5 Showcase 103

Fig. 7.18 Complete layout of FPGA fabrics

Table 7.5 Comparison on the FPGAs in Figs. 7.3a and 7.18

Resource/capacity Standard homo [8] Custom homo [18] Standard hetero [14]

Array size .20 × 20 .20 × 20 . 32 × 32

Tileable routing .× .× . √
Fracturable 6-input
LUTs

4k.a 4k 9.92 k

4-input LUTs N/A 8k N/A

1-bit full adder 8k 8k 19.84 k

Flip-flops 8k 8k 19.84 k

Block RAM N/A N/A 512 k bits

I/Os N/A.b 480 124

Routing channel width 300 300 200

Routing wires 87% L4 87% L4 L4

13% L16 13% L16

.Fcin 0.055 0.055 0.15

Routing multiplexer tree-like one/two-level tree-like

Backend details Standard homo [8] Custom homo [18] Standard hetero [14]

Tool Cadence encounter
v09.12

Cadence Innovus 19.1 Synopsys ICC2
2019.03

Layout area 16.89.mm2 7.mm2 9. mm2

Flow type Flatten Two-step flatten Hierarchical

Runtime (h) 20–24 24 12

Peak memory (GB) 64 60 215

. aEach 6-input LUT contains 8 inputs

. bNot reported

104 7 Semi-custom EDA

7.5.1 Methodologies

The homogeneous FPGA in [8] is generated by an in-house netlist generator based
on VTR, while the rest of FPGA fabrics are generated by OpenFPGA [18]. Note
that the netlists for the homogeneous FPGA in [8] were auto-generated in behavioral
Verilog codes and optimized by Synopsys Design Compiler before physical design
with a strategy to balance area and delay. The netlists auto-generated by OpenFPGA
are technology mapped and directly used for physical design tools. Regarding cir-
cuit designs, the homogeneous FPGA in [8] and the heterogeneous FPGA in [14]
is built with standard cells provided by a commercial 40nm technology, while the
homogeneous FPGA in [18] adapts custom cells for routing multiplexers and config-
uration memory elements. Note that the homogeneous FPGA in [18] uses two-level
structures for the multiplexers in Connection Blocks (CBs) and Switch Blocks (SBs)
and local routing architecture, while one-level structure for those in LE. To guarantee
high-performance, routing multiplexers are buffered at both inputs and outputs while
LUTs are buffered at inputs, outputs, and every two intermediate stages.

The FPGA fabrics are implemented using three different physical design strate-
gies. The homogeneous FPGA in [8] was implemented using a flatten backend flow
with design constraints to force layout regularities. The homogeneous FPGA in [18]
was implemented using a two-step backend flow where Configurable Logic Blocks
(CLBs) are P&Red first and then instantiated at the top-level as hard macros. To
leverage the symmetry of an FPGA fabric, the heterogeneous FPGA adopted a more
hierarchical backend flow, where a library of hard macros for CLBs, CBs, and SBs
is built and then assembled in the final layout. The hierarchical backend flow allows
chip designers to optimize each hard macro with respect to the timing constraints
generated by our tool with few combinational loops to be broken. Therefore, the
heterogeneous FPGA is larger in array size, while its backend is .2× faster than the
homogeneous. Commercial signoff tools are then used to ensure that all the fabrics
are DRC-clean, and timing extraction is performed by using Synopsys PrimeTime.

7.5.2 Performance Evaluation

For a comprehensive analysis, the area, pin-to-pin delays, and the delays of the imple-
mented benchmarks are considered when evaluating the FPGA fabrics. Table 7.6
compares the custom homogeneous FPGA in [18] to two baselines, a commercial
Stratix-IV FPGA and the standard homogeneous FPGA in [8]. We believe it is a
fair comparison since these FPGAs are similar in architecture and also implemented
using 40nm technologies. The results prove the high value of using one-level and two-
level multiplexing structures as well as an optimized cell library, which can improve
the area by 42% and path delay by 30% when compared to a standard cell FPGA.
Indeed, there are considerable gaps in area (60%) and path delays (20%) between
the semi-custom-designed FPGAs and the full-custom-designed commercial FPGA.

7.5 Showcase 105

Table 7.6 Area and delay comparison between [8, 14, 18] and Stratix IV

Generality Standard
homo [8]

Custom homo
[18]

Standard hetero
[14]

Stratix IV

Technology 40 nm 40 nm 40 nm 12nm

Cell Library Standard Custom.a Custom Standard

Tile Area 30,625 17,648 11,050 8,373

(.µm2) (100%) (-42%) (-63%) (-72%)

Path delay (ns) Standard homo
[8]

Custom homo
[18]

Standard hetero
[14]

Stratix IV

Process Corner TT SS SS.b TT

6-LUT 0.5 0.27 0.28 0.23

(100%) (. −46%) (. −44%) (. −54%)

20-bit 1.63 2.12 1.23 1.13

Adder.c (100%) (+30%) (-25%) (. −31%)

Local 0.27 0.17 0.23 0.15

Routing.d (100%) (. −37%) (-15%) (. −44%)

L4 track.e 2.53 0.82 0.59 0.75

(100%) (. −67%) (. −76%) (. −70%)

Average 100% . −30% . −40% (. −50%)

. aUse custom cells only in routing multiplexers and configuration chains

. bThe rest are standard cells. See details in [18]

. cConsider the slow model in Quartus STA

. dLocal routing path starts from a BLE output and ends at a BLE input

. eLX track: FF.→length-X wire.→Local Routing.→LUT.→FF

Even though there is an intrinsic PPA gap between standard-cell layouts and full-
custom layouts, the performance gap can be reduced through a careful co-design
between backend strategies and custom cell implementations [7].

For performance benchmarking, eight MCNC circuits are selected to fit all the
40nm FPGAs. Each benchmark is verified through the verification techniques in
Sect. 7.4, using Mentor ModelSim and Synopsys Formality. Quartus 18.1.0 is used
to implement the same benchmark set as the industry baseline, and the device model is
set to the Stratix IV EP4S40G2F40C2. Figure 7.19a shows that FPGAs using custom
cells is .2× slower on average than the Stratix IV. The gap comes from the hardware
lags in performance, with an average of 20%. When critical paths consist of multiple
routing paths listed in [Tab. 7.6], the delay difference will aggregate. The gap comes
from sources:

1. the hardware lags in performance with an average of 10%. When critical paths
consist of multiple routing paths listed in Table 7.6, the delay difference will
aggregate. Therefore, the longer the critical path is, the larger the performance
gap will be.

106 7 Semi-custom EDA

Fig. 7.19 Delay comparison between OpenFPGA and [8] (marked as previous works) using
selected MCNC benchmarks

2. previous studies have shown a large gap between VPR CAD algorithms and
commercial counterparts [25]. The performance gap may be as large as 55% on
average, fully shadowing any efficiency on hardware.

This indicates that developing efficient CAD algorithms that can match industry
quality should be a frontier for the open-source FPGA research community.

We compare the heterogeneous FPGA in Fig. 7.18b to the homogeneous FPGA
[8], as both FPGAs are implemented by standard cells and also similar in architecture
while using different technologies. Our results show that using semi-custom design
approaches, FPGA architectures can be portable between different technology nodes
and benefit significant performance improvements. In Table 7.6, the 12 nm FPGA is
72% smaller in area and 50% faster in path than the 40nm baseline. In Fig. 7.19b, the
heterogeneous FPGA is .3× faster on average in benchmark delays than the 40 nm
baseline.

References 107

7.6 Summary and Trends

Semi-custom design approaches have become a warm research topics in recent years,
as different design methodology than commercial state-of-the-art FPGAs that are
built through full custom approaches.

To enable semi-custom design approaches, innovative EDA tools have been devel-
oped as an unified framework for netlist generation, testbench generation and bit-
stream generation. Due to the automation in modern EDA tools, development cycle
of FPGA layouts as well as engineering effort can be remarkably reduced. However,
the semi-custom design approach is in its infancy stage, as we see non-negligible
PPA gaps against commercial FPGAs.

Since most of the EDA tools are accessible in open-source community, future
researches may focus on performance improvement on the design methodology,
e.g., physical design techniques. In addition, being tightly integrated to architecture
exploration tools, the EDA tools enable fast prototyping for innovative FPGA archi-
tectures. In other words, architecture exploration can achieve realistic PPA evaluation
in a short development cycle, and effectiveness of architecture enhancements can be
validated through layout-level results in a short period, as compared the full-custom
approach. Also, with the expansion in open-source community for FPGAs, novel
EDA algorithms, e.g., packing, placement and routing, may be studied and validated
through physical FPGA fabrics using semi-custom design approach. Previously, the
validation of EDA algorithms is typically based on hypothetical FPGA fabrics and
high-level analysis methods, which has been proven to be inaccurate.

In short, semi-custom design approaches have changed the cost function to design,
evaluate, and produce new FPGA fabrics, stimulating many research opportunitie
in novel FPGA architecture, efficient physical design techniques, and novel EDA
algorithms.

References

1. S. Che, J. Li, J.W. Sheaffer, K. Skadron, J. Lach, Accelerating compute-intensive applications
with GPUS and FPGAs, in 2008 Symposium on Application Specific Processors (2008), pp.
101–107

2. C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing FPGA-based accelerator design
for deep convolutional neural networks, in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15. (Association for Computing
Machinery, New York, NY, USA, 2015), pp. 161–170. [Online]. Available: https://doi.org/10.
1145/2684746.2689060

3. J. Cong, Z. Fang, M. Huang, L. Wang, D. Wu, CPU-FPGA coscheduling for big data applica-
tions. IEEE Design Test 35(1), 16–22 (2018)

4. K. Neshatpour, H.M. Mokrani, A. Sasan, H. Ghasemzadeh, S. Rafatirad, H. Homayoun, Archi-
tectural considerations for FPGA acceleration of machine learning applications in mapreduce,”
in Proceedings of the 18th International Conference on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, ser. SAMOS ’18 (Association for Computing Machinery,

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060

108 7 Semi-custom EDA

New York, NY, USA 2018), pp. 89–96. [Online]. Available: https://doi.org/10.1145/3229631.
3229639

5. D. Greenhill, R. Ho, D. Lewis, H. Schmit, K.H. Chan, A. Tong, S. Atsatt, D. How, P. McElheny,
K. Duwel, J. Schulz, D. Faulkner, G. Iyer, G. Chen, H.K. Phoon, H.W. Lim, W.-Y. Koay,
T. Garibay, 3.3 a 14nm 1ghz FPGA with 2.5d transceiver integration, in 2017 IEEE International
Solid-State Circuits Conference (ISSCC) (2017), pp. 54–55

6. I. Kuon, A. Egier, J. Rose, Design, layout and verification of an FPGA using automated tools, in
Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’05 (Association for Computing Machinery, New York, NY, USA,
2005), pp. 215–226. [Online]. Available: https://doi.org/10.1145/1046192.1046220

7. Aken’Ova, V., Saleh, R., A “soft++” EFPGA physical design approach with case studies in 180
nm and 90 nm, in IEEE Computer Society Annual Symposium on Emerging VLSI Technologies
and Architectures (ISVLSI’06) (2006), pp. 6

8. J.H. Kim, J.H. Anderson, Synthesizable FPGA fabrics targetable by the verilog-to-routing
(VTR) CAD flow, in 2015 25th International Conference on Field Programmable Logic and
Applications (FPL) (2015), pp. 1–8

9. B. Grady, J.H. Anderson, Synthesizable heterogeneous FPGA fabrics, in 2018 International
Conference on Field-Programmable Technology (FPT) (2018), pp. 222–229

10. H.J. Liu, Archipelago - an open source FPGA with toolflow support (2014)
11. A. Li, D. Wentzlaff, Prga: an open-source FPGA research and prototyping framework, in

The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’21. (Association for Computing Machinery, New York, NY, USA, 2021), pp. 127–137.
[Online]. Available: https://doi.org/10.1145/3431920.3439294

12. D. Koch, N. Dao, B. Healy, J. Yu, A. Attwood, Fabulous: an embedded FPGA framework,
in The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’21. (Association for Computing Machinery, New York, NY, USA, 2021), pp. 45–56.
[Online]. Available: https://doi.org/10.1145/3431920.3439302

13. P. Mohan, O. Atli, O. Kibar, M. Zackriya, L. Pileggi, K. Mai, Top-down physical design of
soft embedded FPGA fabrics, in The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’21. (Association for Computing Machinery, New York,
NY, USA, 2021), pp. 1–10. [Online]. Available: https://doi.org/10.1145/3431920.3439297

14. X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, P.-E. Gaillardon, OpenFPGA: an open-source
framework for agile prototyping customizable FPGAs. IEEE Micro 40(4), 41–48 (2020)

15. J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr, S. Wang, T. Liu,
N. Ahmed, K.B. Kent, J. Anderson, J. Rose, V. Betz, VTR 7.0: next generation architecture
and cad system for FPGAs. ACM Trans. Reconfigurable Technol. Syst. 7(2) (2014). [Online].
Available: https://doi.org/10.1145/2617593

16. K.E. Murray, O. Petelin, S. Zhong, J.M. Wang, M. Eldafrawy, J.-P. Legault, E. Sha, A.G.
Graham, J. Wu, M.J.P. Walker, H. Zeng, P. Patros, J. Luu, K.B. Kent, V. Betz, VTR 8: high-
performance cad and customizable FPGA architecture modelling. ACM Trans. Reconfigurable
Technol. Syst. 13(2) (2020). [Online]. Available: https://doi.org/10.1145/3388617

17. J. Luu, Architecture-aware packing and cad infrastructure for field-programmable gate arrays.
Ph.D. dissertation, University of Toronto (2014)

18. X. Tang, E. Giacomin, A. Alacchi, B. Chauviere, P.-E. Gaillardon, OpenFPGA: an opensource
framework enabling rapid prototyping of customizable FPGAs, in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). (IEEE, 2019), pp. 367–
374

19. V. to Routing, Verilog-to-routing documentation (2022) [Online]. Available: https://docs.
verilogtorouting.org/en/latest/arch/

20. X. Tang, OpenFPGA documentation (2022). [Online]. Available: https://openfpga.readthedocs.
io/en/master/

21. I. Kuon, R. Tessier, J. Rose (2008)
22. X. Tang, E. Giacomin, G. De Micheli, P.-E. Gaillardon, Circuit designs of high-performance

and low-power rram-based multiplexers based on 4t(ransistor)1r(ram) programming structure.
IEEE Trans. Circ. Syst. I: Regular Papers 64(5), 1173–1186 (2017)

https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/

References 109

23. G. Gore, X. Tang, P.-E. Gaillardon, A scalable and robust hierarchical floorplanning to enable
24-hour prototyping for 100k-LUT FPGAs, in Proceedings of the 2021 International Sympo-
sium on Physical Design, ser. ISPD ’21. (Association for Computing Machinery, New York,
NY, USA, 2021), pp. 135–142. [Online]. Available: https://doi.org/10.1145/3439706.3447047

24. D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee, P. Pan, Architectural
enhancements in Stratix-III™and Stratix-IV™, in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’09. (Association for Computing
Machinery, New York, NY, USA, 2009), pp. 33–42. [Online]. Available: https://doi.org/10.
1145/1508128.1508135

25. E. Hung, Mind the (synthesis) gap: examining where academic FPGA tools lag behind industry,
in 2015 25th International Conference on Field Programmable Logic and Applications (FPL)
(2015), pp. 1–4

https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135

Part V
FPGA Application Design EDA

Chapter 8
High-Level Synthesis

Abstract High-level synthesis (HLS) is the process of compiling a software pro-
gram into a digital circuit. This chapter provides a view into the HLS design flow
and presents algorithms, tools, and methods to generate digital circuits from soft-
ware descriptions. It details FPGA-oriented HLS techniques, discusses recent HLS
advancements, and outlines the current challenges of HLS for FPGAs.

8.1 Overview

High-level synthesis (HLS) is the process of automatically compiling a high-level
software program (e.g., in C or C++) into a hardware design [1, 2]. HLS aims to
increase designer productivity by allowing a higher abstraction level that eases and
shortens the hardware design process. Furthermore, it intends to make hardware
design available to programmers without hardware design expertise (e.g., software
developers who wish to benefit from hardware parallelism) [1].

A standard HLS software-to-hardware flow is outlined in Fig. 8.1. The HLS fron-
tend is a typical software compiler that parses the input code and transforms it into
an optimized intermediate compiler representation. The remainder of the flow is
hardware-specific: the HLS tool schedules operations of the intermediate represen-
tation into clock cycles and determines the required resources to implement the
complete circuit; the end result is the description of the circuit at RTL (e.g., VHDL,
Verilog) level. The remainder of this section elaborates on this process.

8.1.1 From Software Program to Intermediate
Representation

Like a software compiler, an HLS tool parses the input software code and performs
syntax and type checks. It then transforms it into an intermediate representation (IR)
that typically describes the program in a graph or assembly form.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_8

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_8&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8
https://doi.org/10.1007/978-981-99-7755-0_8

114 8 High-Level Synthesis

Fig. 8.1 High-level synthesis software-to-hardware flow

Fig. 8.2 An example of a compiler intermediate representation, organized into a control/dataflow
graph

A standard way to represent producer-consumer relations among IR operations is
a dataflow or data dependence graph (DFG). In a DFG, all program operations are
represented as nodes and the data dependencies among them as edges. Conversely,
a control flow graph (CFG) captures the control flow (i.e., conditional execution)
of a program; it consists of basic blocks (BBs), connected by edges that represent
the transfer of control from one BB to another. Internally, BBs are straight code
sequences without any conditionals; all operations of a BB form a straight DFG that
executes only when the condition to enter the BB has been determined [3].

Figure 8.2 shows an example of a program organized in a control/data flow graph
(CDFG) which combines the concepts above in a hierarchical manner to describe
all control and data dependencies of the original program. The control flow edges,
connecting independent BBs, are shown in dashed. A portion of the datapath imple-

8.1 Overview 115

menting the loop body is shown in the figure; edges between operations indicate
data dependencies (i.e., producer-consumer relations). These concepts specify the
execution order of particular operations: a producer operation must execute before
its consumer; a BB of operations executes only after the condition to enter it through
the appropriate control flow edge has been determined. Thus, they have a key role in
scheduling, as we will discuss in the following sections.

The compiler frontend performs a variety of optimizations to make the IR as
efficient as possible, thus enabling parallelism opportunities in the later stages of
the HLS flow. For instance, it performs code motion to move computations from one
CFG portion to another, redundancy elimination to remove the computation of values
that have already been computed and can be used later in an unmodified form, and
tree balancing to reduce long computational chains into compact structures. Addi-
tionally, it analyzes the code to support and enable later optimizations; for instance,
liveness analysis determines the liveness of each variable and enables register allo-
cation, memory dependence analysis enables the optimization of memory accesses
and construction of efficient memory interfaces, and loop unrolling replicates the
loop body for spatial hardware parallelism [3].

8.1.2 From Intermediate Representation to Hardware Design

Until this point, the program representation was untimed. A central task of HLS is
to transform it into a timed representation that specifies the execution time of each
event in the resulting hardware implementation. Therefore, the HLS tool schedules
the operations of the IR into clock cycles while extracting as much parallelism as
possible from the code; simultaneously, it decides on the position of registers to meet

…
…

…
…

Inputs

+

+
Controller

*

_

Datapath
Memory & Steering Logic

Outputs

Fig. 8.3 An HLS-produced circuits is organized into a datapath of operations implementing the
functionality of the input program, memory, and steering logic to send data to and from the datapath,
and a controller that implements the schedule

116 8 High-Level Synthesis

the desired clock period target, maps operations onto the available FPGA resources,
and defines the circuit interfaces that maximize the memory bandwidth [2].

The resulting circuit is organized as shown in Fig. 8.3:

1. The datapath contains functional units implementing the operations of the original
code.

2. The memory elements (i.e., registers) store data items and the steering and mul-
tiplexing logic moves the data into the datapath and memories.

3. The controller, typically implemented as a finite state machine, dictates the oper-
ation schedule by producing enable signals for the registers and select signals
for the multiplexers; it orchestrates the steering of data to and from the circuit
(e.g., memory, input, and output ports) at appropriate times. Ultimately, the HLS
compiler produces an RTL description of the circuit that can then be passed down
to FPGA vendor tools for synthesis, placement, and routing [1].

8.2 Datapath Scheduling

Scheduling is the process of converting an untimed program representation into a
timed representation by assigning each operation of a program to a time slot—
typically, described in discrete time units, such as clock cycles. The duration of the
clock cycle directly determines the operating frequency of the circuit and the total
number of clock cycles determines the execution latency.

The HLS tool devises the operation schedule according to some optimization
objective (e.g., minimizing the latency to achieve high performance); as mentioned
in Sect. 8.1.2, it subsequently devises a controller that enforces this schedule by
triggering operations at appropriate times. The scheduling process can be uncon-
strained or constrained by a variety of resource, timing, and latency constraints,
which complexify the scheduling problem.

8.2.1 Unconstrained Scheduling

The simplest form of scheduling is without any constraints; we here describe two
complementary approaches.

As soon as possible (ASAP). ASAP scheduling aims to schedule operations in the
earliest possible time slot, i.e., as soon as all predecessors have been scheduled in
some preceding time step, with the goal of minimizing latency [4].

Figure 8.5 shows an example of an ASAP schedule for the DFG of Fig. 8.4.
Although not explicit in the figure, in the circuit implementation, each edge between
operations will require a register whenever it crosses from one time step to another, to
store the data that will be read on the following cycle. The resources (i.e., number of
functional units) that the circuit implementation will require are bound by the max-
imal number of concurrent operations (i.e., operations scheduled in the same time
step) of the same type, as they must execute on different functional units; operations

8.2 Datapath Scheduling 117

m1
+

_

* *
*

*

+

+

≪

*
m3

m4
m5

a1

a2

a3

s1

c1

m2

Fig. 8.4 A non-scheduled DFG of operations

Fig. 8.5 ASAP and ALAP schedule of the DFG in Fig. 8.4

executing in different times can reuse the same functional unit, as we will discuss in
Sect. 8.2.2.

As late as possible (ALAP). ALAP scheduling is complementary to ASAP: opera-
tions are scheduled as late as possible, starting from the sink of the graph and moving
toward the earlier time steps; an operation is scheduled as soon as all of its successors
have been scheduled [4].

Figure 8.5 contrasts the ALAP schedule with the ASAP schedule of the same
graph. Both schedules achieve the best possible (i.e., minimal) latency; some oper-
ations are scheduled in the same time step in both schedules, whereas others are
scheduled in a later step. The difference in operation start times between the ASAP
and the ALAP schedule is referred to as slack. If the slack of an operation is greater
than zero, it can be scheduled to another time slot without compromising the latency;
a slack of zero indicates that the operation is on a latency-defining path and, thus,
its movement would increase the latency. In this example, .a2 can be moved freely
between time slots 2 and 3; however, a movement of .a1 would shift all succeeding
operations and increase the latency to 5. The notion of slack is important when min-
imizing the resources under a latency constraint: it can be exploited to minimize the
number of concurrent operations of the same type without a latency penalty.

118 8 High-Level Synthesis

Fig. 8.6 A portion of an integer linear programming scheduling formulation for the example from
Fig. 8.5

8.2.2 Constrained Scheduling

In real-life situations, scheduling can be constrained due to a variety of factors that
impact the resulting schedule and its achievable latency. A common scheduling for-
mulation accounts for a fixed number of available resources, thus requiring the latency
and area to be traded off in different ways.

Integer linear programming (ILP). An exact scheduling problem is typically for-
mulated as an ILP problem. The constraints are formulated as a system of linear
constraints; the objective function minimizes latency under these constraints and the
resulting integer values represent the clock cycle in which each operation needs to
be scheduled [4].

Figure 8.6 shows examples of ILP constraints, formulated for the graph of Fig. 8.4
and assuming a latency bound of 5. In the equations, .xop,t is a binary variable indi-
cating whether operation op starts in time t. The constraints on the operation start
times specify that each operation can start only once (in the first equation, .m3 can
start in time 1 or in time 2). The sequencing constraints indicate the timing relations
between different operations (in the second equation, .m3 must start before its suc-
cessor. c1). The resource constraints specify the maximal number of units of the same
type in every time step (in the third equation, 2 multipliers). These constraints can
be used with different ILP objective functions—for instance, to minimize latency,
the objective function minimizes the start times of all operations.

Scheduling under resource constraints is an NP-hard problem; thus, in addition to
exact algorithms, there are many approximate ways to identify an acceptable solution
efficiently for complex graphs.

List scheduling. The idea of list scheduling is to prioritize the scheduling of certain
operations based on an urgency metric. Typical examples include the length of the
path from the operation to the sink of the graph (where a longer path corresponds to
higher urgency) or slack (where a lower slack corresponds to higher urgency).

Figure 8.7 shows a schedule obtained through list scheduling by prioritizing oper-
ations on the longest path to the sink and a resource constraint of 2 multipliers (the
first two scheduling steps are indicated below the schedule), contrasted with the same

8.2 Datapath Scheduling 119

Fig. 8.7 List scheduling given a resource constraint of 2 multipliers (left) and 1 multiplier (right)

Fig. 8.8 Optimizing timing through operation pipelining (left) and chaining (right)

scheduling strategy with a constraint of 1 multiplier. Tightening the resource con-
straint comes at a latency penalty, which is a typical area-performance trade-off of
constraint scheduling.

List scheduling is a heuristic approach: the information available in each particular
step provides no information on further steps and the potential conflicts that high-
priority operations will encounter. Thus, minimal latency is not guaranteed, but its
low complexity of O(n) makes it an attractive solution for complex applications [4].

8.2.3 Timing Optimizations

Another timing aspect that HLS scheduling typically exploits is the ability to adjust
the clock period of the circuit by adding or removing registers and trading off latency
and the clock period in different ways. As shown in Fig. 8.8, pipelining inserts reg-
isters to break operations or paths into multiple time slots to reduce the circuit’s

120 8 High-Level Synthesis

Fig. 8.9 Left-edge algorithm for resource sharing

critical path, at a possible latency expense. Conversely, operation chaining fits mul-
tiple operations into a single clock cycle to execute combinationally; it saves registers
and latency on combinational paths that are not the critical path of the circuit.

These optimizations are, thus, also included in modern HLS scheduling formula-
tions as timing constraints, on top of the resource constraints discussed in the previous
section.

8.2.4 Resource Binding and Sharing

Resource binding is the process of mapping operations of the program to physical
resources. It can be accompanied by resource sharing to assign a single resource
to multiple non-concurrent operations [4]. Binding and sharing can be applied on
a scheduled or non-scheduled graph; we here illustrate the problem on a scheduled
graph.

To identify which operations are compatible to be implemented on the same
resource, operations can be represented using compatibility and conflict graphs. In
a compatibility graph, the edges denote compatible, i.e., non-concurrent operation
pairs, that can be implemented on the same resource. The sharing problem can then be
solved by clique partitioning, where each resulting clique corresponds to a resource
instance; optimal sharing is achieved by partitioning into a minimal clique number.
The dual problem is to reason about the conflict graph. Edges denote conflicting
operations and the sharing problem can be solved by graph coloring; optimal sharing
is achieved by coloring with a minimal color number, where each color represents
the resource instance (see right of Fig. 8.9).

In general, vertex coloring is an intractable problem. Yet, if the graph is represented
as an interval graph, the coloring can be achieved in polynomial time. This is the
intuition behind the left-edge algorithm [4] that formulates the sharing problem on
an interval graph. The input to the algorithm is a set of execution intervals for each
operation. The rationale is to sort the intervals in a list by the left edge (i.e., based
on their earliest possible start times) and assign non-overlapping intervals to a single
color; when all intervals of a color are exhausted, a new color is introduced and the
procedure repeated.

8.3 Extracting Parallelism Through HLS Scheduling 121

An example is shown in Fig. 8.9. Vertex.v1 is assigned the first color; it is followed
by .v6 and .v4 that overlap with the interval of .v1 and, thus, require new colors. All
other vertices can be assigned to existing intervals, resulting in a total of three colors
(i.e., three functional units, each of them executing the operations of a single color).

Although we here discussed sharing and binding of functional units, the same
applies to registers, memories, buses, and other resource types; state-of-the-art bind-
ing and scheduling HLS formulations consider all these aspects.

8.3 Extracting Parallelism Through HLS Scheduling

In this section, we discuss the state-of-the-art HLS scheduling algorithms for FPGAs.
We present the concept of system of difference constraints (SDC) modulo scheduling
that HLS tools today rely on; we outline polyhedral techniques for memory and loop
optimizations. We then discuss the inability of these techniques to handle irregular
behavior and more recent solutions to overcome these limitations.

8.3.1 SDC-Based Modulo Scheduling

The techniques of Sect. 8.2 minimize the latency of a single datapath, but they are
not sufficient to extract parallelism when datapaths repeat (e.g., in a loop execution):
simply executing one iteration after another in a sequential way would result in under-
utilized datapath resources and low performance, as shown on the left of Fig. 8.10:
the total latency corresponds to the sum of latencies of individual datapaths,.N · Lat ,
where .N is the number of iterations and .Lat the latency of a single datapath.

Loop pipelining is one of the main performance optimization techniques in HLS—
it allows the overlapping of loop iterations such that the datapath is used in the best
possible way while honoring all data, control, and memory dependencies of the
program. Pipelining originates from modulo scheduling techniques for Very Long

Fig. 8.10 A non-pipelined (left) and a perfectly pipelined (right) schedule with an initiation interval
of 1

122 8 High-Level Synthesis

Instruction Word (VLIW) processors [5], that aim to restructure the code to exploit
instruction-level parallelism among loop iterations. As in the case of VLIWs and
as discussed before, it is up to the HLS compiler to devise the schedule and create
a controller (i.e., a finite state machine) that triggers operations according to this
schedule.

A pipeline is characterized by its initiation interval (II), defined as the number
of clock cycles between consecutive loop iterations. The best possible II is equal
to 1 and indicates that a new iteration starts on every consecutive clock cycle (this
is the case for the schedule on the right of Fig. 8.10). The total pipeline latency is
now.(N − 1) · II + Lat . The II increases in the presence of data, memory, or control
dependencies between iterations, which postpone the start time of the next iteration
and thus lower performance. Similarly, if a dependency is undeterminable at compile
time, the HLS tool must assume its presence and increase the II accordingly; we will
discuss this scenario in Sect. 8.3.3.

State-of-the-art commercial and academic HLS solutions today rely on SDC mod-
ulo scheduling [6– 8] to achieve high-throughput pipelines. The idea is to describe all
scheduling constraints as a system of difference constraints in the form .x − y ≤ b,
where . x and . y are integer variables and . b is a constant, and formulate a linear pro-
gramming problem that minimizes the II under these constraints. Such a formulation
supports a wide variety of constraints, such as data dependencies among opera-
tions, control dependencies between BBs, frequency, latency, and various resource
constraints. The SDC scheduling problem is typically solved iteratively: the HLS
tool attempts to find a solution for the desired II; in case it is not found, the II is
incremented and the scheduling procedure is repeated [7].

8.3.2 Polyhedral Analysis and Optimization

HLS tools must handle the scheduling of complex programs; thus, they need to
describe program features in a compact, parametric, and general way.

Polyhedral analysis is a powerful compiler technique for describing program fea-
tures such as loop properties (e.g., loop bounds, iterations, and strides) and memory
accesses (e.g., memory access patterns and dependencies). It is used to reason about
Static Control Parts (SCoPs) of the program, i.e., regions in which all control flow
decisions and memory accesses are known at compile time. Within a SCoP, all loops
and memory accesses can be described using integer polyhedra [9, 10].

Figure 8.11 shows examples of loops that are SCoPs: they have affine expressions
in induction variables and parameters for loop bounds, control flow decisions, and
memory accesses. The loops at the bottom of the figure cannot be described as SCoPs
nor optimized with polyhedral analysis. In addition to loop properties, polyhedral
techniques describe the memory access pattern of each load and store instruction, as
illustrated in Fig. 8.12. Together with the schedule, this information is key to identify
all read-after-write (RAW), write-after-read (WAR), and write-after-write (WAW)
dependencies of the program.

8.3 Extracting Parallelism Through HLS Scheduling 123

Fig. 8.11 Loops that can be described as SCoPs and optimized with polyhedral analysis (top), and
loops that are not SCoPs (bottom)

Fig. 8.12 A parametric description of the iterations and memory accesses of a SCoP

Program transformations. The goal of polyhedral optimization is to simplify the
program and expose parallelism by reordering loops and loop iterations and changing
the program’s memory access patterns. The optimizations are performed by applying
linear transformations on SCoPs such that the program semantics are preserved:
independent loop iterations can be reordered and restructured, but those containing
dependent references (e.g., memory dependencies) must be executed in the same
order as in the original program [9, 10].

Polyhedral techniques are useful for optimizing HLS programs with statically
determinable properties, as they can uncover new parallelism opportunities [10] that
scheduling algorithms such as SDC scheduling (see Sect. 8.3.1) can exploit. However,
they cannot be applied in general-purpose programs with irregular behaviors that
cannot be captured by SCoPs.

8.3.3 Dynamic Scheduling

The techniques from the previous sections rely on the HLS compiler to devise the
best possible schedule; while this approach is effective when critical information
on program execution and behavior is available at compile time, it fails in cases
with statically undeterminable memory accesses, variable operation latencies, and
unpredictable control flow. In such situations, the HLS tool must assume the worst-

124 8 High-Level Synthesis

Fig. 8.13 A static schedule (top), achieved by a standard HLS tool, and a dynamic schedule
(bottom), which achieves higher parallelism by resolving memory accesses dynamically at circuit
runtime. The schedules are realized by the circuits shown in Fig. 8.14

Fig. 8.14 A portion of a statically scheduled circuit (left) and a dynamically scheduled circuit
(right), implementing the behavior of the code in Fig. 8.13

case scenario and devise the schedule accordingly, which often results in suboptimal
throughput and low performance.

An example of one such situation is shown in Fig. 8.13. The code in the figure
has indirect memory accesses to array .hist ; depending on the values of . x , there
may or may not be a RAW dependency between a load and a store from a previous
iteration. A standard HLS tool must assume the presence of a dependency, devise the
appropriate scheduling constraint (similar to the sequencing constraint in Fig. 8.6),
and create a conservative schedule (top of the figure), assuming that a dependency
is always present.

The most general way to avoid the limitations of static scheduling is to forgo
operation triggering through a pre-planned, statically scheduled controller (as shown
on the left of Fig. 8.14) that dictates the exact execution time of each operation,
but to make scheduling decisions as the circuit runs: as soon as all conditions for

8.3 Extracting Parallelism Through HLS Scheduling 125

execution are satisfied (e.g., the operands are available or critical control decisions
are resolved), an operation starts. Dataflow circuits [11– 13] are a natural method to
realize such behavior. They are built out of units that implement latency-insensitivity
by communicating with their predecessors and successors through pairs of handshake
control signals, which indicate the availability of a new piece of data from the source
unit and the readiness of the target unit to accept it (as illustrated on the right of
Fig. 8.14). The data is propagated from unit to unit as soon as memory and control
dependencies allow it and stalled by the handshaking mechanism otherwise, thus
effectively devising a dynamic schedule at circuit runtime. Such a schedule is shown
at the bottom of Fig. 8.13: the pipeline is stalled only when a dependency actually
exists, otherwise, the loads and stores to array hist may execute out of order for
performance benefits.

Several works generate dataflow circuits from functional and imperative software
program representations [14– 16]. The most recent effort in the context of HLS for
FPGAs is Dynamatic [16, 17], a complete and open-source HLS compiler that pro-
duces high-throughput dataflow circuits from C/C++ code. It incorporates features
and compiler transformations to make dataflow circuits truly competitive in the con-
text of modern HLS. The ability to adapt the schedule at runtime offers completely
new optimization opportunities: memory dependencies can be resolved at runtime
and key control decisions can be speculated on, just like in superscalar processors.
Thus, dynamic HLS shows significant speedups when contrasted to state-of-the-art
HLS tools [18, 19].

8.3.3.1 Pipelining and Resource Sharing in the Absence of a Static
Schedule

Dataflow circuits must benefit from the same performance and area optimization
opportunities as their statically scheduled counterparts; yet, classic scheduling and
sharing algorithms described in Sect. 8.2 are not applicable in this context.

In contrast to devising a predetermined pipeline with a fixed II (e.g., by SDC
modulo scheduling, as described in Sect. 8.3.1), the performance of dataflow cir-
cuits can be optimized via slack matching: inserting pipeline buffers (i.e., FIFOs)
of appropriate sizes to prevent stalls and increase parallelism [20, 21], as shown on
the left of Fig. 8.15. Slack matching can be combined with frequency optimization
to achieve high-throughput synchronous dataflow circuits that honor the required
clock period constraint [22, 23]. Similarly, in dataflow circuits, the sharing suitabil-
ity of operations depends on runtime decisions and schedule adaptations—classic
resource sharing techniques that rely on compile time concurrency information (see
Sect. 8.2.4) are therefore not applicable. Thus, instead of reasoning about the exact
execution times of each operator, dynamic HLS relies on the information on aver-
age unit utilization in the steady state of the system and determines what to share
accordingly [24]; a sharing implementation of a dataflow unit is shown on the right
of Fig. 8.15. These optimizations are key to making dynamic HLS performance- and
resource-competitive with static HLS designs.

126 8 High-Level Synthesis

stall

ready

FIFO

Store x[i]

*

y
Load x[i]

Fork
Input ordering

Branch

* FIFO

buff buff

Fig. 8.15 Pipelining dataflow circuits by inserting FIFOs (left) and a mechanism for sharing
dataflow units (right)

Fig. 8.16 A load-store queue for dynamic memory dependency resolution (left) and a distributed
speculation mechanism for dataflow circuits (right)

8.3.3.2 Dynamic Scheduling and Irregular Memory Accesses

When memory dependencies are statically unknown, standard HLS must assume
the presence of the dependency—in terms of the scheduling algorithms above, a
data dependency constraint conservatively dictates that the two accesses must be
sequentialized. In contrast, dataflow circuits determine the presence or absence of a
dependency during runtime using load-store queues (LSQs) [25– 27], such as the one
on the left of (Fig. 8.16). They compare the possibly conflicting addresses at runtime
and enforce the access order only when they are dependent (e.g., in the example
of Fig. 8.13, the LSQ postpones the load of the second iteration until the previous
store, that targets the same address, completes); if the accesses are independent, the
LSQ allows them to execute out of order (this is the case for the load of the third
iteration, that executes before the preceding store). This scheduling flexibility and
its performance benefits are impossible in static HLS.

8.4 Current Status and Outlook 127

8.3.3.3 Dynamic Scheduling and Speculative Execution

Speculation is a classic superscalar processor feature that can significantly improve
the performance of loops where the loop condition takes a long time to compute by
tentatively starting a new loop iteration before the loop condition is known. In static
HLS, this optimization is limited to only trivial cases and otherwise hindered by the
inability of the static schedule to revert the execution to a prior state in case of a
misspeculation. Instead, dataflow circuits support generic forms of speculation [28]:
speculative data travels through the circuit and dedicated components implement a
distributed squash-and-replay mechanism (as shown on the right of Fig. 8.16), con-
ceptually similar to that of superscalar processors, which achieves high parallelism
in control-dominated applications.

8.3.3.4 VLIWs Versus Superscalars

Dynamic scheduling is in strong contrast to the strategy of Sect. 8.3.1 and in direct
analogy to the contrast of VLIW and superscalar processor scheduling: In VLIWs, it
is up to the compiler to devise the fixed schedule, which avoids the need to perform
dependency checks at runtime (as the schedule guarantees that they are honored)
and results in simpler hardware implementations [5, 29]. In contrast, superscalar
processors [30] rely on more complex hardware mechanisms to resolve memory
and control dependencies at runtime as well as to speculate on critical decisions;
this flexibility makes them applicable to a wider variety of situations, which is why
they are the generally accepted solution for general-purpose software applications.
The situation is the same with static and dynamic scheduling in HLS: static HLS
achieves great parallelism in particular application classes, where techniques such
as polyhedral analysis and SDC modulo scheduling are successful, but irregular
software programs require the flexibility of dynamic scheduling [18].

8.4 Current Status and Outlook

In this section, we provide an overview of current trends of HLS for FPGAs. We
discuss typical usages of HLS and active open-source HLS frameworks, and outline
some of the challenges that modern HLS is facing.

8.4.1 HLS Frameworks

In this section, we provide an overview of recent HLS frameworks targeting FPGAs.
C and OpenCL-based HLS frameworks. Apart from commercial HLS flows for

FPGAs, such as AMD (formerly Xilinx) Vitis HLS [31] and Intel HLS [32], numer-

128 8 High-Level Synthesis

ous open-source HLS projects are under active development. LegUp HLS [33] was
originally developed as a complete open-source HLS flow, supporting C++ as well as
task-oriented language constructs (e.g., OpenMP and Pthreads) [34]; it has recently
been acquired by Microchip and is now closed-source. Bambu [35] is an open-source
HLS research framework that supports a variety of FPGA backends and provides sup-
port for verification and debugging. Dynamatic [17] is an open-source HLS tool that
produces dynamically scheduled dataflow circuits from C/C++ and supports fea-
tures such as dynamic memory dependency resolution and speculation. DASS [36]
has been developed on top of Dynamatic and Vitis HLS to combine the benefits of
static and dynamic scheduling.

Compiler infrastructures. A majority of recent HLS flows rely on the well-
established LLVM [37] compiler as a frontend to obtain an optimized intermediate
representation from C/C++. LLVM provides a single IR describing the program as
a CDFG, as described in Sect. 8.1.1; this serves as a starting point to implement
either static or dynamic scheduling. Recently, MLIR [38] emerged as an alternative
to LLVM; its compiler infrastructure allows the definition and composition of mul-
tiple IRs (also referred to as dialects), thus providing modularity and extensibility at
different levels of abstraction. The CIRCT project [39] leverages MLIR to provide
a variety of hardware-oriented features and abstractions; it incorporates some of the
main transformations of Dynamatic, new IRs for hardware (e.g., Calyx [40]), and
supports HLS code transformations (e.g., ScaleHLS, [41]). All this, together with a
C-based frontend (i.e., Polygeist [42]), will likely serve as a basis for the development
of future open-source HLS flows.

Domain-Specific Languages for HLS. Many HLS efforts explore domain-specific
languages as an HLS frontend to raise the level of abstraction, increase produc-
tivity, and ease the expression of particular domain-specific constructs [43]. Popu-
lar DSLs target domains where HLS is successful, such as image processing (e.g.,
Halide [44– 46]), machine learning (e.g., HeteroCL [47]), and streaming applications
(e.g., Spatial [48]). Most DSLs use an existing C-based HLS flow as a backend and
thus ultimately rely on the HLS techniques described in this chapter.

8.4.2 HLS Code Restructuring and Annotations

Thanks to the HLS frameworks and languages above, HLS is gaining popularity
in domains such as machine learning, image processing, graph processing, video
transcoding, and networking [49]. However, HLS is still facing critical adoption chal-
lenges due to the difficulties of extracting the desired levels of performance: despite
the raised programming abstractions, HLS programmers still need to restructure the
code and annotate it with pragmas to guide the HLS tool in achieving good paral-
lelism and the desired hardware characteristics. This typically requires significant
hardware design expertise and makes HLS unavailable to non-expert users [49, 50].

Consider the example in Fig. 8.17, illustrating a naively written code to add a
set of integers held in external memory and store back the result, compared to a

8.4 Current Status and Outlook 129

Fig. 8.17 HLS code restructuring to achieve high parallelism. Reproduced from George et al. [43]

restructured code achieving significantly better performance: the restructured code
accounts for the data widths, memory interface communication, and other architec-
tural aspects, thus allowing the HLS scheduler to exploit the parallelism available
in the computation. This code writing style is not necessarily accessible to software
programmers who do not have knowledge of the underlying architecture. Although
several works attempt to automate the pragma insertion process [51, 52] and despite
the ability of the DSLs to hide many hardware-oriented details, the challenges of
HLS programming are still one of the main factors preventing its broad usage.

8.4.3 Design Space Exploration

All the scheduling possibilities and constraints discussed in the previous sections, as
well as the large design space achievable by different restructurings and annotations,
create a complex design space with a variety of non-trivial design options: loops can
be pipelined with different initiation intervals and unrolled with different factors,
resource constraints can be formulated for different FPGA resource types (e.g., DSPs,
BRAMs, etc.); the design can be optimized for throughput or latency, as well as tuned
to different frequencies. This forms a multi-objective optimization problem that aims
to minimize a set of, possibly conflicting, design parameters; the result is a set of
points forming a Pareto frontier [53].

Due to the large search space, it is difficult to evaluate design quality and to under-
stand whether the Pareto-optimal points have actually been found or approached.
Secondly, the design space exploration itself requires the evaluation of particular
points to continue the exploration in the appropriate direction. Some approaches
synthesize each point with HLS and evaluate it on the fly (at the expense of long
runtimes), whereas others build analytical models to estimate the area and perfor-

130 8 High-Level Synthesis

mance (which may be less accurate, but faster) [53, 54]. Finally, different HLS tools
have different implementation strategies and design spaces, so it is challenging to
directly apply the notions of one tool’s DSE to the other [54]. With a plethora of
new HLS techniques and relevant metrics arising, DSE will certainly increase in
complexity—the ability to handle it efficiently will be key to navigate through this
increasingly complex design space.

8.4.4 Functional and Formal Verification in HLS

HLS tools typically rely on functional verification of a particular circuit through
hardware simulation and software/hardware cosimulation [55]. However, perform-
ing exhaustive hardware simulations may become unfeasible or extremely time-
consuming as designs increase in complexity. Furthermore, the lack of formal proof
on the correctness of particular compilation steps and the resulting hardware modules
prevents the adoption of HLS in domains where design iterations are significantly
more expensive [56].

Recent efforts aim to formally verify the HLS process [57, 58]. Others employ
formal methods to optimize HLS-produced circuits: Cheng et al. use an SMT-based
solver to improve the memory arbitration in HLS [59]. Geilen et al. employ model
checking for buffering coarse-grain dataflow graphs [60]. Xu et al. use BDD-based
reachability analysis [61] and induction [62] to prove particular behavioral properties
of HLS-produced circuits and use them to improve their hardware implementation.
Such formal methods are key to comprehensively reason about HLS transformations
and the resulting circuits.

8.4.5 Frequency Estimates in HLS

A key task of HLS scheduling is to break combinational paths with registers and
ensure that the circuit meets the target clock frequency, as discussed in Sect. 8.2.3.
Yet, when placing registers, HLS typically relies on pre-characterized timing infor-
mation [63] which fails to account for the effects of FPGA synthesis, placement, and
routing, causing several undesired effects:

1. The overestimated unit latencies may cause conservative pipelining and unneeded
resource overheads (due to the redundant register placements and the prevention
of logic optimizations across register-separated pipeline stages).

2. The same conservative pipelining may unnecessarily decrease parallelism and,
thus, performance, if a register is redundantly placed on a throughput-critical
cycle.

References 131

3. During placement and routing, the backend of the FPGA flow can introduce delay
variations caused by interconnect delays that are difficult to estimate and cause
frequency discrepancies from the target [49].

Recent works extend HLS scheduling formulations, such as the ones in Sect.
8.3, with physical design objectives; they aim to make HLS optimizations aware
of the physical layout of the FPGA by including LUT mapping information into
the scheduling problem [63– 65] and estimating routing congestion and interconnect
delays [66, 67]. This information is critical to advance HLS design quality and make
them comparable to hand-optimized RTL [49, 50].

References

1. M. Hutton, V. Betz, J. Anderson, FPGA synthesis and physical design, in Electronic Design
Automation for IC Implementation, Circuit Design, and Process Technology (CRC Press, 2017),
pp. 395–436

2. R. Kastner, J. Matai, S. Neuendorffer, Parallel programming for FPGAs (2018). ArXiv e-prints
arXiv:1805.03648

3. L. Torczon, K. Cooper, Engineering a Compiler, 2nd ed. (Morgan Kaufmann, 2011)
4. G. De Micheli, Synthesis and Optimization of Digital Circuits (McGraw-Hill, 1994)
5. B.R. Rau, Iterative modulo scheduling. Int. J. Parallel Programm. 24(1), 3–64 (1996)
6. J. Cong, Z. Zhang, An efficient and versatile scheduling algorithm based on SDC formulation,

in Proceedings of the 43rd Design Automation Conference (San Francisco, CA, 2006) pp.
433–438

7. Z. Zhang, B. Liu, SDC-based modulo scheduling for pipeline synthesis, in Proceedings of the
32nd International Conference on Computer-Aided Design (San Jose, CA, 2013), pp. 211–218.

8. A. Canis, S.D. Brown, J.H. Anderson, Modulo SDC scheduling with recurrence minimiza-
tion in high-level synthesis, in Proceedings of the 23rd International Conference on Field-
Programmable Logic and Applications (Munich, 2014), pp. 1–8

9. L. Pouchet, P. Zhang, P. Sadayappan, J. Cong, Polyhedral-based data reuse optimization for
configurable computing, in Proceedings of the 21st ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (Monterey, CA, 2013), pp. 29–38

10. W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, J. Cong, Improving high level synthesis optimiza-
tion opportunity through polyhedral transformations, in Proceedings of the 21st ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (Monterey, CA, 2013), pp. 9–18

11. L.P. Carloni, K.L. McMillan, A.L. Sangiovanni-Vincentelli, Theory of latency-insensitive
design. IEEE Trans. Comput.-Aided Des. Integrated Circ. Syst. 20(9), 1059–1576 (2001)

12. J. Cortadella, M. Kishinevsky, B. Grundmann, Synthesis of synchronous elastic architectures,
in Proceedings of the 43rd Design Automation Conference (San Francisco, CA, 2006), pp.
657–662

13. S.A. Edwards, R. Townsend, M.A. Kim, Compositional dataflow circuits, in Proceedings of the
15th ACM-IEEE International Conference on Formal Methods and Models for System Design
(Vienna, 2017), pp. 175–184

14. R. Townsend, M.A. Kim, S.A. Edwards, From functional programs to pipelined dataflow cir-
cuits, in Proceedings of the 26th International Conference on Compiler Construction, (Austin,
TX, 2017), pp. 76–86.

15. M. Budiu, S.C. Goldstein, Pegasus: An Efficient Intermediate Representation (Carnegie Mellon
University, Tech. Rep. CMU-CS-02-107, 2002)

16. L. Josipović, R. Ghosal, P. Ienne, Dynamically scheduled high-level synthesis, in Proceed-
ings of the 26th ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(Monterey, CA, 2018), pp. 127–136.

arXiv:1805.03648
 -318 22613 a -318 22613 a

http://arxiv.org/abs/1805.03648

132 8 High-Level Synthesis

17. L. Josipović, A. Guerrieri, P. Ienne, Dynamatic: From C/C++ to dynamically scheduled circuits,
in Proceedings of the 28th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Seaside, CA, 2020), pp. 1–10

18. L. Josipović, A. Guerrieri, P. Ienne, Synthesizing general-purpose code into dynamically sched-
uled circuits. IEEE Circ. Syst. Magaz. 21(1), 97–118 (2021)

19. L. Josipović, A. Guerrieri, P. Ienne, From C/C++ code to high-performance dataflow circuits.
IEEE Trans. Comput.-Aided Des. Integrat. Circ. Syst. 41(7), 2142–2155 (2022)

20. G. Venkataramani, S.C. Goldstein, Leveraging protocol knowledge in slack matching, in Pro-
ceedings of the 25th International Conference on Computer-Aided Design (San Jose, CA,
2006), pp. 724–729

21. M. Najibi, P.A. Beerel, Slack matching mode-based asynchronous circuits for average-case
performance, in Proceedings of the 32nd International Conference on Computer-Aided Design
(San Jose, CA, 2013), pp. 219–225

22. L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, J. Cortadella, Buffer placement and sizing
for high-performance dataflow circuits, in Proceedings of the 28th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (Seaside, CA, 2020), pp. 186–196

23. C. Rizzi, A. Guerrieri, P. Ienne, L. Josipović, A comprehensive timing model for accurate
frequency tuning in dataflow circuits, in Proceedings of the 22nd International Conference on
Field-Programmable Logic and Applications (Belfast, UK, 2022), pp. 375–383

24. L. Josipović, A. Marmet, A. Guerrieri, P. Ienne, Resource sharing in dataflow circuits, in Pro-
ceedings of the 30th IEEE Symposium on Field-Programmable Custom Computing Machines
(New York, 2022), pp. 1–9

25. L. Josipović, P. Brisk, P. Ienne, An out-of-order load-store queue for spatial computing. ACM
Trans. Embedded Comput. Syst. 16(5s), 125:1–125:19 (2017)

26. L. Josipović, A. Bhattacharyya, A. Guerrieri, P. Ienne, Shrink it or shed it! minimize the use
of LSQs in dataflow designs, in Proceedings of the IEEE International Conference on Field
Programmable Technology (Tianjin, 2019), pp. 197–205

27. J. Liu, C. Rizzi, L. Josipović, Load-store queue sizing for efficient dataflow circuits, in Pro-
ceedings of the IEEE International Conference on Field Programmable Technology (Hong
Kong, 2022), pp. 1–9

28. L. Josipović, A. Guerrieri, P. Ienne, Speculative dataflow circuits, in Proceedings of the 27th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, (Seaside, CA,
Feb. 2019), pp. 162–71.

29. M.S. Lam, Software pipelining: an effective scheduling technique for VLIW machines, in Pro-
ceedings of the 1988 ACM Conference on Programming Language Design and Implementation
(Atlanta, GA, 1988), pp. 318–328

30. J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, 5th ed. (Mor-
gan Kaufmann, 2011)

31. Vitis High-Level Synthesis User Guide, (AMD, 2022). [Online]. Available: https://docs.xilinx.
com/r/en-US/ug1399-vitis-hls

32. Intel HLS Compiler Pro Edition Reference Manual, (Intel, 2022). [Online]. Available:
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-
reference-manual.html

33. A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S.D. Brown,
J.H. Anderson, LegUp: an open-source high-level synthesis tool for FPGA-based proces-
sor/accelerator systems,. ACM Trans Embedded Comput. Syst. 13(2), 24:1–24:27 (2013)

34. J. Choi, S. Brown, J. Anderson, From software threads to parallel hardware in high-level synthe-
sis for FPGAs, in Proceedings of the IEEE International Conference on Field Programmable
Technology (Kyoto, 2013), pp. 270–277

35. F. Ferrandi, V.G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, M. Lattuada, M. Minutoli,
C. Pilato, A. Tumeo, Bambu: an open-source research framework for the high-level synthesis
of complex applications, in Proceedings of the 58th Design Automation Conference (Virtual,
2021), pp. 1327–1330

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-3/pro-edition-reference-manual.html

References 133

36. J. Cheng, L. Josipović, G.A. Constantinides, P. Ienne, J. Wickerson, Combining dynamic and
static scheduling in high-level synthesis, in Proceedings of the 28th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (Seaside, CA, 2020), pp. 288–298

37. http://www.llvm.org, The LLVM Compiler Infrastructure, (2018). [Online]. Available: http://
www.llvm.org

38. https://mlir.llvm.org/, Multi-Level IR Compiler Framework, (2020). [Online]. Available:
https://mlir.llvm.org/

39. https://github.com/llvm/circt, CIRCT IR Compiler and Tools, (2020). [Online]. Available:
https://github.com/llvm/circt

40. R. Nigam, S. Thomas, Z. Li, A. Sampson, A compiler infrastructure for accelerator genera-
tors, in Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Virtual, 2021), pp. 804–817

41. H. Ye, C. Hao, J. Cheng, H. Jeong, J. Huang, S. Neuendorffer, D. Chen, ScaleHLS: a new
scalable high-level synthesis framework on multi-level intermediate representation, in Pro-
ceedings of the IEEE International Symposium on High-Performance Computer Architecture
(Seoul, 2022), pp. 741–755

42. W.S. Moses, L. Chelini, R. Zhao, O. Zinenko, Polygeist: raising C to polyhedral MLIR, in
Proceedings of the ACM International Conference on Parallel Architectures and Compilation
Techniques (Virtual, 2021), pp. 45–59

43. N. George, H. Lee, D. Novo, T. Rompf, K. Brown, A. Sujeeth, M. Odersky, K. Oluko-
tun, P. Ienne, Hardware system synthesis from domain-specific languages, in Proceedings of
the 23rd International Conference on Field-Programmable Logic and Applications (Munich,
2014), pp. 1–8

44. J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, S. Amarasinghe, Halide: a lan-
guage and compiler for optimizing parallelism, locality, and recomputation in image processing
pipelines. ACM Sigplan Notices 48(6), 519–530 (2013)

45. J. Li, Y. Chi, J. Cong, HeteroHalide: from image processing DSL to efficient FPGA acceleration,
in Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (Seaside, CA, 2020), pp. 51–57.

46. J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, M. Horowitz, Programming
heterogeneous systems from an image processing DSL. ACM Trans. Arch. Code Opt. 14(3),
1–25 (2017)

47. Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, Z. Zhang, HeteroCL: a multi-
paradigm programming infrastructure for software-defined reconfigurable computing, in Pro-
ceedings of the 27th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Seaside, CA, 2019), pp. 242–251

48. D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao, L. Nardi,
A. Pedram, C. Kozyrakis et al., Spatial: a language and compiler for application accelerators,
in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Philadelphia, PA, 2018), pp. 296–311.

49. J. Cong, J. Lau, G. Liu, S. Neuendorffer, P. Pan, K. Vissers, Z. Zhang, FPGA HLS today:
successes, challenges, and opportunities. ACM Trans. Reconfigurable Tech. Syst. 15(4), 1–42
(2022)

50. Y.-H. Lai, E. Ustun, S. Xiang, Z. Fang, H. Rong, Z. Zhang, Programming and synthesis for
software-defined FPGA acceleration: status and future prospects. ACM Trans. Reconf. Tech.
Syst. 14(4), 1–39 (2021)

51. J. Cong, M. Huang, P. Pan, Y. Wang, P. Zhang, Source-to-source optimization for HLS. in
FPGAs for Software Programmers (Springer, 2016), pp. 137–163.

52. J. Lau, A. Sivaraman, Q. Zhang, M.A. Gulzar, J. Cong, M. Kim, HeteroRefactor: refactoring
for heterogeneous computing with FPGA, in 2020 IEEE/ACM 42nd International Conference
on Software Engineering, (Seoul, 2020), pp. 493–505

53. B.C. Schafer, Z. Wang, High-level synthesis design space exploration: past, present, and future.
IEEE Trans. Comput.-Aided Des. Int. Circ. Syst. 39(10), 2628–2639 (2020)

http://www.llvm.org
http://www.llvm.org
http://www.llvm.org
http://www.llvm.org
https://mlir.llvm.org/
https://mlir.llvm.org/
https://mlir.llvm.org/
https://mlir.llvm.org/
https://github.com/llvm/circt
https://github.com/llvm/circt
https://github.com/llvm/circt
https://github.com/llvm/circt
https://github.com/llvm/circt

134 8 High-Level Synthesis

54. A. Sohrabizadeh, C.H. Yu, M. Gao, J. Cong, AutoDSE: enabling software programmers to
design efficient FPGA accelerators. ACM Trans. Des. Automat. Electron. Syste. 27(4), 1–27
(2022)

55. Vivado High-Level Synthesis, (Xilinx Inc., 2018). [Online]. Available: http://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html

56. J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, Z. Zhang, High-level synthesis for
FPGAs: from prototyping to deployment. IEEE Trans. Comput.-Aided Des. Int. Circ. Syst.
30(4), 473–491 (2011)

57. Y. Herklotz, Z. Du, N. Ramanathan, J. Wickerson, An empirical study of the reliability of
high-level synthesis tools, in 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (2021), pp. 219–223

58. F. Faissole, G.A. Constantinides, D. Thomas, Formalizing loop-carried dependencies in Coq
for high-level synthesis, in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines, (2019), pp. 315–315

59. J. Cheng, S.T. Fleming, Y.T. Chen, J. Anderson, J. Wickerson, G.A. Constantinides, Efficient
memory arbitration in high-level synthesis from multi-threaded code. IEEE Trans. Comput.
71(4), 933–946 (2022)

60. M. Geilen, T. Basten, S. Stuijk, Minimising buffer requirements of synchronous dataflow graphs
with model checking, in Proceedings of the 42nd Design Automation Conference (Anaheim,
CA, 2005), pp. 819–824

61. J. Xu, E. Murphy, J. Cortadella, L. Josipović, Eliminating excessive dynamism of dataflow cir-
cuits using model checking, in Proceedings of the 31st ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (Monterey, CA, 2023), pp. 27–37

62. J. Xu, L. Josipović, Automatic inductive invariant generation for scalable dataflow circuit
verification, in Proceedings of the 42nd IEEE/ACM International Conference on Computer-
Aided Design (San Francisco, CA, 2023, to appear)

63. M. Tan, S. Dai, U. Gupta, Z. Zhang, Mapping-aware constrained scheduling for LUT-based
FPGAs, in Proceedings of the 23rd ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (Monterey, CA, 2015), pp. 190–199

64. C. Rizzi, A. Guerrieri, L. Josipović, An iterative method for mapping-aware frequency regula-
tion in dataflow circuits, in Proceedings of the 60rd ACM/IEEE Design Automation Conference
(San Francisco, CA, 2023, to appear)

65. H. Wang, C. Rizzi, L. Josipović, MapBuf: Simultaneous technology mapping and buffer inser-
tion for hls performance optimization, in Proceedings of the 42nd IEEE/ACM International
Conference on Computer-Aided Design (San Francisco, CA, 2023, to appear)

66. L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang, J. Cong, Autobridge: cou-
pling coarse-grained floorplanning and pipelining for high-frequency HLS design on multi-
die FPGAs, in Proceedings of the 29th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (Virtual, 2021), pp. 81–92

67. J. Zhao, T. Liang, S. Sinha, W. Zhang, Machine learning based routing congestion prediction
in FPGA high-level synthesis, in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (Florence, 2019), pp. 1130–1135

http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/ design-tools/vivado/integration/esl-design.html

Chapter 9
Logic Synthesis

Abstract This chapter delves into the subject of logic synthesis within the FPGA
design process. It involves the conversion of high-level hardware description lan-
guage (HDL) code, such as Verilog or VHDL, into a lower-level gate-level netlist that
is suitable for FPGA implementation. The chapter covers the essentials of Boolean
logic, logic optimization, technology mapping to FPGAs, and AI in logic synthesis.
Once the logic synthesis process is complete, the resulting gate-level netlist serves
as input to the FPGA physical implementation tools.

9.1 Overview

FPGAs have emerged as a popular platform for digital system design, offering a
flexible, and reconfigurable alternative to Application Specific Integrated Circuits
(ASICs). FPGA logic synthesis is a critical step in transforming high-level designs,
usually described in Hardware Description Languages (HDLs), into a technology-
specific implementation that can be mapped onto FPGA resources. This process
involves several optimization and mapping techniques aimed at improving the per-
formance, power consumption, and resource utilization of the final design.

Specifically, FPGA logic synthesis flow, starting from technology-independent
optimization and progressing to FPGA technology mapping, explores the intricacies
of combinational optimization and sequential optimization, both crucial aspects of
synthesizing high-quality designs for FPGAs. The first stage in the synthesis flow
is technology-independent optimization, which aims to improve the design without
considering the specific target FPGA technology. This step involves two primary
sub-steps:

1. Combinational Optimization—This process focuses on optimizing the combina-
tional logic of the design, aiming to minimize the number of gates, levels, or
interconnections. Techniques used for combinational optimization include con-
stant propagation, Boolean minimization, and factoring. Various algorithms, such
as Quine-McCluskey and Espresso, can be employed to achieve the desired opti-
mization;

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_9&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9
https://doi.org/10.1007/978-981-99-7755-0_9

136 9 Logic Synthesis

2. Sequential Optimization—The sequential optimization step deals with the opti-
mization of the design’s sequential elements, such as registers and memory ele-
ments. Techniques used for sequential optimization include retiming, state encod-
ing, and register minimization. These optimizations help to reduce the number of
sequential elements, clock cycles, or overall latency of the design.

After technology-independent optimization, the design is mapped onto the specific
target FPGA technology. The mapping process involves mapping Boolean logic
to the FPGA’s Lookup Tables (LUTs) and other combinational resources, such as
adders and multipliers. This process involves matching the design’s logic functions
to the available FPGA resources while minimizing resource utilization, interconnect
delay, and power consumption. The optimized sequential elements are mapped to
the FPGA’s flip-flops, latches, and other sequential resources during this step. The
remainder of the chapter will delve into the details of logic synthesis for FPGA
design.

9.2 Fundamentals of Boolean Logic

Boolean logic is a branch of mathematics that deals with logic operations on binary
variables. The history of Boolean logic can be traced back to the work of George
Boole in the 19th century, and its application to digital circuit design was formalized
by Claude Shannon in the 1930s. Boolean logic has been used extensively in the
design and analysis of digital circuits and electronic devices.

The essentials of Boolean logic include Boolean algebra, Boolean logic represen-
tation, and the basic logic gates. Boolean algebra is a mathematical system that deals
with the operations and rules of logic. It is based on two binary values, typically rep-
resented as 0 and 1, and uses logical operators such as AND, OR, and NOT to perform
logical operations on these values. Boolean algebra provides a set of rules and laws
for manipulating logical expressions, which can be used to simplify complex logic
circuits. Boolean logic representation is a way of expressing logical operations using
symbols and diagrams. This representation uses logic gates to implement Boolean
algebraic operations. The basic logic gates include AND, OR, and NOT gates, which
can be combined to create more complex logic circuits.

9.2.1 Boolean Algebra

Boolean algebra is a branch of algebraic logic that deals with mathematical operations
and expressions involving binary variables. The basic laws of Boolean algebra include
identity, complement, associative, distributive, and commutative laws. For example,
give Boolean variables . A, . B, and . C . The distributive laws are . A(B + C) = AB +
AC and .A + BC = (A + B)(A + C).

9.2 Fundamentals of Boolean Logic 137

The Shannon expansion (decomposition) is a technique based on the distributive
law of Boolean algebra to simplify complex logic expressions. Given a Boolean
function .F(X) = F(x1, . . . , xn) and .xi ∈ X is a Boolean variable, then the iden-
tity .F = xi Fxi + x̄i Fx̄i holds. Where .Fxi = F(x1, . . . , xi = 1, . . . , xn) and . Fx̄i =
F(x1, . . . , xi = 0, . . . , xn) are called positive and negative cofactors of .F with
respect to . xi .

There are several operations with cofactors.

• Boolean difference: The Boolean difference or Boolean derivative of function . F
with respect to Boolean variable. x is defined as.∂F/∂x = Fx ⊕ Fx̄ , that computes
the difference between two Boolean expressions;

• Universal quantification: The universal quantification of. F with respect to Boolean
variable. x is defined as.∀xF = Fx Fx̄ , that assigns variable. x to a Boolean expres-
sion and requires that the expression is true for all possible values of the variable;

• Existential quantification: The existential quantification of .F with respect to
Boolean variable . x is defined as .∃xF = Fx + Fx̄ , that assigns variable . x to a
Boolean expression and requires that the expression is true for at least one possi-
ble value of the variable.

Boolean difference and quantification are important concepts in Boolean algebra
that have many practical applications in logic design, computer programming, and
other fields that rely on digital circuits and logical operations.

9.2.2 Functional Representation

Truth Tables
The native way to represent a Boolean function is through its truth table. A truth table
is a table that lists all possible combinations of inputs for a Boolean function and the
corresponding output values for each combination. It is a native way to represent a
Boolean function. An example of truth table is shown in Table 9.1, which represents
the Boolean expression of the majority-of-three function

.F = x1x2 + x1x3 + x2x3 (9.1)

The hexadecimal form is thus encoded as 0xe8.

Algebraic Expressions
Algebraic expressions consisting of Boolean variables and logical operators to rep-
resent the behavior of a Boolean function. There are two common types of Boolean
algebraic expressions are sum-of-products (SOPs) and product-of-sums (POSs).

The SOP form, also known as disjunctive normal form (DNF), represents a
Boolean function as the sum (OR) of multiple product (AND) terms. It is widely used
for two-level logic synthesis. Typically, the general form of SOP is . f = φ1 . . . φn ,
where .φi represents a product term. The well-known Quine-McCluskey exact algo-
rithms and ESPRESSO tool can be used for SOP minimization.

138 9 Logic Synthesis

Table 9.1 An example of truth table

.x1 .x2 .x3 . F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Fig. 9.1 Boolean function, 1-minterms, and BDD. a Gate-level netlist, b corresponding truth table,
c BDD of. z, and d 1-minterms

In contrast, the POS form, also known as conjunction normal form (CNF), rep-
resents a Boolean function as the product (AND) of multiple sum (OR) terms. The
general form of POS is . f = ψ1 + · · · + ψn , where .ψi represents a sum term. CNF
is widely used as the input for SAT solving.

Both sum-of-products and product-of-sums forms are equivalent ways of repre-
senting Boolean functions, and one can be converted into the other using De Morgan’s
laws and other Boolean algebraic manipulations.

Binary Decision Diagrams
Bryant [1] introduced a concept of reduced, ordered BDDs (ROBDDs), along with a
set of efficient operators for Boolean function manipulation (symbolic manipulation),
and proved the canonicity property of ROBDDs (Fig. 9.1). BDDs are particularly
useful because they allow for efficient manipulation of Boolean functions and are
instrumental in optimization and verification tasks in digital circuit design. The fun-
damental building blocks of a BDD are its nodes and edges. Each internal node
represents a Boolean variable, while the edges branching from the node signify the
variable’s value. Specifically, one branch (typically denoted by a solid line) stands for
the variable being TRUE (or 1) and the other branch (often a dashed line) represents
the variable being FALSE (or 0).

A minterm is a product term with all variables for which the function evaluates
to 1. Minterms which produce output in 1(0) are called 1-minterms (0-minterms). It
is well know that finding all the 1-minterms (0-minterms) can be done by searching

9.2 Fundamentals of Boolean Logic 139

all the paths from the root to node 1(0) in the BDD (Fig. 9.1b) shows a truth table of
the Boolean logic in Fig. 9.1a. This function has been converted into BDD, shown
in Fig. 9.1c. The 1-minterms can be obtained by the following paths: (1).ā .→c; (2) a
.→ b̄ → c; (3).a → b. The 1-minterms are shown in Fig. 9.1d. We can see that these
minterms may contain don’t cares depending on the number of variables in each path.

BDD’s unique graphical structure not only encapsulates the essence of Boolean
decision-making but also paves the way for the optimization of digital circuits.
Specifically, their role in logic minimization, functional decomposition, and tech-
nology mapping –optimizing and translating high-level descriptions to optimized
and technology dependent implementations– are of paramount significance. More-
over, the canonical nature of ROBDD expedites equivalence checking, ensuring that
circuit transformations throughout the design flow retain the intended functionality.
However, while the BDD’s utility in logic synthesis and EDA tools is indisputable,
its efficacy can be curtailed by challenges such as potential size explosion and the
intricacies of variable ordering. As synthesis tasks and EDA challenges evolve in
complexity, striking a balance between the benefits offered by BDDs and the inher-
ent challenges they present becomes critical, prompting researchers to continually
refine methodologies and explore complementary representations.

9.2.3 Directed-Acyclic-Graph (DAGs) Boolean Network

A Boolean network is a directed acyclic graph (DAG) denoted as .G = (V, E) with
nodes .V representing logic gates (Boolean functions) and edges .E representing the
wire connection between gates. The input of a node is called its fanin, and the output
of the node is called its fanout. The node .n ∈ V without incoming edges, i.e., no
fanins, is the primary input (PI) to the graph, and the nodes without outgoing edges,
i.e., no fanouts, are primary outputs (POs) to the graph. The nodes with incoming
edges implement Boolean functions. The level of a node. n is defined by the number
of nodes on the longest structural path from any PI to the node inclusively, and the
level of a node . n is noted as .level(n) in this book.

9.2.3.1 And-Inverter Graph

And-Inverter Graph (AIG) [2] is one of the typical types of DAGs used for logic
manipulation, where the nodes in AIGs are all two-inputs AND gates, and the edges
represent whether the inverters are implemented. An arbitrary Boolean network can
be transformed into an AIG by factoring the SOPs of the nodes, and the AND gates
and OR gates in SOPs are converted to two-inputs AND gates and inverters with
DeMorgan’s rule. There are two primary metrics for evaluation of an AIG, i.e., size,
which is the number of nodes (AND gates) in the graph, and depth, which is the
number of nodes on the longest path from PI to PO (the largest level) in the graph.
AIGs has also been extended for datapath synthesis and optimizations [3, 4].

140 9 Logic Synthesis

A cut C of node . n includes a set of nodes of the network. The nodes included in
the cut of node . n are called leaves, such that each path from a PI to node . n passes
through at least one leaf. The node. n is called the root of the cut C. The cut size is the
number of its leaves and the node itself. A cut is .K -feasible if the number of nodes
in the cut does not exceed . K .

9.2.3.2 Majority-Inverter Graph

Majority-Inverter Graph (MIG) analogous to AIG [5]. The key difference lies in
that the nodes in MIGs are all three-input majority (MAJ) gates, whose function is
represented in (9.1). Let ‘. M’ indicate the MAJ operation, i.e., .F = M(x1, x2, x3).
By setting any one of the variables to constants, the MAJ operation is reduced to
AND/OR. For example,.F = M(x1, x2, 0) = x1x2 and.F = M(x1, x2, 1) = x1 + x2.
Hence, AIGs can be converted to MIGs by one-to-one mapping.

For manipulation and analysis, MIG Boolean algebra is defined by including five
transformation rules, referred to as . Ω, to form an axiomatic system. Three rules are
derived from .Ω for the purpose of logic optimization, which is referred to as . ψ.
The symbol .zx/y represents a replacement operation by replacing . x with . y in all its
appearance in . z. A sound and complete axiomatization of majority-. n (arbitrary odd
number) logic is addressed in [6].

Despite the MIG, the M.5-inverter graph (M. 5IG) is proposed in [7]. The experimen-
tal results show that M. 5IGs obtain 10.4% improvement on size and 11.4% on depth
compared to the method based on MIG. Although both M. 5IGs and MIGs can be con-
verted from AIG by one-to-one mapping, there are many constant inputs to the MAJ
gate which cannot fully utilize the expression power of the MAJ gate. Exact synthesis
can compute optimal MAJ expressions for small-scale logic functions. Combined
with LUT-based logic resynthesis, the conversion based on a pre-computed optimal
library produces better initial M. 5IGs and MIGs than one-to-one mapping.

.Ω

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Commutativity : Ω.C

M(x, y, z) = M(y, x, z) = M(z, y, x)

Majority : Ω.M

if(x = y) : M(x, x, z) = M(y, y, z) = x = y

if(x = y') : M (
x, x ', z

) = z

Associativity : Ω.A

M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))

Distributivity : Ω.D

M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)

Inverter Propagation : Ω.I

M '(x, y, z) = M
(
x ', y', z')

9.3 Logic Optimization 141

. ψ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Relevance − ψ.R

M(x, y, z) = M(y, x, zx/y')

Complementary Associativity − ψ.C

M(x, u, M(y, u', z)) = M(x, u, M(y, x, z))

Substitution − ψ.S

M(x, y, z) =
M(v, M(v', Mv/u(x, y, z), u), M(v', Mv/u'(x, y, z), u'))

9.2.3.3 XOR-Majority Graph

The XOR-Majority Graph (XMG) is a modification of the MIG that incorporates
XOR operations in addition to the existing MAJ gates and inverters [8]. By including
two-input XOR gates, XMGs become more compact and are better suited for exact
synthesis, which is sensitive to the number of nodes in the logic network. To optimize
logic, several logic identities that explore MAJ-XOR Boolean equations are discussed
in [9]. To further enhance the flexibility of XMG, the two-input XORs are expanded
to three-input XORs, resulting in a generalized XMG that features both XOR and
MAJ gates with three inputs [10].

9.3 Logic Optimization

9.3.1 Functional Methodologies

Truth Tables Karnaugh map method involves graphically representing the truth table
using a Karnaugh map, which is a grid that allows for the grouping of adjacent cells
that have the same output value. The grouped cells can be used to create a simplified
Boolean expression, which can then be used to generate a minimized truth table. It
is particularly effective for functions with fewer than six inputs, but can also be used
for larger functions with some modifications.

Given a four-variable Boolean function . F(A, B,C, D) = ∑
(1, 3, 4, 5, 7, 9, 11,

12, 14, 15). The Karnaugh map is shown in Fig. 9.2. By combining the group of
minterms (1,3,9,11), (3,7,11,15), (4,5), and (12,14), the optimized Boolean expres-
sion is .F = B̄D + CD + ĀBC̄ + ABD̄.

Algebraic Expressions SOP expressions can be simplified using Boolean algebra
rules, such as the distributive law, commutative law, associative law, and De Morgan’s
law. These rules can help to reduce the number of terms and/or variables used in the
expression.

The Quine-McCluskey algorithm is a method for finding the minimum SOP
expression for a given Boolean function, which is a computation version of Kar-
naugh map. The algorithm involves creating a table of all possible combinations of

142 9 Logic Synthesis

Fig. 9.2 Illustrative example
of Karnaugh map
optimization

input variables and grouping terms that differ by only one variable. By repeatedly
applying the algorithm, it is possible to find the minimal SOP expression.

The ESPRESSO algorithm is a more efficient method for minimizing SOP expres-
sions than the Quine-McCluskey algorithm. It is a heuristic algorithm that uses a
combination of simplification rules and heuristics to find the minimal SOP expres-
sion. The algorithm has been shown to be more efficient than other methods for large
complex functions.

9.3.2 DAG-Aware Logic Optimization

DAG-aware logic synthesis is an innovative approach to optimizing digital circuit
designs, offering a unique perspective on the representation and manipulation of com-
binational and sequential elements. This technique leverages the power of directed-
cycle graphs, a mathematical model that allows for the efficient encoding of complex
circuit structures, to facilitate the synthesis process. Once the circuit is represented
as a directed-cycle graph, various graph transformation techniques can be applied to
optimize the design. These transformations include node merging, edge elimination,
and subgraph replacement, among others. The objective of these transformations is
to minimize the number of nodes and edges in the graph, effectively reducing the
complexity of the circuit.

Rewriting, noted as rw, is a fast greedy algorithm for optimizing the graph size.
It iteratively selects the AIG subgraph with the current node as the root node and
replaces the selected subgraph with the same functional pre-computed subgraph with
a smaller size to realize the graph size optimization. Specifically, it finds the 4-feasible
cuts as subgraphs for the node and preserves the number of logic levels [2]. For
example, Fig. 9.3 shows the optimization of the original graph in Fig. 9.3 with rw. The

9.3 Logic Optimization 143

Fig. 9.3 And-inverter-graph logic rewriting

Fig. 9.4 And-inverter-graph logic refactoring

algorithm visits each node in the topological order and checks the transformability
of its cut w.r.t rw. It will skip the node and visit the next one if not applicable. In Fig.
9.3, the node. j is skipped for rw, and node.k = e f r is optimized with rw, resulting
in the node reduction of . 2 for the AIG optimization.

Refactoring, noted as rf, is a variation of the AIG rewriting using a heuristic
algorithm [11] to produce a large cut for each AIG node. Refactoring optimizes AIGs
by replacing the current AIG structure with a factored form of the cut function. It
can also optimize the AIGs with the graph depth. For example, Fig. 9.4 shows the
optimization of the original AIG with rf. The node. j = h(h + k) is optimized with
rf based on DeMorgan’s rule, where . j = hk. As a result, the optimized graph with
rf has a graph size of .19 with . 2 nodes reduction and . 1 depth reduction.

Resubstitution, noted asrs, optimizes the AIG by replacing the function of the node
with the other existing nodes (divisors) already present in the graph, which is
expected to remove the redundant node in expressing the function of the current node.
For example, in Fig. 9.5, the node.g = a p,.p = b c d, i.e.,.g = a(b + c + d), together
with existing divisors .m = ad, n = a(b + c), the node . g can be resubstituted with

144 9 Logic Synthesis

Fig. 9.5 And-inverter-graph logic resubstitution

the complement of node. i , where.i = m + n = a(b + c + d), and node. p is removed
from the graph. As a result, with rs, the original AIG is optimized in graph size by
. 1 node reduction.

9.3.3 Exact Logic Optimization

Compared to heuristic algorithm-based logic synthesis, research on exact synthesis
is much less with the most difficult problem being the high computational complex-
ity, which requires enumeration to complete decision and reasoning. Due to com-
putational complexity, the heuristic optimization method Espresso is more popular
than the Quine-McCluskey algorithm, a well-known two-level logic sum-of-products
(SOP) minimization algorithm [12]. Exact synthesis requires a given Boolean func-
tion (. F), a set of logic gates or primitives used to represent the function (. L), and a
cost function (. C).

From the perspective of the methods used for exact synthesis, the traditional exact
synthesis includes the following three methods [13].

1. An arbitrary Boolean function can be decomposed into logic expressions by func-
tions. A typical example is Shannon decomposition. The function can be decom-
posed as . f = xFx + x̄ Fx̄ , where .Fx = f (x = 1) and .Fx̄ = f (x = 0) are the
positive and negative cofactors of the . f . The logic expression can be obtained
by recursively calling Shannon decomposition on the logic function. In addition,
there are other decomposition methods such as Disjoint-Support Decomposition
(DSD) and bi-decomposition. Through different decomposition methods to obtain
the logical expression from which to optimize the optimal solution.

2. Given the set of logic operation symbols . L, the number of logic networks (. n)
composed of logic gates is limited. Through enumerating the logic network and
assigning operators to the logic network nodes, different Boolean functions can be
obtained, and the obtained Boolean functions are compared with the synthesized

9.3 Logic Optimization 145

Boolean functions. If they are consistent, the optimal solution is found, otherwise,
the . n is increased in the next enumeration. The. n starts from 0, it is clear that the
number of enumerated logic networks grows non-linearly with increasing.

3. The method 1 and the method 2 are combined to perform function decomposition
and logic network enumeration simultaneously.

However, these methods can only deal with a very limited number of Boolean func-
tions and can only prove optimality by enumeration. In recent years, with the improve-
ment of computing power and the development of theoretical computer science, the
exact synthesis methods of decision and reasoning using constraint solvers, espe-
cially Boolean satisfiability (SAT) solvers, have attracted much attention. SAT-based
exact synthesis was proposed at the 2007 Formal Methods in Computer-Aided Design
(FMCAD) conference [14]. Subsequently, Knuth et al. used different CNF codes for
exact synthesis, but only limited to 2-input operator optimal Boolean chain, and these
algorithms all aim to find the Boolean chain with optimal area (minimum number
of Boolean chain links) [15]. Mathias et al. extended them to synthesize Boolean
chains with optimal logic depth, using a SAT solver to check whether there exists a
Boolean logic network with the fewest logic levels that implements a given function
under the constraint [16]. The task of SAT-based exact synthesis is therefore to find
the optimal logical expression for a given input constraint in terms of size or depth.

9.3.4 Exact Synthesis Algorithm Flow

Figure 9.6 shows the flow of the exact synthesis algorithm for solving the optimal
area. The core idea is to call the solver to answer the question “Is there a set of
Boolean functions.F to be synthesized by a logic network composed of. r logic gates
belonging to the set . L, where .C = r?” by constraint coding. Therefore, the initial
value of . r is 0, which is mainly considering that some functions to be synthesized
are constants 0 or 1, primary input or its inverse variables. No logic gate is needed at
this time, such as .F = 1, x1 is the primary input, and the function to be synthesized
is a simple case that does not need a logic gate. Under the given constraint . r , the
CNF-based SAT coding.Fr is generated and delivered to the SAT solver for solving.
If the SAT solver returns a satisfiable solution, the optimal logic network for realizing
the function to be synthesized is found; otherwise, . r is increased by 1, and the . F '

r
will guide SAT to return the satisfiable solution again. Therefore, the solution can
be ensured to be optimal, that is, the logic function to be synthesize is realized by
using the least logic gates. A given upper bound of. r or a time constraint on the SAT
solver can cause the algorithm to terminate prematurely.

From the flow of the algorithm, it is the most important step to encode SAT under
the constraints of. r and logic gate set. L. In addition, the complexity of the algorithm
is closely related to the size of . r . When . r is small, the number of variables and
clauses of SAT coding is relatively small, so SAT solver can often return results
quickly. If a function is very complex and requires more logic gates to implement, it

146 9 Logic Synthesis

Fig. 9.6 Bottom-up flow of
SAT-based exact synthesis

is obvious that the difficulty of solving the SAT solver will increase with the number
of SAT encoding variables and the number of clauses. For example, assuming that the
optimal solution is .r = 10, then the SAT is trying to prove that these are unsatisfied
(UNSAT) in the bottom-up increment process of .r = 9.

Compared with the invalid search caused by bottom-up increase . r , the [17] pro-
posed the synthesis process of top-down decrease. r as shown in Fig. 9.7. Firstly, the
upper bound of the number of nodes . r of the function to be synthesized is obtained
through function decomposition, and the SAT solver is called to answer the ques-
tion “Is there a set of Boolean functions .F to be synthesized by a logic network
of .r = r − 1 logic gates belonging to the set . L?”. If it is UNSAT, then the .r + 1 is
already the optimal value; otherwise, it continues to decrease . r until the SAT solver
returns UNSAT. In the same way, how to obtain a more compact upper bound . r is
crucial.

9.3.5 SAT-Based Encoding

The two core tasks of SAT coding are defining Boolean variables and adding con-
straints based on these defined Boolean variables. The Boolean function
. f (x1, x2, . . . , xn) = f (0, 0, . . . , 0) = 0 is defined as a normal function. If all the
steps in a Boolean chain are normal functions, the Boolean chain is called a normal
Boolean chain. For example, if a Boolean chain consists of “AND/OR”, it is a nor-
mal Boolean chain; a Boolean chain is not normal if it contains a NAND/NOR. An
abnormal Boolean function can be made the inverse of a normal function by adding

9.3 Logic Optimization 147

Fig. 9.7 Top-down flow of
SAT-based exact synthesis

an inverter, such as . f (a, b) = a + b, where . f is an abnormal function, but . f̄ is a
normal function. In this subsection, the CNF coding proposed by Knuth [15] for
2-input conventional Boolean chain is taken as an example to illustrate.

9.3.5.1 Variable Definition

If the primary input of the logic function to be synthesized is . n, the primary output
number is. m, and the current number of logic gates to be encoded is. r , for.1 ≤ h ≤ m,
.n < i ≤ n + r and.0 < t < 2t , respectively define the following Boolean variables:

(i) .xit , which represents the . t th bit of the logic gate truth table of . xi .
(ii) .ghi , denotes that the logic gate .xi is the .hth output of the Boolean function.
(iii) .si jk , denotes that the inputs to the logic gate .xi are .x j and . xk , where . 1 ≤ j <

k < i .
(iv) . fipq , represents the output Boolean value of the logic gate .xi when it is .(p, q).

To reduce the number of variables, the . fi00 in . fipq does not appear because
. fi (00) = 0 in a normal Boolean chain.

148 9 Logic Synthesis

9.3.5.2 Constraints

Constraints include basic constraints and extended constraints, in which the basic
constraints ensure that the correct results can be obtained, while the extended con-
straints add symmetry breaking rules to reduce the search space through the charac-
teristics of the logical network. Due to space constraints, this paper only introduces
the basic constraints.

The core of the basic constraints is to ensure that the logic gates in the Boolean
chain complete the correct logic operation, which is also called the main constraint
clause. For .0 ≤ a, b, c ≤ 1 and .1 ≤ j < k < i , the primary-subclause constraint is
defined as

. (si jk ∧ (xit ⊕ ā) ∧ (x jt ⊕ b̄) ∧ (xkt ⊕ c̄)) → (fibc ⊕ ā),

where it is the implication logic expression, that is, . f = y1 → y2 = ȳ1 + y2. It can
be transformed into CNF form as

. (s̄i jk ∨ (xit ⊕ a) ∨ (x jt ⊕ b) ∨ (xkt ⊕ c)) ∨ (fibc ⊕ ā),

where this constraint can be translated as, if the inputs of .xi are .x j and . xk , and the
values of . xi , . x j , and.xk in the. t th truth table are a, b, and c, then the.xi must perform
the logical operation.b ◦i c = a. The a, b, and c are constants that control the polarity
of the variable.

Furthermore, if the logic gate .xi is the output, then the truth table of .xi must be
equal to the Boolean function in which it is to be synthesized, thus adding a constraint
as

. ḡhi ∨ (xit ⊕ gh(t1, t2, . . . , tn)),

where .(t1, t2, . . . , tn)2 is the binary encoding of . t . For each output function, add
constraints.∨n+r

i=n+1ghi to ensure that one step is output. Finally, constraints. ∨i−1
k=1 ∨k−1

j=1
si jk are added to ensure that each step in the Boolean chain has two valid inputs.

9.3.5.3 Example

Take the Boolean chain shown in the Fig. 9.8 as an example, the variable.xi encodes
the global function of each logic gate according to the truth table. Since. n = 3,m =
2, r = 2, the number of the logic gate belongs to the interval .(n, n + r], i.e., .x4 and
. x5, with a total of .2n − 1 = 7 truth table bits. Note that the 0 bit does not need to be
encoded because of the conventional function.

t = 7 6 5 4 3 2 1
.x4t = 1 0 0 0 1 0 0
.x5t = 0 1 1 1 1 0 0

9.3 Logic Optimization 149

Fig. 9.8 Example of
Boolean chain

There are four variables .ghi , two of which are assigned 1, indicating the corre-
sponding logic gate of the function input, so that.g14 = 1, g15 = 0, g24 = 0, g25 = 1.
There are 9 selection variables, assigned as

k = 2 3 4
.s41k = 1 0
.s42k = 0
.s51k = 0 0 0
.s52k = 0 0
.s53k = 1

Finally, the variable . fipq encodes the truth table of the AND or XOR gate as

(p,q) = (1,1) (0,1) (1,0)
. f4pq = 1 0 0
. f5pq = 0 1 1

9.3.6 Sequential Logic Optimization

Retiming is a sequential optimization technique that has been studied since 1980’s.
Retiming techniques optimize the sequential circuits by relocating edge-triggered

150 9 Logic Synthesis

registers 1 across the combination logic without changing the design functionality. A
lot of research efforts have been spent on developing promising retiming techniques
that mainly target on three objectives:

• min-delay: minimize the worst-path delay of the circuits [18];
• min-area: minimize the number of registers of the circuits [19];
• constrained min-area: minimize the number of registers with a given worst-path
delay constrain [20].

Numerous techniques have been proposed in our community to achieve these three
objectives [18, 19, 21– 24], and have been demonstrated with encouraging results.
Although retiming assumes that the topology of the combinational logic is fixed,
the quality (at logic-level) of the design can be further improved by combining the
combinational logic optimization techniques and technology mapping [25][26][27].
In practice, constrained min-area retiming, has been incorporated into end-to-end
design flows, which targets on improving the performance of the design regarding
the delay, power, area, etc.

In 1997, N. Shenoy published the first retiming survey [28]. This work reviewed
the theories and practical implementations of retiming, and the side issues of incorpo-
rating in the design flow. Due to the significant changes in the technology and design
complexity, an up-to-date industrial study of retiming is necessary. Moreover, to our
knowledge, no credible work ever evaluates the retiming algorithms in an end-to-end
design flow. Most existing retiming algorithms were evaluated at the end of the logic
synthesis, where the delay and area are measured after technology mapping or using
unit delay-area models. However, due to the significant increase in design complex-
ity and design rules, the gate-level netlist does not correlate well with the physical
netlist [4]. Hence, in this work, the experimental results are collected at the end of
the physical design process. Note that the negative retiming operations 2 are forbid-
den in our experiments. It turns out that the performance improvements gained by
retiming evaluated the logic level could make the final physical netlist worse. Also,
there are significant extra design efforts required for retimed designs, e.g., sequential
equivalence checking (SEC). Thus, for the designs that retiming does not provide
enough improvements in design performance, retiming needs to be avoided in the
design flow. These give us the motivation for developing a prediction mechanism for
retiming in real-world design flow, e.g., using machine learning techniques.

The concept and the three objectives of retiming are illustrated using a simple
example shown in Fig. 9.9. The original design is shown in Fig. 9.9(1). We assume
all the gates have unit delay one, and the edge-triggered registers are represented
using the rectangles. The original design has five registers (.n = 5) and the delay of
the critical path, {a,b} .→ . f , is four (.d = 4).

The min-delay retiming result is shown in Fig. 9.9(2). There are two iterations
in this retiming: (1) move the two registers connected with . a and . b forward, which

1 In the rest of this paper, register is used to represent edge-triggered registers.
2 For min-delay retiming, negative retiming refers to “the delay of critical path increases”; for
min-area retiming, it refers to “the number of registers increases.”

9.3 Logic Optimization 151

Fig. 9.9 Illustrative examples of retiming: (1) original netlist; (2) min-delay retiming; (3) min-area
retiming; (4) min-area retiming under delay constrain (delay. ≤3)

makes gate .g2 retimable; (2) move the retimed register and the register connected
with . c forward. The delay of the retimed design in Fig. 9.9(2) is two (.d = 2), and
the number of registers is three (.n = 3). The min-area retiming result is shown in
Fig. 9.9(3). This solution requires two more iterations in addition to the solution
of min-delay retiming, which move the registers all the way to primary output and
reduce the number of registers to one. The delay is increased to four. The third
objective is min-area retiming under delay constrain. In this example, let the delay
constraint be .d ≤ 3. The solution is shown in Fig. 9.9(4). We can see that the min-
delay retiming gives the best delay solution (.d = 2), min-area offers the minimum
number of registers, and min-area retiming with delay constraints gives balanced
results in between of min-area and min-delay.

9.3.6.1 Formulation of Retiming

Most logic optimization techniques are formulated based on direct graph representa-
tion. The logic netlist, so called Boolean network can be modeled using direct graph
.G(V, E), where each vertex . v corresponds to a logic gate . g in the design. Besides
constructing the direct graph directly from the netlist, this can also be done based
on the transformed Boolean network, such as And-Inv-Graph [29] and its sequen-
tial version [30]. In the context of retiming, the sequential Boolean network is the
combinational network separated by the memory elements, which are assumed to be
ideal registers. The edges in the graph.G(V, E) represent the interconnections of the
logic gates in the design.

Let us denote .euv is an edge of .G(V, E), .euv: .u .→ . v, and .wuv is the weight
of the edge .euv which represents the number of registers between the two vertex . u
and . v. The weight of the edges directed from and into the primary inputs (PIs) and
primary outputs (POs) is zero. Each vertex . v in .G(V, E) represents its delay of the
corresponding gate, denoted .d(v). The problem of retiming is denoted by retiming
lag function.r(v) [31]: .V .→ . Z . Let us denote that .wr

uv is the weight of the edge.euv .
For any retiming, it can be represented by Eq. 9.2.

152 9 Logic Synthesis

.wr
uv = r(v) − r(u) + wuv (9.2)

The value of.r(v) represents the movement of the registers for vertex. v. If it is forward
retiming (from inputs to outputs), then.r(v) is a negative. For any legal retiming, the
condition shown in Eq. 9.3 must be satisfiable.

.wuv + r(v) − r(u) ≥ 0 (9.3)

9.3.6.2 Min-Delay Retiming

The min-delay retiming problem is as follows: Given .G(V, E) with a vertex delay
function . d and edge weight function . w, find a legal retiming . r , such that the cycle
time . c is minimized:

.c = max
p:wr (p)=0

{d(p)}, (9.4)

where.d(p) is the path delay, and.wr (p) is the retimed register count on the path. p. To this problem,
Leiserson and Saxe [31] developed a classic algorithm: Two matrices.W and.D are first defined as

.W (u, v) = min
p:u v

{w(p)}, (9.5)

.D(u, v) = max
p:u v∧w(p)=W (u,v)

{d(p)}, (9.6)

.W (u, v) gives the minimum register count on any path from . u to . v. . D(u, v)

determines the maximum delay from. u to. v for the minimum register count. The two
matrices can be obtained by solving an all-pairs shortest paths problem in . G. After-
ward, a binary search for the minimum clock cycle is performed. In each iteration,
a Bellman-Ford algorithm can be employed to test whether a legal retiming exists
with the current cycle time. c. The algorithm above runs in.O(V 3 lg V) time because
each iteration costs.O(V 3) time for a Bellman-Ford algorithm and the binary search
runs in .O(lg V).

Leiserson and Saxe [31] also proposed another more efficient relaxation algorithm,
which runs in .O(V E) for examining if a retiming exist for a given clock cycle . c. A
function.∆(v) gives the largest delay seen from any path that terminates at the output
of . v:

.∆(v) = d(v) + max
u∈F I (v), w(euv)=0

{∆(u)}. (9.7)

Therefore, the cycle time can be expressed as follows:

.c = max
v∈V {∆(v)}. (9.8)

9.3 Logic Optimization 153

The relaxation algorithm consist of alternately updating the functions.∆(v) and. r(v)

for .|V | − 1 times. The optimality is guaranteed because each iteration simulates a
pass off a Bellman-Ford algorithm (i.e., a vertex being relaxed in a pass of the
Bellman-Ford algorithm must be updated in an iteration of the relaxation algorithm),
one can obtain a feasible retiming under the target cycle time. c, if it exists. Because
calculating .∆(v) in an iteration costs .O(E) time, the relaxation algorithm runs in
.O(V E) time. Later on, the runtime of this algorithm was improved by Shenoy and
Rudell [32] by adding an early break mechanism.

9.3.6.3 Min-Area Retiming

The typical min-area retiming refers to minimizing the number of registers without
delay constraints. In which case, the problem can be formulated as a minimum cost
flow problem using linear programming. The formulation is as follows:

. min :
∑

∀euv

r(u) − r(v) ∧ (∀euv, r(u) − r(v) ≤ wuv) (9.9)

Goldberg [23] presented a practical push-relabel method that can solve this problem
in . O(.V 2E log(VC)) worst-case runtime, where .V is the number of vertices, .E is
the number of edges, and .C is the maximum cost of the edges. A. Hurst et al. [19]
proposed a the min-area retiming using maximum network flow problem. It turns out
that within a combinational network, minimizing the number of registers by retiming
is equivalent to finding a minimum cut. Note that the minimum cut problem is the
dual of the maximum network flow problem. Computing maximum flow of a network
is much less complex than minimum cost determination. Although there may exist
many minimum cuts, that approach always generates one minimum cut that provides
the minimum number of movements of the registers. This is claimed to simplify the
computation of the initial states and minimize the side effects of the design [19]. The
worst-case runtime of maximum flow approach is bounded by . O(.R2E), where . R is
the initial number of registers, and. E is the number of edges. This algorithm requires
repeated iterations while the number of iterations is typically small, as demonstrated
by the authors.

9.3.6.4 Constrained Min-Area Retiming

Although it is claimed that pruning the redundant storage elements in the design
reduces the area, power, and verification cost, most designs request a specific tar-
get clock period. The first attempt of constrained min-area retiming was presented
by Shenoy et al. [32]. The implementation was composed by computing the . W
and .D matrices, and the minimum cost circulation implementation. Let us denote
.N f anin(v)=number of. f anins of vertex. v,.N f anout (v)=number of. f anouts of vertex
. v. The formal definition of this problem is represented as follows [28]:

154 9 Logic Synthesis

. min :
∑

∀v

|N f anin(v) − N f anout (v)| · r(v) (9.10)

.∧ ∀euv, r(u) − r(v) ≤ wuv (9.11)

.∧ ∀euv, r(u) − r(v) ≤ W (u, v) − 1 (9.12)

Equation 9.9 represents the cost of number of registers of all register relocations.
Equations 9.10 and 9.11 constrain each relocation must be legal retiming and under
the delay constrain. We can see that this problem can be solved by combining the
algorithms proposed in Sects. 9.3.6.3 and 9.3.6.2. The most recent constrained min-
area retiming method was proposed by Hurst et al. [20], which the min-area approach
is based on the work of [19]. That approach is developed based on the observation
that area-critical and timing-critical regions are rare overlapped. In that work, the
timing constrains of retiming requires the exiting min-delay retiming algorithms,
which give the initial register positions for their min-area approach.

9.3.7 Advanced Logic Optimization Techniques

Logic Decomposition is a technique used in digital circuit design to break down
a complex logic function into simpler sub-functions. The goal of logic decomposi-
tion is to simplify the design process and reduce the number of logic gates required
to implement the function. The process of logic decomposition involves analyzing
the function and identifying repeated sub-functions that can be extracted and imple-
mented as separate modules. These sub-functions are typically implemented using
smaller and simpler logic gates, such as AND, OR, and XOR gates.

Disjoint-support decomposition (DSD) is a powerful technique used to break
down a Boolean function into a set of sub-functions that have non-overlapping sets
of variables. The process of disjoint-support decomposition involves partitioning the
variables of the Boolean function into disjoint sets. The function is then decomposed
into a set of sub-functions, where each sub-function is defined over a distinct set
of variables. The resulting sub-functions can be implemented as separate modules,
which can be interconnected to form the original function. Despite the typical AND,
OR, XOR, and 2-to-1 multiplexer (MUX) gates, the decomposition using majority-
of-three gate is also addressed in [17, 33].

Boolean Matching is a technique used in logic synthesis to find common sub-
expressions between the inputs and outputs of a digital circuit, and to simplify the
circuit by eliminating redundant logic gates. It can be used to find and reutilize
equivalent subcircuits in order to reduce the amount of work in each design iteration
and accelerate design closure [34]. This is done by identifying common subcircuits
in the design and replacing them with a single shared subcircuit. The process of

9.4 Technology Mapping 155

identifying common subcircuits involves analyzing the Boolean expressions of the
gates in the design and looking for patterns that can be combined or eliminated. This
is typically done using automated software tools that can perform Boolean matching
algorithms.

9.4 Technology Mapping

Technology mapping for FPGAs is the process of transforming a technology-
independent logic network, called the subject graph, into a network of logic nodes,
each of which can be realized as one .K -input LUT. A traditional LUT can imple-
ment any Boolean function up to .K inputs. The subject graph is often represented
as an AND-Inverter Graph (AIG) composed of two-input ANDs and inverters. Most
structural methods of FPGA mapping [35, 36] start by computing all cuts for each
AIG node. Next, the AIG nodes are traversed in a topological order and a dynamic
programming approach is used to find an optimum-depth LUT mapping of the AIG.
This mapping can often be substantially improved by applying area-recovery heuris-
tics [37– 39] to reduce the number of LUTs while preserving the depth of the LUT
network. It should be noted that such FPGA mapping algorithms as FlowMap [40]
and CutMap [41] do not compute all cuts.

However, good cuts in these mappers are found using the maximum flow algorithm
that has high-computational complexity. As a result recent state-of-the-art mappers
use cut enumeration rather than maximum flow. In a large class of programmable
architectures, the LUT size.K varies between 3 and 6. For these relatively small LUT
sizes, the traditional methods for LUT mapping based on cut enumeration work quite
well. For .K equal to 4 or 5, exhaustive cut enumeration can be applied, resulting in
an average of 10–40 cuts stored at each node. When the LUT size is 6, exhaustive
cut enumeration may lead to 100+ cuts per node. Cut representation takes substantial
memory when mapping large Boolean networks. To remedy the situation, a partial
cut enumeration can be used, which heuristically prune the cuts, resulting in reduced
memory requirements. However, cut pruning may result in losing good cuts. In this
case, the depth-optimality of mapping is not guaranteed.

Another class of modern programmable architectures realizes logic networks
using macro-cells, which typically contains LUTs and other logic gates. A straight-
forward way of mapping logic into programmable macro-cells starts by computing
all .K -input cuts for each node where.K is the number of macro-cell inputs. Unlike a
.K -input LUT, a macro-cell cannot implement all logic functions of.K inputs. There-
fore, the local function of each cut is computed in terms of the cut inputs, and only
those cuts whose logic function can be expressed by the macro-cell will be kept
for potential mapping. However, this approach is not practical because a macro-cell
often has 10 or more inputs while the number of 10-input cuts is extremely large for
all but the smallest benchmarks.

156 9 Logic Synthesis

9.4.1 Flow-Based and Cut-Based LUT Mapping

Flow-based and cut-based LUT mapping are two approaches used in the process of
logic optimization in digital circuit design.

In flow-based LUT mapping, the logic optimization is performed based on the
flow of data through the circuit. The circuit is represented as a directed acyclic graph
(DAG) where nodes represent combinational logic blocks and edges represent the
data flow between the blocks. The optimization algorithm works by identifying paths
in the DAG that can be merged or simplified to reduce the number of logic blocks
and/or the delay of the circuit.

In cut-based LUT mapping, the logic optimization is performed based on the cuts
in the circuit. A cut is a set of inputs to a logic block that, when fixed, determine the
output of the block. The circuit is represented as a graph where nodes represent the
logic blocks and edges represent the inputs and outputs of the blocks. The optimiza-
tion algorithm works by identifying cuts in the graph and replacing them with LUTs
that implement the same functionality.

Both flow-based and cut-based LUT mapping have their advantages and disadvan-
tages. Flow-based LUT mapping is generally more effective in reducing the delay of
the circuit but may not necessarily result in a reduction of the number of logic blocks.
Cut-based LUT mapping, on the other hand, is generally more effective in reducing
the number of logic blocks but may result in a larger delay. The choice between the
two approaches depends on the specific requirements of the circuit being designed.

9.4.2 Cut-Less LUT Mapping

Cut-based technology mapping algorithms are known to be computationally demand-
ing because they involve several steps such as cut enumeration, pruning, and com-
putation of the local function of cuts and their canonical form. These steps are
essential for the algorithm to work effectively, but they require significant computa-
tional resources, making the process time-consuming and expensive [42]. Cut-less
LUT mapping was addressed in [43], in which only one cut is computed and stored
at each AIG node, instead of computing all cuts. However, the resulting mapping
may not necessarily be depth-optimal, unlike in traditional mapping methods. The
experimental results show that with a runtime and memory complexity linear to the
number of nodes in the subject graph, the cut-less LUT mapping algorithm performs
effectively for LUTs with 12 or more inputs.

9.5 AI in Logic Synthesis 157

9.5 AI in Logic Synthesis

As previously mentioned, a major obstacle to swift hardware specialization is the
absence of assurance provided by current FPGA CAD tools in achieving design
closure without additional customization [44, 45]. The utilization of these tools
typically necessitates considerable manual labor to fine-tune and adjust a vast array
of design parameters and tool options to attain a high QoR. Regrettably, the evaluation
of a single design point can be exceedingly time-consuming, as design stages such
as place and route often take hours or even days to complete for large circuits. To
facilitate agile FPGA-based compute acceleration, it is imperative to reduce design
costs by:

1. substantially decreasing the time needed for accurate QoR estimation,
2. minimizing human intervention in the design tuning process.

In recent years, there has been a growing trend of employing machine learning
(ML) techniques to expedite the FPGA design process and diminish the reliance
on human engineering efforts. This approach is thought to hold significant promise
in tackling more pressing challenges within FPGA design. From the perspective of
contemporary FPGA design, the driving factors can be concisely outlined as follows:

• Fast and accurate approximation via predictive modeling. Machine learning
can serve as a statistical technique that extracts domain knowledge from historical
and existing data to predict future or unseen outcomes related to specific algo-
rithmic or mathematical objectives. The recent advancements in machine learning
algorithms and neural architectures enable the creation of generic and accurate
approximations for given objectives, significantly enhancing the FPGA design pro-
cess. For instance, executing a complete FPGA design flow for each design point
is prohibitively expensive, and early-stage result estimations often lack the neces-
sary accuracy to demonstrate the appropriate design trade-offs. A well-calibrated
machine learning predictive model can replace such resource-intensive computa-
tions with a rapid approximation.

• Flexible and versatile modeling. Modern machine learning techniques, in con-
trast to traditional statistical data analysis methods, offer a broad spectrum of mod-
eling options to accommodate the complex FPGA design processes. On one hand,
machine learning provides various predictive formulations essential for addressing
numerous FPGA design challenges, such as classification, clustering, regression,
generative modeling, and more. On the other hand, contemporary machine learn-
ing approaches can manage versatile feature representations like graphs, circuit
imaging, functional behaviors, etc., and learn intricate relationships between those
features and target metrics.

• Minimizing human supervision. The application of machine learning in FPGA
design reduces human supervision in the design process in two ways. Firstly, the
conventional CAD tool R&D process heavily depends on expert knowledge in
FPGA design and CAD algorithms, with most heuristics being developed through

158 9 Logic Synthesis

extensive empirical efforts. Conversely, autonomous exploration and learning sys-
tems, such as reinforcement learning mechanisms, can substantially expedite the
exploration process using an intelligent, self-guided agent.

A primary obstacle to rapid hardware specialization with FPGAs stems from weak
guarantees of existing FPGA tools for achieving high-quality QoR [44– 51]. To meet
the diverse requirements of a broad range of application domains, current FPGA
tools from academia [52] and industry [53, 54] provide a large set of options across
multiple stages of the tool flow in the form of compile-/run-time directives, also
known as pragmas. Due to the size and complexity of the design space spanned
by these options, coupled with the time-consuming evaluation of each design point,
deciding an optimal set of tool options, also known as design space exploration or
DSE, has become remarkably challenging [55, 56]. To tackle this challenge, recently
many ML-assisted frameworks have been proposed to automatically and intelligently
decide on an optimal set of tool options to accelerate iterative QoR estimation. These
frameworks utilize design-specific features extracted from the early stages of the
design flow to guide the decision process with significant runtime savings [55, 56].

To meet stringent FPGA design objectives, e.g., area, latency, power, FPGA pro-
grammers need to explore a broad spectrum of FPGA customization options, known
as Design Space Exploration (DSE). DSE is formulated as a multi-objective opti-
mization problem. The result of the DSE is a set of Pareto-optimal FPGA designs.
To customize the synthesis process to meet design objectives, almost all FPGA tools
from academia [52] and industry [53, 54] provide numerous tunable knobs in the
form of compiler directives, also known as pragmas. The usage of pragmas in
the synthesis process results in a massive and convoluted design search space that
is virtually impossible to explore manually or using an exhaustive search to identify
one or more optimal combinations of pragmas corresponding to an optimal design
point. In addition to that, how FPGA tools pre-characterize the area and delay of
basic primitives (e.g., LUTs, BRAMs, DSPs), the results are inaccurate making it
necessary to perform time-consuming logic synthesis after each newly generated
design. Therefore there is an urgent need to devise automatic methods to quickly
and efficiently explore design state space and identify an optimal combination of
compiler directives.

There are multiple works that apply machine learning to automatically identify an
optimal set of compile-time directives for C/C++/OpenCL-based designs at the HLS
stage. Liu et al. [57] pose the DSE as a classification problem of identifying beneficial
designs for synthesis. It incorporates pruning with an adaptive windowing method
to find the candidate Pareto-optimal HLS designs. The adaptive windowing method
is derived from the Rival Penalized Competitive Learning (RPCL) model using an
important set of features (e.g., estimated area of a register, multiplexer, decoder,
number of wires) adjusted on the fly during exploration. Transductive Experimen-
tal Design (TED) [58] aims to select a representative and hard-to-predict samples
from the design space. The objective is to maximize the accuracy of the predictive
model with the fewest possible training samples. TED assumes no a priori knowl-
edge about the learning model and hence can be beneficial to any learning model.

9.5 AI in Logic Synthesis 159

Instead of improving the accuracy of the ML model, Adaptive Threshold Non-Pareto
Elimination (ATNE) [59] primarily focuses on understanding and estimating the risk
of losing good designs due to learning inaccuracy at the system level. Additionally,
ATNE provides a Pareto identification threshold by adapting the estimated inaccu-
racy of the regressor for an efficient DSE. The work of [60] proposes a predictive
model-based approach to finding meta-heuristics parameters (hyperparameters) of
a multi-heuristic design space explorer consisting of simulated annealing, genetic
algorithm, and ant colony optimization. To select an optimal combination of HLS
directives, Lo et al. [61] incorporate low-fidelity estimates available from HLS tools
in a multi-fidelity model and use a sequential model-based optimization [62] to
explore the design space. To further enhance the sequential model, Lo et al. [63]
use a hierarchical Gaussian process modeling to combine probabilistic estimates of
component designs of a system to obtain exact values of system-level metrics, e.g.,
area, delay, and latency. Prospector [64] employs Bayesian techniques to optimize
HLS synthesis pragmas to reduce execution latency and resource usage. Encoding
the design space to capture design performance and FPGA costs (e.g., flip-flops,
LUTs, BRAMs, DSPs) and sampling a small fraction (typically.<1%) of the design
space to reveal optimal design are key to Prospector.

The authors in [65, 66] propose a transfer learning-based approach to transfer
learned design space knowledge from source designs and apply it to a new target
design. The key idea is multi-domain transfer learning in which effectively common
knowledge between multiple source applications is extracted and is shared with the
target applications. The objective is to enhance the training performance and reduce
sample complexity.

Building upon transfer learning concepts, Wu et al. [67] recently presented Iron-
Man, a combination of GNN [68] and reinforcement learning, which offers optimal
solutions under user-defined constraints or a range of trade-offs (Pareto solutions)
among various objectives, such as resources, area, and latency, for a given HLS C/C++
program. IronMan uncovers hidden optimization opportunities for increased par-
allelism and reduced latency, accurately predicts the performance of the generated
RTL using only the original dataflow graph of the input program, consisting of both
regular and irregular data paths, and examines optimal resource allocation strategies
based on user-specified constraints.

In a separate line of research, ML is employed to determine the optimal set of
compiler directives for HDL-based designs during logic synthesis or subsequent
design stages. Kurek et al. [69] model an objective function using a Gaussian process
and employ an SVM classifier to estimate if design constraints are met.

InTime [70] utilizes active learning for design space exploration (DSE) with ML
models as a surrogate for actual design synthesis during design evaluation to identify
a suitable combination of compiler directives. InTime constructs an ML model from
a database of preliminary FPGA tool run results and predicts the next set of FPGA
tool options to enhance timing results. To further refine the objective, InTime depends
on a limited degree of statistical sampling. DATuner [71] is a parallel, iterative auto-
tuning framework for FPGA compilation, using a multi-arm bandit technique to
automatically select an appropriate set of compiler directives for a complete FPGA

160 9 Logic Synthesis

flow. DATuner employs dynamic solution space partitioning based on information
(e.g., runtime, search quality) obtained from previous iterations and intelligently
allocates computing resources to unexplored design subspaces and subspaces con-
taining high-quality solutions. Mametjanov et al. [72] propose a model-based search
framework that integrates sampling-based reduction of compiler directive space and
guides the search toward promising directive configurations. LAMDA [73] takes
an RTL description as input and automatically configures tool options across logic
synthesis, placement, and routing stages. LAMDA circumvents iterating over the
time-consuming FPGA implementation tool flow, particularly in place and route
stages, by investigating potential speedups achievable by introducing high-fidelity
QoR estimations in early and low-fidelity design stages, effectively pruning the large
and complex search space early in the design flow. Contrary to previous approaches,
LAMDA addresses the DSE problem from a multi-stage perspective, balancing the
trade-off between computing effort and estimation accuracy.

9.6 Summary and Trends

Logic synthesis, as a critical step in high-level design information and physical imple-
mentation, directly influences the performance of FPGA chips. With the exponential
growth in design scale and congestion issues in backend placement and routing, con-
tinuous research is required in logic representation, logic optimization, technology
mapping, and design flow automation for FPGA logic synthesis.

The core challenge for logic synthesis tools is obtaining improved PPA within
reasonable CPU time. In addition, different circuits demand distinct optimization
strategies and tool flows, making effective exploration within the vast design space
formed by numerous optimization commands within the tools a daunting task. Par-
ticularly, as process nodes evolve and design scale increases, addressing this chal-
lenge necessitates ongoing innovative solutions. Artificial Intelligence (AI) holds the
promise of playing a more significant role in logic synthesis.

AI has demonstrated remarkable breakthroughs in various domains. Combining
AI and EDA is an essential future trend, which includes:

1. intelligent scheduling within individual tools or optimization engines,
2. intelligent flows for EDA tools.

The integration of AI and EDA requires a substantial number of samples, thus neces-
sitating further refinement of different logic representation and optimization methods
in conventional synthesis for AI scheduling. One of the fundamental issues in logic
synthesis is how to represent Boolean logic functions and develop optimization algo-
rithms for relevant representations, as well as the usage of computational engines.
For instance, methods like truth tables, SOP, BDD, and AIG are used to represent
Boolean logic functions, and specific optimization algorithms are tailored for each
method.

References 161

References

1. R.E. Bryant, Graph-based algorithms for Boolean function manipulation. Comput. IEEE Trans.
100(8), 677–691 (1986)

2. A. Mishchenko, S. Chatterjee, R. Brayton, DAG-aware AIG rewriting: a fresh look at combi-
national logic synthesis, in Design Automation Conference (DAC) (2006), pp. 532–535

3. C. Yu, M.J. Ciesielski, M. Choudhury, A. Sullivan, Dag-aware logic synthesis of datapaths, in
Proceedings of the 53rd Annual Design Automation Conference, DAC 2016, Austin, TX, USA,
June 5-9, 2016 (2016), pp. 135:1–135:6

4. C. Yu, M. Choudhury, A. Sullivan, M.J. Ciesielski, Advanced datapath synthesis using graph
isomorphism, in 2017 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 2017, Irvine, CA, USA, November 13-16, 2017 (2017) pp. 424–429

5. L. Amaru, P.-E. Gaillardon, G. De Micheli, Majority-inverter graph: a new paradigm for logic
optimization. TCAD (2016)

6. L. Amarú, P.-E. Gaillardon, A. Chattopadhyay, G. De Micheli, A sound and complete axiom-
atization of majority-. n logic. IEEE Trans. Comput. 65(9), 2889–2895 (2015)

7. Z. Chu, W. Haaswijk, M. Soeken, Y. Xia, L. Wang, G. De Micheli, Exact synthesis of boolean
functions in majority-of-five forms, in 2019 IEEE International Symposium on Circuits and
Systems (ISCAS) (IEEE, 2019), pp. 1–5

8. W. Haaswijk, M. Soeken, L. Amarú, P.-E. Gaillardon, G. De Micheli, A novel basis for logic
rewriting, in 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC)
(IEEE, 2017), pp. 151–156

9. Z. Chu, M. Soeken, Y. Xia, L. Wang, G. De Micheli, Structural rewriting in XOR-majority
graphs (2019)

10. Z. Chu, Z. Li, Y. Xia, L. Wang, W. Liu, Bcd adder designs based on three-input XOR and
majority gates. IEEE Trans. Circ. Syst. II: Express Briefs 68(6), 1942–1946 (2020)

11. A.M.R. Brayton, Scalable logic synthesis using a simple circuit structure, in Proceeding of
IWLS, vol. 6 (2006), pp. 15–22

12. W.V. Quine, The problem of simplifying truth functions. Am. Mathe. Monthly 59(8), 521–531
(1952)

13. E.A. Ernst, Optimal Combinational Multi-Level Logic Synthesis. University of Michigan (2009)
14. N. Eén, Practical sat-a tutorial on applied satisfiability solving. Slides Invited Talk at FMCAD

(2007)
15. D.E. Knuth, The Art of Computer Programming, vol. 3 (Pearson Education, 1997)
16. M. Soeken, L. G. Amaru, P.-E. Gaillardon, G. De Micheli, Exact synthesis of majority-inverter

graphs and its applications. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 36(11), 1842–
1855 (2017)

17. Z. Chu, M. Soeken, Y. Xia, L. Wang, G. De Micheli, Advanced functional decomposition
using majority and its applications. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 39(8),
1621–1634 (2019)

18. C.E. Leiserson, J.B. Saxe, Retiming synchronous circuitry. Algorithmica 6(1-6), 5–35 (1991)
19. A.P. Hurst, A. Mishchenko, R.K. Brayton, Fast minimum-register retiming via binary

maximum-flow, in Formal Methods in Computer Aided Design, 2007. FMCAD’07 (IEEE,
2007), pp. 181–187

20. A. Hurst, A. Mishchenko, R. Brayton, Scalable min-register retiming under timing and initial-
izability constraints, in Proceedings of the 45th Annual Design Automation Conference (ACM,
2008), pp. 534–539

21. S.S. Sapatnekar, R.B. Deokar, Utilizing the retiming-skew equivalence in a practical algorithm
for retiming large circuits. IEEE Trans. Comput.-Aided Des. Integrat. Circ. Syst. 15(10), 1237–
1248 (1996)

22. P. Pan, Continuous retiming: algorithms and applications, in Computer Design: VLSI in Com-
puters and Processors, 1997. ICCD’97. Proceedings., 1997 IEEE International Conference
on. (IEEE, 1997), pp. 116–121

162 9 Logic Synthesis

23. A.V. Goldberg, An efficient implementation of a scaling minimum-cost flow algorithm. J.
Algor. 22(1), 1–29 (1997)

24. D.P. Singh, V. Manohararajah, S.D. Brown, Incremental retiming for FPGA physical synthesis,
in Proceedings of the 42nd annual Design Automation Conference (ACM, 2005), pp. 433–438

25. S. Malik, E.M. Sentovich, R.K. Brayton, A. Sangiovanni-Vincentelli, Retiming and resynthesis:
optimizing sequential networks with combinational techniques. IEEE Trans. Comput.-Aided
Des. Integrat. Circ. Syst. 10(1), 74–84 (1991)

26. G. De Micheli, Synchronous logic synthesis: algorithms for cycle-time minimization. IEEE
Trans. Comput.-Aid. Des. Int. Circ. Syst. 10(1), 63–73 (1991)

27. J. Cong, C. Wu, Optimal FPGA mapping and retiming with efficient initial state computation.
IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 18(11), 1595–1607 (1999)

28. N. Shenoy, Retiming: theory and practice. Int. VLSI J. 22(1), 1–21 (1997)
29. A. Mishchenko, S. Chatterjee, R.K. Brayton, DAG-aware AIG rewriting a fresh look at com-

binational logic synthesis (2006), pp. 532–535
30. A. Mishchenko, R. Brayton, Recording synthesis history for sequential verification, in Formal

Methods in Computer-Aided Design, 2008. FMCAD’08.(IEEE, 2008), pp. 1–8
31. C.E. Leiserson, F.M. Rose, J.B. Saxe, Optimizing synchronous circuitry by retiming (prelimi-

nary version), in Third Caltech Conference on Very Large Scale Integration (Springer, 1983),
pp. 87–116

32. N. Shenoy, R. Rudell, Efficient implementation of retiming, in Proceedings of the 1994
IEEE/ACM International Conference on Computer-Aided Design (IEEE Computer Society
Press, 1994), pp. 226–233

33. Z. Chu, M. Soeken, Y. Xia, G. De Micheli, Functional decomposition using majority, in 2018
23rd Asia and South Pacific Design Automation Conference (ASP-DAC) (IEEE, 2018), pp.
676–681

34. H. Katebi, I. Markov, Large-scale boolean matching, in Advanced Techniques in Logic Synthe-
sis, Optimizations and Applications (Springer, 2010), pp. 227–247

35. L. Machado, J. Cortadella, Support-reducing decomposition for FPGA mapping. IEEE Trans.
Comput.-Aid. Des. Integr. Circ. Syst. 39(1), 213–224 (2018)

36. A. Mishchenko, S. Chatterjee, R. Brayton, Improvements to technology mapping for LUT-
based FPGAs, in Proceedings of the 2006 ACM/SIGDA 14th International Symposium on
Field Programmable Gate Arrays (2006), pp. 41–49

37. D. Chen, J. Cong, DAOmap: a depth-optimal area optimization mapping algorithm for FPGA
designs, in IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-
2004 (IEEE, 2004), pp. 752–759

38. J. Cong, Y. Ding, On area/depth trade-off in LUT-based FPGA technology mapping, in Pro-
ceedings of the 30th International Design Automation Conference (1993), pp. 213–218

39. J. Cong, Y. Ding, On area/depth trade-off in LUT-based FPGA technology mapping. TVLSI
(1994)

40. J. Cong, Y. Ding, FlowMap: an optimal technology mapping algorithm for delay optimization
in lookup-table based FPGA designs. TCAD (1994)

41. J. Cong, Y.-Y. Hwang, Simultaneous depth and area minimization in LUT-based FPGA map-
ping, in Proceedings of the 1995 ACM Third International Symposium on Field-Programmable
Gate Arrays (1995) pp. 68–74

42. K.R. Basireddy, S. Sabbavarapu, A. Acharyya, Cut-less technology mapping using shannon
factor graph with on-the-fly size reduction. J. Low Power Electron. 14(3), 448–457 (2018)

43. A. Mishchenko, S. Cho, S. Chatterjee, R. Brayton, Cutless FPGA mapping, ERL Technical
Report, EECS Department, UC Berkeley, Technical Report (2007)

44. H. Ren, J. Hu, Machine Learning Applications in Electronic Design Automation (Springer
Nature, 2023)

45. D. Pal, C. Deng, E. Ustun, C. Yu, Z. Zhang, Machine learning for agile FPGA design. Mach.
Learn. Appl. Electron. Des. Automat. 471–504 (2022)

46. C. Yu, C.-C. Huang, G.-J. Nam, M. Choudhury, V. N. Kravets, A. Sullivan, M. Ciesielski,
G. De Micheli, End-to-end industrial study of retiming. ISVLSI (2018)

References 163

47. C. Yu, Z. Zhang, Painting on placement: forecasting routing congestion using conditional
generative adversarial nets. DAC (2019)

48. C. Yu, W. Zhou, Decision making in synthesis cross technologies using LSTMs and transfer
learning. MLCAD (2020)

49. N. Wu, Y. Li, C. Hao, S. Dai, C. Yu, Y. Xie, Gamora: graph learning based symbolic reasoning
for large-scale Boolean networks, in ACM/IEEE Design Automation Conference (DAC’23)
(2023)

50. W.L. Neto, M.T. Moreira, L. Amaru, C. Yu, P.-E. Gaillardon, Read your circuit: leveraging
word embedding to guide logic optimization. ASPDAC (2021)

51. W.L. Neto, M.T. Moreira, L. Amaru, C. Yu, SLAP: a supervised learning approach for priority
cuts technology mapping. DAC (2021)

52. A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J.H. Anderson, S. Brown, T. Cza-
jkowski, LegUp: high-level synthesis for FPGA-based processor/accelerator systems. FPGA
(2011)

53. J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, Z. Zhang, High-level synthesis for
FPGAs: from prototyping to deployment. TCAD (2011)

54. Intel HLS Compiler. https://www.intel.com/content/www/us/en/software/programmable/
quartus-prime/hls-compiler.html. Accessed: 08 Nov 2023 14:14:07.

55. C. Yu, Flowtune: practical multi-armed bandits in Boolean optimization, in International Con-
ference On Computer Aided Design (ICCAD) (IEEE, 2020), pp. 1–9

56. W.L. Neto, Y. Li, P.-E. Gaillardon, C. Yu, Flowtune: end-to-end automatic logic optimization
exploration via domain-specific multi-armed bandit. IEEE Trans. Comput.-Aid. Des. Integr.
Circ. Syst. (2022)

57. D. Liu, B.C. Schafer, Efficient and reliable high-level synthesis design space explorer for
FPGAs. FPL (2016)

58. H.-Y. Liu, L.P. Carloni, On learning-based methods for design-space exploration with high-
level synthesis. DAC (2013)

59. P. Meng, A. Althoff, Q. Gautier, R. Kastner, Adaptive threshold non-pareto elimination: re-
thinking machine learning for system-level design space exploration on FPGAs. DATE (2016)

60. Z. Wang, B.C. Schafer, Machine learning to set meta-heuristic specific parameters for high-level
synthesis design space exploration. DAC (2020)

61. C. Lo, P. Chow, Multi-fidelity optimization for high-level synthesis directives. FPL (2018)
62. C. Lo, P. Chow, Model-based optimization of high-level synthesis directives. FPL (2016)
63. C. Lo, P. Chow, Hierarchical modelling of generators in design-space exploration. FCCM

(2020)
64. A. Mehrabi, A. Manocha, B.C. Lee, D.J. Sorin, Prospector: synthesizing efficient accelerators

via statistical learning. DATE (2020)
65. J. Kwon, L.P. Carloni, Transfer learning for design-space exploration with high-level synthesis.

MLCAD (2020)
66. M. Kurek, M.P. Deisenroth, W. Luk, T. Todman, Knowledge transfer in automatic optimisation

of reconfigurable designs. FCCM (2016)
67. N. Wu, Y. Xie, C. Hao, IronMan: GNN-assisted design space exploration in high-level synthesis

via reinforcement learning. GLSVLSI (2021)
68. W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs. NIPS

(2017)
69. M. Kurek, T. Becker, T. C. Chau, W. Luk, Automating optimization of reconfigurable designs.

FCCM (2014)
70. N. Kapre, H. Ng, K. Teo, J. Naude, InTime: a machine learning approach for efficient selection

of FPGA CAD tool parameters. FPGA (2015)
71. C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, Z. Zhang, A parallel bandit-based approach for

autotuning FPGA compilation. FPGA (2017)

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html

164 9 Logic Synthesis

72. A. Mametjanov, P. Balaprakash, C. Choudary, P.D. Hovland, S.M. Wild, G. Sabin, Autotuning
FPGA design parameters for performance and power. FCCM (2015)

73. E. Ustun, S. Xiang, J. Gui, C. Yu, Z. Zhang, LAMDA: learning-assisted multi-stage autotuning
for FPGA design closure. FCCM (2019)

Chapter 10
Physical Implementation

Abstract In this chapter, physical implementation step of FPGA application design
will be investigated, including the well-known EDA steps: packing, placement, and
routing. Packing cluster the FPGA atoms together into larger design units; placement
assign each design unit to a proper location on the device; routing finds the optimized
wire path to connect all these design units.

10.1 Packing

Packing is the first and one of the critical steps when implementing a post-synthesis
netlist on a given FPGA, as depicted in Fig. 10.1. Packing algorithm aims to cluster
logic primitives, e.g., Look-Up Tables, flip-flops, etc., and efficiently map them to
logic blocks in an FPGA. Staying at the most upstream of the implementation flow,
the result of packing will profoundly impact the placement, and routing results. Its
capability of foreseeing critical paths, placement restriction, and routing congestion
can significant improve the overall performance of placement and routing. Therefore,
packing algorithms have been intensively researched since the born of FPGA devices.

In this part, we will first define the problem of packing algorithms to solve, and
then introduce two well-known types of packing algorithms, and also discuss future
trends in this field.

10.1.1 Overview

In sophisticated implementation framework, e.g., the one shown in Fig. 10.2, the
input and output data structures of packing algorithms are typically well defined
and even standardized (See details in Chap. 3). Figure 10.2 depicts a detailed flow
chart for all the existing packing algorithms. A packing algorithm converts a post-
synthesis netlist to a clustered netlist, with some optional inputs such as a detailed
FPGA device modeling. The clustered netlist is the input of downstream engines,
i.e., a placement algorithm.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_10

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_10&domain=pdf
3
 17878 51229 a 17878 51229 a

http://dx.doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10
https://doi.org/10.1007/978-981-99-7755-0_10

166 10 Physical Implementation

Fig. 10.1 Packing’s position in FPGA application EDA flow

Fig. 10.2 A typical EDA flow for a packing algorithm: input and output data structures

Fig. 10.3 An illustration on the problem definition of FPGA packing algorithms. Each gray box
in the clustered netlist denotes a cluster consisting of several primitives

Problem Definition: As an intermediate step between logic synthesis and place-
ments, packing algorithms are designed to cluster and map atom-level logic primitives
to dedicated logic resources in programmable blocks, e.g., Configurable Logic Block
(CLB). (Fig. 10.3) explains the problem definition of packing algorithms through an
illustrative example. Packing algorithms require two inputs:

10.1 Packing 167

Table 10.1 Comparison on seed-based and partition-based packing algorithms

Metric Seed-based Partition-based Hybrid

Representative
tools

TVPack [1, 2] RPack [3, 4] AAPack [5, 6] PPack [7, 8] HDPack [9]

Support flexible
CLB arch.

.× .× .√ .× . ×

Quality-of-
result optimality

Local Local Local Global Global

Time complexity Low Low Low High Medium

Support hetero-
geneous blocks

.× .× .√ .× . ×

Open-source .√ .× .√ .× . ×

1. A post-synthesis netlist, generated by synthesis tools (See Chap. 9 for details),
which consists of a logic network of primitives, such as Look-Up Tables (LUTs),
Flip-Flops (FFs), Digital Signal Processing (DSP), Random Access Memory
(RAM) etc. These logic primitives are defined in the technology library of logic
synthesis tools.

2. An FPGA cluster architecture description, which describes detailed architectures
of programmable blocks in FPGA tiles, such as CLB, DSP, BRAM, and I/O. The
technical details include the number of primitives per block, the number input and
outputs per block, and also the programmable routing architecture down to pin-to-
pin connections. To model the architecture details, packing tools typically build
a graph, where nodes represent primitives and edges denote routing resources.

Based on the two inputs, packing algorithms output a clustered netlist which only
consists of a number of clusters. Each cluster includes

1. a legal placement of primitives onto logic resources;
2. a legal assignment of nets of the placed primitives to inputs and outputs of clusters;
3. a legal routing of the nets which drives or are driven by the primitives in the

programmable block.

Each cluster will be treated as an individual block to be placed for placement
algorithms (see details in Sect. 10.2). The nets mapped to inputs and outputs of a
cluster will be treated as source and sink nodes for routing algorithms (see details in
Sect. 10.3).

In general, to evaluate the quality of packing algorithms, the Power, Performance,
Area (PPA) at post-routing stage (see Fig. 10.1) are the golden metrics. However,
some other metrics are also used to early predict PPA after packing is accomplished:

1. Number of clusters, which indicates the capability of algorithms to group primi-
tives. To maximize the resource utilization of FPGA devices, packing algorithms
should result in the fewest number of clusters. Each FPGA device contains a fixed
number of programmable blocks for each type (see example in Fig. 10.3. If the

9
 28727 18929 a 28727 18929 a

http://dx.doi.org/10.1007/978-981-99-7755-0_9

168 10 Physical Implementation

number of clusters exceeds their limits, placement and routing will definitely fail.
As a result, a HDL design can not be implemented on the given FPGA device.

2. Number of nets, which indicates the number of interconnections between clus-
ters. The minimize the routing congestion during placement and routing, packing
algorithms should absorb as many net as possible into clusters. Any nets remains
outside clusters will have to be routed by routing algorithms in downstream stage.
FPGA devices contains a limited number of routing resources. A large number
of nets may potentially cause overuse of routing resources, leading to failures in
routing stage.

Mainstream Algorithms: Depending on the FPGA architecture, packing strate-
gies can be very different. Mainstream packing algorithms can be categorized into
three classes: seed-based, partition-based, and a hybrid of the previous two. Table 10.1
compares critical features between the different types of algorithms and their repre-
sentative tools.

1. The seed-based algorithms are most widely researched and published in the past
decade [1– 6, 10, 11]. The seed-based algorithms highly rely on a cost function
to guide the clustering engine, in order to optimize P.P.A.. The cost function has
been intensively studied, which result in various algorithms/tools. Due to the
bottom-up nature, the algorithms often hit a local optimal in clustering results.
However, thanks to their simplicity and flexibility, the seed-based algorithms are
default packing algorithm AAPack in the well-known academia FPGA architec-
ture exploration tool Verilog-to-Routing [6, 12]. AAPack can now supports highly
flexible CLB architectures as well as DSP, BRAM blocks, which are ubiquitous
in modern FPGAs devices.

2. The partition-based packing algorithms utilize the graph partition algorithms, e.g,
hMetis [13], to produce initial packing results and apply refinement to legalize
each cluster. When compared to seed-based algorithms, the partition-based algo-
rithms are more time-consuming (10. ×) due to the use of graph partitioner [7,
8]. However, partition-based algorithms follow a top-down optimization strategy,
which can achieve global optimal results. On average, it can improve P.P.A. by
12% and routability by at 32% when compared to seed-based algorithms.

3. To combine the benefits of seed-based and partition-based algorithms, hybrid
algorithms are proposed to perform partitioning as a coarse placement and then
annotate the predicted physical location to the cost function of seed-based clus-
tering. On average, it can improve P.P.A. by 7% and routability by at 25% when
compared to seed-based algorithms. As the algorithm still rely on seed-based
clustering, its timing complexity is similar to the seed-based algorithms with a
limited overhead (within 13%).

10.1 Packing 169

Fig. 10.4 A flow chart to illustrate seed-based packing algorithms

10.1.2 Seed-Based Packing Algorithms

As a mainstream type of packing algorithms, the seed-based packing algorithms have
been well studied in the past decades. Even though there are more than ten variants of
the seed-based algorithms, the principles are all the same, as illustrated in Fig. 10.2.
In this section, we explain the algorithms based on a widely used implementation,
i.e., Architecture-Aware Pack (AAPack) [6]. Figure 10.4 illustrates the algorithm of
AAPack, which is a super set of other seed-based algorithms. The clustering engine of
AAPack follows a greedy approach as other seed-based algorithms [1– 4]. Clustering
is applied to logic blocks, e.g., Configurable Logic Block (CLB) etc., in a one-by-
one manner, as depicted in Algorithm 1. A new cluster is created with a selected
seed, expanded by absorbing primitives through a cost function, and ended when the
cluster is fully filled or no more primitives can be absorbed. Each cluster is signed off
by a legalizer to guarantee its resource utilization is below a threshold, e.g., 100%.
Once a cluster is marked as packed, it will not be revisited by other clusters and no
modifications are allowed. As AAPack is designed to be adaptive to various FPGA
architectures and offer optimization in different objectives, it contains several unique
features (as highlighted by green boxes using dash lines in Fig. 10.4: pre-packing,
timing criticality computation, and hill climbing. In the rest of the part, we will
present the algorithm details about each technical features.

Pre-pack: To maximize the routability, logic blocks in modern FPGAs typically
contains highly flexible routing architectures. However, to efficiently implement

170 10 Physical Implementation

atom_netlist: Post synthesis netlist
architecture: Device modeling showing detailed logic block and routing architectures.
clustered_netlist: Outputted netlist which contains clusters only.
current_cluster: Current cluster which is open for clustering primitives.
Function pack(atom_netlist, architecture):

clustered_netlist = empty;
while exist_unpacked_candidates(atom_netlist) do

current_cluster = open_new_cluster(atom_netlist, architecture);
try_fill(current_cluster, atom_netlist, architecture);
clustered_netlist.append(current_cluster);

end
return clustered_netlist;

end

Algorithm 1: Seed-based clustering algorithm in AAPack (pseudo-code)

Fig. 10.5 A illustrative example for pre-packing: force packing patterns on post-synthesis netlists
based on hard adder chains in a logic block

some frequently used logic functions, such as adder, modern FPGAs also includes
a small portion of inflexible routing architectures. These architectures may cause
complications in seed-based packers because the packers lack necessary information
to map primitives so that the inflexible routing architectures can be satisfied. The most
common inflexible routing architecture is on adder chains, as depicted in Fig. 10.5a.
The mapping of primitives on the chain has to be exact without any flexibility in
location, due to the hard wires in the chain. For example, the two adders add0
and add1 in a post-synthesis netlist of Fig. 10.5b, have to be mapped to the logic
resource A0 and A1 in a cluster, respectively. Therefore, a pre-packing stage is
required to extract such patterns of primitives from post-synthesis netlists and force
a high priority when mapping to a cluster. As a result, the primitives in a pattern
should be added to a cluster only as a group, to avoid potential failures seen in
legalizers due to the strong limitation in routing architecture. Algorithm 2 presents
the pseudo codes of the pre-packing stage. In the first step, a list of pack patterns

10.1 Packing 171

Fig. 10.6 Examples of pack pattern definition in FPGA architecture language

is extracted from the logic block architectures, where the types of primitives that
are mappable to the patterns are identified. Note that pre-packing requires users to
define pack patterns when crafting their FPGA architectures. Figure 10.6 shows an
example of pack pattern for the hard adder chain in Fig. 10.5a, using the University of
Toronto FPGA Architecture Language (UTFAL) [14]. In the second step, primitives
in a post-synthesis netlist are grouped to molecules, which are the smallest unit to be
considered/added to a cluster. Note that a molecule may consist of multiple primitives,
such as a adder chain, or a single primitive, e.g., a LUT. When traversing the netlist to
form molecules, the pre-packer starts with the largest pack pattern and ends with the
smallest pack pattern. During each traversal, the pre-packer considers a pack pattern,
and try to match parts of the netlist to a pack pattern through a technique similar to the
matching process in a standard cell technology mappers [15]. The molecule creation
process is greedy to ensure that each primitive can only be assigned to molecule.

atom_netlist: Post synthesis netlist
architecture: Device modeling showing detailed logic block and routing architectures.
molecule_list: Group of primitives which are mappable to logic resources.
current_cluster: Current cluster which is open for clustering primitives.
Function pre-pack(atom_netlist, architecture):

pack_patterns = extract_pack_patterns(architecture);
molecule_list = build_molecule_list(atom_netlist, pack_patterns);
return pack_patterns, molecule_list;

end

Algorithm 2: Pre-packing algorithm in AAPack (pseudo-code)

Timing Criticality Computation: Timing-driven packing algorithms require
timing criticality as a key factor in their cost functions, when select a molecule from
candidates to add to a cluster. Therefore, a static timing analysis is run on the post-
synthesis netlist, and timing criticality is computed for each net of molecules before
clustering stage. Timing parameters of each primitive are annotated from the device
modeling, including pin-to-pin delays, setup, and hold time. The timing analyzer
predicts the routing delay between molecules based on the segment delays defined in
routing architecture of device modeling. For example, AAPack assumes all length-4
wires used to interconnect molecules, which is pessimistic. Through a timing analy-
sis, the slack of each edge is computed, based on which the timing criticality of each
edge is achieved. Figure 10.7a shows an example of how a post-synthesis netlist is

172 10 Physical Implementation

Fig. 10.7 An example of computing timing criticality in packing

Table 10.2 Timing criticality for each node in Fig. 10.7, where nodes on critical path is highlighted

Node .Tarrival (. ns) .Trequired (. ns) Slack . Tcriticality

.n0 0.25 0.5 0.25 0.98

.n1 0.25 0.5 0.25 0.98

.n2 0.25 6 5.75 0.58

.n3 3.5 3.5 0 1

.n4_0 0.5 0.5 0 1

.n4_1 6 13.25 7.25 0.47

.n5 8 8 0 1

.n6 11 11 0 1

.n7 13.25 13.25 0 1

.n8 10.25 13.25 3 0.78

converted to a timing graph. Note that a timing path can start from either a primary
input or an output of a flip-flop, and end to either a primary output or an input of a
flip-flop. Therefore, the node.n4 is splitted into two nodes.n4_0 (as the starting point
of a timing path) and .n4_1 (as the ending point of a timing path) in the resulting
timing graph of Fig. 10.7a. Based on the timing parameters listed in Fig. 10.7b, there
is one critical path in the timing graph: .n4_0 → n3 → n5 → n6 → n7. The criti-
cal path delay is .13.75ns. The timing criticality of each node can be computed by
following Eq. 10.1, as detailed in Table 10.2. Note that all the nodes on the critical
path have timing criticality of one. By assigning high timing criticality to the nodes
on critical paths and close to critical paths, packers can be guided to optimize their
timing using cost functions (see details in next part). Typically, seed-based packers
cluster these timing critical nodes into the same logic block, in order to minimize the
final critical path delay.

10.1 Packing 173

.

slacknode_i = Trequired, node_i − Tarrival, node_i

timing_criticalitynode_i = 1 − slacknode_i
crit_path_delay

(10.1)

molecule_list: Molecules extracted from post synthesis netlist
architecture: Device modeling showing detailed logic block and routing architectures.
current_cluster: Current cluster which is open for clustering primitives.
Function TryFill(current_cluster, molecule_list, architecture):

candidates = update_candidate_list_for_cluster(current_cluster,
molecule_list);
while is_empty(candidates) or !is_cluster_full(current_cluster) do

chosen_candidate = pick_molecule_with_highest_gain(current_cluster,
candidates);
try_place_molecule_in_cluster(current_cluster, chosen_candidate);
if cluster_is_legal(current_cluster, architecture) then

save_cluster_result(current_cluster);
update_candidate_list_for_cluster(current_cluster,
molecule_list);

end
else

remove_molecule_from_candidates(chosen_candidate, candidates);
end

end
if !is_cluster_full(current_cluster) then

try_hill_climb(current_cluster);
end

end

Algorithm 3: Detailed algorithm of the TryFill() function show in Algorithm
1 (pseudo-code)

Clustering engine: Seed-based packers build clusters one at a time, as explained
in Algorithm 1. During clustering, molecules, created in the pre-packing stage, are
grouped to form a cluster, and mapped to specific locations in the clusters. There are
two phases when building a cluster:

1. Seed selection: Seed molecule is the first element that is added to a new clus-
ter. Packers pick a molecule based on a cost function, which is considered to
bring highest gain to the cluster. The type of gain depends on the objective in
optimization, which can be routability-driven or timing-driven, etc.. To reach the
designated goal, cost functions are built to quantify the gain of each molecule
when added to a cluster. Therefore, unclustered molecules can be ranked by the
gain, and packers pick a high-ranking molecule as the seed. Table 10.3 lists the
seed selection strategy of representative packers. Take the example of VPACK,
the molecule m0 in Fig. 10.8a is selected as the seed when creating a cluster,
because it has the most used inputs (.= 4).

174 10 Physical Implementation

2. Cluster filling: Once a seed is picked, clustering engine fills a new cluster through
iterations. Algorithm 3 summarizes the principles of the iterative cluster-filling
approach from all the existing seed-based packers. In each iteration, a list of
candidate molecules is created based a cost function which quantifies their gain
to the cluster. The candidates may be ranked by the highest gain, and the packer can
fastly spot the preferred molecule when added it to the cluster. This methodology is
similar to the seed selection phase. With a list of the candidates, clustering engine
pick a molecule in each iteration and try to place it onto an available location in the
cluster. Considering the example in Fig. 10.8a, the molecule m3 will be placed to
the cluster, due to its highest gain than the others m2 and m4. Note that absorbing a
candidate with highest gain may not always lead to a success addition. A legalizer
is called to ensure that (a) the new member will not exceed the input and output
bandwidth of the logic block architecture, (b) when there are local architecture,
all the input and output signals can be routed inside the cluster. Take the example
in Fig. 10.8a, the molecule m3 should be legally added to the cluster, as shown
in Fig. 10.8b, when the input bandwidth is 6. However, if the input bandwidth
is 5, the legalizer will fail when adding the molecule m3 to the cluster. Instead,
the molecule m2 will be added to the cluster legally. If the legalizer passes, the
clustering results, including the placement of the new member and routing traces,
are saved and the candidate list will be updated for the next iteration. As a member
have been added to the cluster, the gain of unclustered molecules are no longer
the same as previous iteration. If the legalizer fails, the candidate will be removed
from the list, and will not be considered in future iterations. This phase ends until
there are no more candidates or the current cluster is full. To ensure highest gain
in each iteration, the selected candidates should have direct connections to the
cluster, being either a fan-in or a fanout molecule. As a result, a cluster may not be
fully filled due to a limited number of candidates. A hill climbing phase may be
called to fill the cluster. Hill climbing aim to increase the resource utilization rate,
which considers candidate molecules which have not connections to the cluster.
Consider the example in Fig. 10.8c, if there is an input bandwidth of 5, molecule
m3 cannot be added the cluster since it will result in 6 inputs for the cluster. In
such case, hill climbing can add an unrelated molecule m4 to the cluster without
violating input bandwidth. Details about hill climbing can be found in [1].

Cost functions: The key factor in seed-based clustering engines is the cost func-
tions, which profoundly impacts the decision in each iteration. Cost functions are
considered in both seed selection and cluster-filling phases. Cost functions are design
to reflect the affinity between molecules, indicating the gains to absorb a molecule
into an existing cluster. A well designed cost function can precisely quantify the gain
for each candidate molecule. Provide a rank which clearly distinguish the molecule
with highest gain from the others. Therefore, with a sophisticated cost function, a
clustering engine can make correct decision in each iteration toward the optimization
goal. In contrast, a poor cost function may probably mislead the clustering engines
to absorb a improper candidate, being far from the objective, e.g., maximum oper-
ating frequency. Depending on the applications, different optimization targets are

10.1 Packing 175

Table 10.3 Cost functions in representative packers

Packer Type Seed selection phase Cluster filling phase

VPack [1] Routability .max{used_inputs} . |Nets(M)
⊓

Nets(C)|
TVPack [2] Routability/timing Same as VPack . α · TC(M) + (1 − α) ·

|Nets(M)
⊓

Nets(C)|
G

RPack [3] Routability Same as VPack .
∑

i∈Nets(M) g(i,Nets(C), M)

iRAC [4] Routability .separation/degree2 . 2 · n · w(M) · (1 + αM,C)

AAPack [5] Routability/timing .α · TC + (1 − α) ·
used_inputs

. α · TC + (1 − α) ·
connection_gain

.M denotes a molecule candidate, while. C denotes a cluster

.TC denotes the timing criticality in Eq. 10.1

given to clustering engines, resulting in a different choice on cost functions. The
two most studied goals are the routability-driven and the timing-driven, respectively.
Table 10.3 compares the cost functions used by representative packers in the seed
selection phase and cluster filling phase. Early works, such as VPack, RPack and
iRac, employ single-objective cost functions and focus on routability optimization
[1, 3, 4]. Therefore, the cost functions aim to estimate the number of nets to be
absorbed into a cluster. VPack uses the number of common nets between a cluster
and a candidate molecule. However, the cost function in VPack is too simplified
to optimize routability, especially when there are high-fanout nets. It may mislead
packer to prioritize absorbing molecules with common input nets, missing the oppor-
tunity to fully absorb low fanout nets. RPack, and iRAC’s cost functions focus on
fully absorbing nets, and minimize the number of external nets outside a cluster,
by leveraging the Rent’s rule. For example, in Fig. 10.8a, VPACK will assign the
same gain to the candidate molecules m2 and m3, and it may decide to cluster m3 as
depicted in Fig. 10.8b. However, the cost function of RPack and iRAC will assign a
higher gain to m2 than m3, because it can reduce more external nets. When compar-
ing Fig. 10.8b, c, the cluster with m2 contains 5 input nets and 1 output nets, while
the cluster with m3 contains 6 input nets and 1 output nets. Timing-driven packers,
such as TVPack and AAPack, introduce the timing criticality into the cost function,
as well as a factor. α to balance the weights between timing gain and connection gain.
The factor . α is typically an empirical number achieved by experiments on a set of
benchmarks, w.r.t. the best overall performance. When .α = 1, the cost function is
biased to timing critically, resulting in a fully timing-driven clustering strategy. When
.α = 0, the cost function is biased to routability, resulting in a fully connection-driven
clustering strategy. We refer interested readers to [1– 5] for further details.

176 10 Physical Implementation

Fig. 10.8 A illustrative example for clustering: a an example cluster; b absorb the molecule with
highest gain; c absorb the molecule subject to input bandwidth; d hill climbing example

10.1.3 Partition-Based Packing Algorithms

Though seed-based packing algorithms are fast in runtime to produce tight clusters
and easy to be tuned for various constraints, they may become stuck in local min-
ima due to the localized greedy strategy. Since clusters are built one by one and
clusters cannot be modified once built, it is difficult for seed-based approaches to
further optimize QoR from a global view. To compensate the loss, cluster modifica-
tion, such as Basic Logic Element (BLE) swapping can be applied in downstream
placement stages [16]. However, such fix is expensive in runtime, which may cause
massive changes to clustering results, defeating the initial purpose of packing. There-
fore, partition-based packing algorithms are proposed to produce high-quality results
through a global optimization approach [7, 8].

To avoid local optimal, partition-based algorithms aim to form clusters with a
global view, starting from the first step. Algorithm 4 presents the major steps for
partition-based packers [7, 8, 17]. There are three key factors which impacts most
on the QoR of the partition-based packers:

10.1 Packing 177

atom_netlist: Post synthesis netlist
architecture: Device modeling showing detailed logic block and routing architectures.
clustered_netlist: Outputted netlist which contains clusters only.
Function pack(atom_netlist, architecture):

hypergraph = convert_netlist_to_a_hypergraph(atom_netlist);
if timing_driven then

add_weighted_timing_edges_to_hypergraph(hypergraph);
end
partitions = kway_partitioner(hypergraph);
fine_tune_partitions_under_constraints(partitions, architecture);
clustered_netlist = convert_partition_results_to_clusters(partitions);
return clustered_netlist;

end

Algorithm 4: Partition-based clustering algorithm in PPack/TPPack [7]
(pseudo-code)

1. an efficient graph partitioner, which can partition a large graph evely into small
groups within a limited amount of runtime. For example, hMetis can produce
extremely high-quality bisections of hypergraphs with 100,000 vertices in well
under 3 min on an R10000-based SGI workstation and a Pentium Pro-based per-
sonal computer [18].

2. a proper modeling of the input netlists atom_netlist in hypergraph, which
can be accepted by graph partitioners. In particular, the choice of nodes and the
weight of edges have profound and direct impacts on the decision of partitioners.
For different FPGA architectures, the node and weight build-up may be very
different, in order to guide graph partitioner with a clear focus on optimization.

3. rebalancing partitions subject to design constraints. While current state-of-art
graph partitioners focus on optimizing connectivity, generated partitions may
contain a large of nodes, exceeding the logic capacity of a BLE in FPGA. The
rebalancing aims to fixes up these exceptions by moving nodes from oversized
partitions to undersized.

In the rest of this part, technical details about each critical step of the partition-based
algorithms are presented.

Hypergraph conversion: Hypergraph is a standard and general-purpose graph
network which are frequently used by graph partitioners as inputs [19]. Post-synthesis
netlists are typically modeled as logic networks, as illustrated in Fig. 10.9a, where
each node represents a LUT or a FF or an I/O. When converting such logic network
to a hypergraph, a pre-packing step is required, being similar to the seed-based pack-
ers (see details in 10.1.2). During pre-packing, LUTs and FFs are paired to become
super nodes. Pre-packing not only efficiently reduces the graph size and hence the
runtime of graph partitioning, but also avoids the exposure of unnecessary edges
which may mislead partitioners. For example, the nodes representing LUTs and FFs
{n0, n1, …, n7} in Fig. 10.9b are grouped into BLE nodes {b0, b1, b2,
b3} in Fig. 10.9c. Note that there are tight connections inside each BLE between

178 10 Physical Implementation

Fig. 10.9 A illustrative example for netlist to hypergraph conversion: a an example of input netlist;
b group nodes into BLEs; c hypergraph representation with a potential partitioning

LUTs and FFs. Even these connections are shown in the hypergraph, they may change
the partition results with a small probability, as partition algorithms are designed to
minimize connectivity. However, as the time complexity of graph partition algo-
rithms is typically high, hiding these details can reduce runtime while have almost
no impacts on results. In addition, edges in the logic network are combined to hyper-
edges between nodes. For example, the edges sharing the same source node i0 in
Fig. 10.9b become a hyperedge e0 in Fig. 10.9c. We refer interested readers to [19]
for concepts of hypergraph.

Timing-driven edge addition: Timing-driven is a critical feature required by
modern FPGA design tools. Partitioning-based packers can be made timing-driven
by adding a number of extra edges to a hypergraph. This encourages graph partitioner
to group the two-end nodes of these edges into the same partition, since the costs of
these edges are significantly higher than others. The weight adjustment is done by
two step:

1. Identify timing critical edges. The timing criticality or slack of each edge in an
input netlist can be computed by the static timing analysis, similar to seed-based
packers.

2. For each timing critical edge, add a weighted edge between the two corresponding
nodes to the hypergraph. For example, the edges on a critical path (marked by
bold lines) in Fig. 10.9b are added to the resulting hypergraph, as show in {e0,
e2, e4, e5, e6} in Fig. 10.9c.

Note that different packers may have different methods when converting timing
criticality to edge weights. For example, for each edge . ei , PPack considers both the
pack-accumulated timing weight .pw(ei) and the timing slack .slack(ei):

.w(ei) = α ·
(

1 − slack(ei)

slackmax

)

+ (1 − α) · pw(ei)

pwmax

β

(10.2)

10.1 Packing 179

where .slackmax and .pwmax denote the largest slack and pack-accumulated timing
weight among all the edges, respectively.. α is the weight factor for slack-based criti-
cality, similar to the weight factor used in TVPack and AAPack shown in Table 10.3.
.β is an exponent (smaller than 1) to bring all .pw(ei) values to a more compa-
rable level related to .pwmax (otherwise, most of them would be near 0). When
adding timing edges to a hypergraph, the weight of each edge is scaled to an
integer through .[M · w(ei)], where .M is the upper bound. In practice, the num-
ber of timing edges to be added may be limited by an upper bound . p (a ratio on
the total number of edges), because it may mislead the partitioner by forcing a
strong bias on timing while have no considerations on routability. The parameter
set .α, β, M, p is empirically obtain through experiments on a benchmark suite. For
example, .α, β, M, p = 0, 0.25, 6, 20% is reported by [7] based on the best practice
considering the MCNC-20 benchmark suite [20].

Graph Partitioning: Circuit partitioning results are achieved by running a k-way
graph partitioner, e.g., hMetis [18, 21]. Even though these modern graph partitioners
have been well optimized to produce high-quality results in a reasonable runtime,
it may not handle high-fanout nets well. In practice, some high-fanout nets, e.g.,
.fanout > 100 is considered in PPack, are removed in hypergraph without affect-
ing routability. To further reduce runtime and manipulate partitioners, a recursive
approach is proposed to apply bipartitioning recursively [8]. We refer interested
readers to [21] for details about graph partitioning techniques.

Partition refinement: In this step, partitions are refined to ensure they fit FPGA
architecture w.r.t. design constraints, such as logic capacity, routability. For example,
some partitions from the k-way partitioner may contain more LUTs or FFs than the
number of logic resources in a CLB, since these constraints are difficult to force on
partitioners. Refinement is applied by incrementally updating partitions. Firstly, all
the nodes in the oversized partitions are identified. For each node, the best target
partition is determined by computing the gains of merging the node to candidate
partitions. The gain function varies from one packer to another. For example, one
can use the attraction function as seed-based packers [17]. Once the best target
partition is found, the node is moved and the candidate node pool is updated. Such
strategy repeats until there are no oversized partitions. To avoid high runtime when
there are a large number of candidate partitions, the refinement may be limited to a
small range of partitioners, which are considered to be close in hierarchy [8].

Clustered netlist conversion: Refined partitions are converted to clusters one by
one. For example, nodes representing BLEs are recoverd to LUTs and FFs, while
hidden connections are restored. This is a straightforward process as each partition
is already legalized during refinement.

10.1.4 Summary and Trends

Packing has been intensively studied in past decades with several mainstream algo-
rithms proposed. All these algorithms share the same objective: to properly group

180 10 Physical Implementation

logic primitives into clusters, so that the number of external nets are minimized and
critical path delay is reduced. However, to evaluate the quality of results, packing
algorithms cannot be simply judged by the number of external nets and a predicted
critical path after packing. Results of packing algorithms are evaluated through a
complete design flow, i.e., placement and routing followed by an accurate timing
analysis.

Seed-based packers are easy to implement due to their open-source availability
and simple nature. Seed-based packers have been extended to support heterogeneous
blocks, such as DSPs and BRAMs, while partition-based packers are currently lim-
ited to LUT and FFs only. Partition-based packers outperforms seed-based packers
on MCNC benchmarks on routability (37% smaller in minimum routable channel
width) and timing (12% smaller in critical path delays). But partition-based packers
are 10.× slower than seed-based packers even for small benchmarks, e.g., MCNC,
whose number of nodes are no more than 8 k. High-quality results of partition-
based packers can reduce the runtime of placement and routing by 34% on average.
However, modern FPGA designs may contain millions of LUTs, which still chal-
lenges partition-based algorithms due to their high runtime cost. Choice of packing
algorithms also strongly depend on the considered FPGA architectures. Seed-based
packers can be tuned through pre-packing and cost functions to fit some dedicated
FPGA architectures [22, 23]. Partition-based packers are suitable for FPGA architec-
tures without input bandwidth on clusters, which can efficiently reduce the workloads
when rebalancing partitions.

In future, packing algorithms may combine the advantages of seed-based and
partition-based (see Table 10.1), while avoid the local optimal and long runtime. For
example, the HDPack investigates the use of partitioners for a coarse clustering, and
then use seed-based algorithms to perform fast and exact clustering.

10.2 Placement

10.2.1 Overview

FPGA placement is a vital process that having a synthesized design netlist (in terms
of clusters/molecules/atoms) to be assigned into physical locations under design
constraints (Fig. 10.10).

Good placement is extremely important, because even if the circuit is legally
implemented, a poor placement could still lead to a low maximum operating speed
or a high power consumption (Fig. 10.11).

Problem Definition: Finding a good placement solution is challenging. A modern
commercial FPGA can contain over 2,000,000 function units, exhaustive evaluation
is therefore impossible. Besides, not every placement solution is legal, it must under
some constraints:

10.2 Placement 181

Fig. 10.10 Placement’s position in FPGA application EDA flow

Fig. 10.11 FPGA placement matters

1. Accommodation legality limit
Generic logic cluster must be placed in a generic logic tile (GLT) location, and a
memory cluster must be placed in a memory tile (MMT) location, etc. Placement
for FPGAs is actually a slot assignment problem.

2. Specific group limit
Such as arithmetic logic units forming a carry chain must be placed adjacent to
each other in the sequence required by the carry structure.

3. Routing congestion limit
The circumstance that the interconnect exceeds the fabricated wiring capacity in
some part of the FPGA must be avoided.

Mainstream Algorithms: Placement engines can be categorized from different per-
spectives:

1. By algorithmic logic
Partition-based techniques [24– 26] use divide-and-conquer techniques to recur-
sively partition a circuit and induce ever-smaller placement problems. These tech-
niques can achieve a short runtime, but they suffer from low QoR with large-scale
designs and therefore hardly adopted by industry. Annealing and analytical tech-
niques, which will be further discussed in the following sections, are the most
popular engines both for academia and industry. In fact, modern placement solu-
tions usually apply them in combination to achieve better results. For example,
Intel Quartus placer [27] applies analytical method to determine the an initial
placement and then uses annealing method to fine tune it.

182 10 Physical Implementation

Fig. 10.12 Thermodynamics of physical annealing

2. By optimization objectives
There are plenty of optimization objectives for placement, for example, wirelength-
driven placement minimizes the required wiring; routability-driven placement
trying to avoid congestion before routing; timing-driven placement maximizes
the circuit speed; power-aware placement takes power consumption into consid-
eration, etc. An excellent placement engine would always balance well among
these objectives.

3. By computation acceleration
In order to reduce compilation time while maintaining quality of results, place-
ment computations can be accelerated either by parallelism or by AI.

4. By targeted architecture
For other special modern FPGA architecture features (such as advanced package
(2.5D/3D), complexed clocking), there are additional placement considerations
to adapt to them.

10.2.2 Annealing Placement Algorithms

Physical annealing is a heat treatment that alters the physical and sometimes chemical
properties of a material to increase its ductility and reduce its hardness, making it
more workable. It occurs by the diffusion of atoms within a solid material, so that
the material progresses toward its equilibrium state (Fig. 10.12).

Physical annealing for metal procedures (Fig. 10.13):
Stage1: Heating
Take a metal and heat it to a high temperature. Give it an initial temperature, and

atoms transit to high energy states.
Stage2: Cooling
Allow it to cool slowly, metal is annealed to a low temperature. Atoms slowly

move to low energy states during the temperature drop.
Higher the initial temperature, slower the cooling, the tougher the metal becomes

(Fig. 10.14).

10.2 Placement 183

Fig. 10.13 Operation of physical annealing

Fig. 10.14 Cooling speed is important in physical annealing

184 10 Physical Implementation

In the field of FPGA EDA, simulated annealing is a probabilistic technique that
mimics the physical annealing process, for approximating the global optimum of a
given function in a large search space. It was first introduced in 1953 by Metropolis
et al. [28] and for solving combinatorial minimization problems and NP complete
problem.

Simulated annealing for FPGA placement procedures are (Fig. 10.15):
Stage1: Starts with an initial state and temperature (analogy from thermodynam-

ics).
Stage 2: Randomly changing the state, create a new state.
Stage 3: Compare energies of the new state and the current state, if the new state

has less energy, or its probability function .e−ΔC/T is less than a random value (. ΔC
refers to energy change and T refers to the current temperature), Accept the new
state; for circumstances not above, Reject the new state.

P = InitialPlacement ();
T = InitialTemperature ();
while (ExitCriterion () == False) do

while (InnerLoopCriterion () == False) do
Pnew = PerturbPlacementViaMove (P);
ΔC = Cost(Pnew) - Cost(P);
r = random (0,1);
if (r < e−ΔC/T) then

P = Pnew;
end

end
T = UpdateTemp (T);

end

Algorithm 5: Generic simulated annealing placement algorithm (pseudo-code)

The criteria of simulated annealing placement for FPGA application design
includes:

1. Placement Schedule (Annealing)—Defines how to explore the solution space,
for example, the starting and ending temperature (the temperature controls the
likelihood of accepting moves that make the solution worse); moving strategy;
the rate at which the temperature is decreased; the exit criterion for terminating
the anneal; the number of moves attempted at each temperature; the method by
which potential moves are generated, etc.

2. Cost Function—Energy status of a certain temperature. It is used to evaluate the
impact of each proposed move based on the desired optimization objectives.

3. Computation Time—Placement has always been a time-consuming stage, espe-
cially for complex FPGA architectures. Research work [29] shows that commer-
cial simulated annealing placer in Quartus II takes about 49% of the compilation
time for Titan benchmarks. Reducing computation time is also being intensively
studied by both academia and industry.

10.2 Placement 185

Fig. 10.15 Iteration process of simulated annealing

Placement Schedule (Annealing)
VTR’s original VPlace [1] is a famous pioneer work of FPGA placement, according
to the algorithm, all the criteria are parameterized (therefore adaptive). In every
update, VTR optimize the annealing schedule on the basis of previous version. For
example in the newer VTR8 [30], move region limit is optimized by compressed
move grid to avoid the situation that preventing a sparse block from moving between
columns.

Moving strategy is a researching hot spot in this field. Instead of random move in
the original VTR, direct move calculates the effectiveness of each move and make
future moves according to this effectiveness [31, 32]. Intel Quartus placer also uses
directed moves, but no details has been published [33].

Cost Function

1. Wirelength
Wirelength, often measured in Half Perimeter WireLength (HPWL), is the most
important objective that can not be neglected.
Bounding box (the smallest rectangle to encloses all the terminals of a net) is
introduced to estimate the wiring cost (Fig. 10.16) and the cost function (HPWL
of the bounding box) is defined as (Eq. 10.3)..bbx and.bby are the x- and y-directed
span of the bounding box that just encloses all the terminals of the net (Fig. 10.16).
With this cost function, place engine could minimize the total HPWL across all
considered nets.

.WireCost =
num_nets∑

i=1

[bbx (i) + bby(i)] (10.3)

VPR’s VPlace [1] uses linear congestion cost function to take routability into
consideration (Eq. 10.4).

186 10 Physical Implementation

Fig. 10.16 Bounding box is used to estimate the wiring cost

.WireCost =
num_nets∑

i=1

q(i)

[
bbx (i)

[Cav,x (i)]β + bby(i)

[Cav,y(i)]β
]

(10.4)

where.q(i) is fanout-based correction factor and linearly increases to help correct
the underestimated wiring..Cav,x (i) and.Cav,y(i) are the average channel capacities
(in tracks) in the x and y directions respectively, over the bounding box of net
. i . . β allows the relative cost of using narrow and wide channels to be adjusted.
The larger value of. β, the more wiring in narrow channels is penalized relative to
wiring in wider channels.

2. Timing
The timing cost function can be loosely classified as net-based [34– 38], path-
based [39, 40] or a hybrid of the two [41, 42]. Net-based cost function usually
transform timing to net weights, while the path-based cost function try to represent
the timing of critical paths directly. Using path-based cost function generally has
more accurate timing view and control, but it suffers from poor scalability and
high complexity; using the net-based cost function is very suitable for large chip
design such as FPGAs since it has relatively low computational complexity and
high flexibility.
T-VPlace [36] is the timing-driven version of VPlace, it improves the cost function
by adding net-based timing considerations (Eq. 10.5).

10.2 Placement 187

.TimingCost =
num_nets∑

j=1

Criticality(j) · Delay(j) (10.5)

where.Delay(j) is the delay value of the edge joining node. j to node. i . For quick
estimation, it computes the delay between two blocks as a function only of the
distance (. δx, . δy). Before that, the placer employs router to determine the delay
between two blocks that are (. δx,. δy) distance apart, and record it in the delay look
up table at location index (. δx, . δy). .Criticality(j) (Eq. 10.6) of connection. j in the
design is determined by periodic timing analysis.

.Criticality(j) = 1 − Slack(j)

Delaymax
(10.6)

where.Delaymax is the critical path delay (maximum arrival time of all sinks in the
circuit), and .Slack(j) is the amount of delay that can be added to the connection
. j without increasing the critical path delay.

3. Power
The power cost function is dependent on the switching activity of the hardware
resources of FPGA.
Lamoureaux [43] modified VPR’s cost function by adding a power cost (Eq. 10.7):

.PowerCost =
num_nets∑

i=1

q(i)[bbx (i) + bby(i)] · activity(i) (10.7)

where activity (. i) represents the average number of times net . i transitions per
second.

Total cost function often trades off these objectives above. If the trade-off variable. λ

determines how much weight to give timing cost, variable . γ determines how much
weight to give power cost, then the total cost could be described as (10.8).

.WeightedCost = λTimingCost + γPowerCost + (1 − λ − γ)WiringCost (10.8)

Computation Time

1. Parallel acceleration
Distribute placement moves among multiple computation engines to be evalu-
ated in parallel is widely used to shorten annealing time. However, this could
lead to conflicts if multiple computational engines accept moves that affect the
same design units or nets (termed as “collision”) and nondeterministic or serial
nonequivalent results.
Parallel solutions address the problems above and can be inspected from different
perspective:

188 10 Physical Implementation

a. In terms of algorithmic logic (Software)
Independent set identifying—Find independent (non-colliding) set of moves
and process them all in parallel. The Intel Quartus placer [33] is a representa-
tive work in this field, it speculatively evaluates moves in parallel and uses a
dependency checker to detect collisions.
Relevant set partitioning—Assign each computation core a partition in the
placement area such that different computation unit’s moves will not interfere
with each other. An early parallel implementation for standard cell placement
[44] uses this method to avoid collision.

b. In terms of computation architecture (Hardware)
Scalar architecture (CPU)—Modern CPU usually has multiple cores, and each
core has numbers of threads. Using multiple CPU cores or threads as computa-
tion engines for annealing placement has been intensively studied [33, 45– 48].
Vector architecture (GPU)—Streaming multiprocessor (SMP) is the compu-
tation engine of GPU and can be used as annealing placement computation
engine to obtain deterministic result. Related works [49, 50] have achieved
decent speedups over multi-threaded CPU implementations.
Spatial architecture (FPGA)—In [51], systolic array of processing element
(PE) in an FPGA is used as the computation engine. It accelerates the anneal-
ing placer and achieves a speedup of up to 2649.× over VPR run with the
fast option, at a cost of 36% average increase in minimum channel width for
successful routing. However, the key limitation of this work is requiring an
FPGA that is at least 400 times larger than the circuit being placed, making it
unusable for large designs.

2. AI acceleration
AI technologies has been emerging in the past years to guide the annealing placer
in choosing which type of move to make and greatly reduce computation time.

a. In terms of algorithmic logic (Software)
Reinforcement learning (RL)—is a branch of machine learning, it utilizes a
software agent to make observations and takes actions within an environment,
and its objective is to learn to act in a way that will maximize its expected
long-term rewards. Consider the task of FPGA annealing placement [32, 52],
the goal is to teach the annealer (agent) to make move decisions with rein-
forcement learning, given the current placement status (environment) . St , RL
techniques iteratively use an action value function.Q(s, a) to predict the imme-
diate and future expected cost optimization(reward) if action. a is chosen while
the environment is in state. s. Any action chosen will not only affect the imme-
diate reward but also all the upcoming rewards and states. After performing
action. at and receiving reward.rt+1, the action value function Q can be updated
as (Eq. 10.9):

.Q(at+1) = Q(at) + λ(rt+1 − Q(at)) (10.9)

where.rt+1 − Q(at) represents the deviation between the agent’s estimate and
the actual reward, and . λ is the step size parameter to reduce this deviation.

10.2 Placement 189

b. In terms of computation architecture (Hardware)
Scalar architecture (CPU)—Known studies deploy the agent on CPUs, such
as [32, 52].
In fact, competitive rivals such as vector (GPU) or matrix (TPU) engines could
be even more efficient for this type of workload. However, none of these works
is published by the time this book is written.

10.2.3 Analytical Placement Algorithms

Analytical placement methods consider global connectivity rather than evaluate the
local modifications, however, the global minimum is usually an illegal placement
with overlapping blocks, so constraints and heuristics must be applied to guide the
algorithm to a legal solution. At the 2016 International Symposium on Physical
Design (ISPD) contest, analytical placers occupied the top three positions (UTPlace
[53], Ripple [54] and GPlace [55]).

Most modern FPGA analytical placers consist of the following three major actions:
Action 1: Global placement (GP). This action ignores some constraints (e.g., unit

overlaps) and computes the best position (coordination) for each unit according to
desired objectives (e.g., wirelength). It has a crucial impact on the overall placement
quality.

Action 2: Legalization (LG). This action removes all overlaps among design units,
assigning each of them into device units.

Action 3: Detailed placement (DP). This action further improves the legalized
placement solution, typically in an iterative manner by rearranging a small number
of units in a given region while keeping all other units fixed.

Among these actions, GP is the most time-consuming one. As a reference, elfPlace
[56] reports that in terms of runtime breakdown, GP, LG, and DP consumes 59.8%,
19.9%, and 18.6%, respectively.

The criteria of analytical placement for FPGA application design includes:

1. Placement Schedule (Analytical)—Defines how to explore the solution space, or
the algorithmic strategies of invoking each action.

2. Cost Function—It is used to evaluate the impact of each proposed status change
based on the desired optimization objectives.

3. Computation Time—Having the same concerns with annealing techniques in the
previous section, reducing placement time is an endless optimization direction
for every researcher.

Placement Schedule (Analytical)
There are several different algorithmic concerns with FPGA analytical placement.

For GP, analytical solving process tends to pull FPGA units together for better
PPA, so that the placement strategy is highly depends on the cost function, which
will be discussed later in this section.

190 10 Physical Implementation

For LG, it is assumed that different PPA objectives are already optimized in the
GP. Consequently, to preserve the GP result as far as possible, the objective of LG is
to minimize the movement of the FPGA units. Partition-based methods are widely
used due to their simplicity [54, 57, 58], during spreading, the FPGA will be evenly
divided into a grid of x*y bins, and the legalizer will find an overflowed bin, expand
it into a corresponding larger window, recursively partition the window and spread
the units within it.

For DP, the objective is to find a better position for each FPGA unit in the available
free spaces. These detailed refinements are often performed using low temperature
simulated annealing to fully optimize the FPGA design [54, 59].

Cost Function

1. Wirelength
Wirelength cost functions have two types of models to approximate HPWL:
quadratic and nonlinear.
Quadratic cost functions are mostly used for analytical placement [54, 57, 59],
and the wirelength is modeled in quadratic formula:

.WireCostquadratic = 1

2

∑

i, j

wi, j [(xi − x j)
2 + (yi − y j)

2] (10.10)

where .wi, j is the weight of the connection between FPGA unit i and j. x and y
denote the unit locations. The cost function can be written in matrix notation as:

.WireCostquadratic = 1

2
xT Qx x + cTx x + 1

2
yT Qy y + cTy y + Constant (10.11)

For the x dimension, a matrix,.Qx , represents connections between movable units
(i.e., units being placed), and a vector,. cx , represents connections between movable
and fixed units.
The cost function can be further separated into x and y components and it is
equivalent to solving:

.Qx + cx = 0; Qy + cy = 0 (10.12)

Once formula (Eq. 10.12) is solved, the x and y locations of the FPGA units is
settled.
Nonlinear cost functions, on the other hand, using higher-order formula to rep-
resent wirelength. They formulate the nonoverlap constraint using differentiable
nonlinear functions and solve it together with the wirelength in a unified objec-
tive function. Using nonlinear cost functions can often get higher solution qual-
ity, however, this quality improvement also comes with longer runtime due to
the more expensive nonlinear optimization. Logarithm-sum-exponent (LSE) is a
typical nonlinear expression to approximate the HPWL (Eq. 10.13).

10.2 Placement 191

.WireCostlse = γ (log
∑

vi∈e
e

xi
γ + log

∑

vi∈e
e

−xi
γ) (10.13)

where e is the target net and .vi ∈ e is the units in that net. When .γ is equal
to zero, the LSE model is reduced to the exact HPWL. However, in practical
implementation, a small reasonable. γ value is chosen to avoid arithmetic overflow.

2. Timing
See timing cost of annealing methods.

3. Power
See power cost of annealing methods.

Just like simulated annealing methods, total cost function will trades off these objec-
tives above.

Computation Time

1. Parallel acceleration
Since detailed placement can be seen as a low temperature annealing process,
which we have discussed in the previous section, global placement and legalization
can also benefit from parallel acceleration techniques:

a. In terms of algorithmic logic (Software)
Analytical solver for the x and y dimensions can be assigned to different
computation unit. This parallelization could result in close to 2.. × improvement
in computation time (with 2 CPU threads) [57].

b. In terms of computation architecture (Hardware)
Scalar architecture (CPU)—Using multiple CPU cores or threads as compu-
tation engines for analytical placement is the most ordinary way [57, 60].
Vector architecture (GPU)—Nonlinear placement (using nonlinear cost func-
tion) usually performs better than quadratic placement (using quadratic cost
function), although the difference in quality is small [61]. Acceleration of non-
linear analytical placement on GPUs then emerged [62, 63].
Spatial architecture (FPGA)—*In the first work on acceleration of analytical
placement on FPGAs [64], wirelength gradient is computed by using OpenCL.

2. AI acceleration
AI technologies has been emerging in the past years to aid FPGA analytical placers
to reduce computation time.

a. In terms of algorithmic logic (Software)
Deep learning (DL)—is a branch of machine learning, it uses data to train a
model to make predictions from new data. For FPGA analytical placement, the
first attempt [65] uses deep-learning to direct the placer’s optimization strategy.
In this work, a Convolutional Encoder-Decoder (CED) is utilized to predict
the congestion present in subsequent placement iterations including the final
placement, and achieve reductions in placer runtime between 27 and 40% with
no significant deterioration in quality-of-result. [66] presents a CNN-inspired
analytical placement algorithm to effectively handle the redundant frequency

192 10 Physical Implementation

translation problem for large-scale FPGAs.
Reinforcement learning (RL)—Discussed in previous section, RL framework
can be integrated into detailed placement. In [67], several RL models are
developed to capture the different characteristics of placement solutions and
use them to guide decision making process. As a result, 50% of the CPU time
is saved on the basis of [59].

b. In terms of computation architecture (Hardware)
Scalar architecture (CPU)—CPUs are still the most traditional computation
platform for AI-aided FPGA analytical placement [65].
Works on vector (GPU) or matrix (TPU) computing platforms still needs time
to emerge.

10.2.4 Summary and Trends

As the two major approaches for FPGA placement, annealing, and analytical engines
have their own strengths and weaknesses.

1. For annealing
It has better quality for small designs, and easier to consider multiple objectives
simultaneously, however, it is slower for large circuits, and sometimes could meet
freezing problem—unable to escape local minima.

2. For analytical
The multi-stage (GP-LG-DP) characteristics make it a de facto hybrid placement
technique that is highly flexible. It is more efficient and scalable for large designs
with considerably good quality, however it still face its own challenges, such as
targeting mix-size FPGA units, integrating timing/power metrics into the opti-
mization objective. [68].
FPGA placement definitely will face new challenges continuously as FPGA archi-
tecture evolves. First, multiple objectives need to be considered at the same time
due to the increasing complexity of modern FPGAs. It’s usually difficult to make
a trade-off among multiple objectives. Thus, an optimal resolution that performs
good in every aspect will become harder to achieve. Secondly, extra architectural
constraints are often extremely difficult to handle in placement due to their dis-
creteness and irregularity. Last but not least, how to save computation time and
memory footprint, especially when the FPGA design is gargantuan, still haunted
every practitioners in this field.

10.3 Routing 193

10.3 Routing

10.3.1 Overview

FPGA routing is a process that determines which programmable switches should be
turned on to connect all the logic unit input and output pins required by the circuit
(Fig. 10.17).

Logic units in the application design must be well connected by using device’s
interconnection resources to actually make the circuit work, because a poor routing
engine will lead to a lower maximum operating speed, greater power consumption,
slower implementation time or even a failure to route all signals. The constraints
is relatively simple: two nets cannot be routed on the same wire, which may cause
routing congestion.

FPGA is like a city on a grid, routing is like solving the traffic problems in the
city. Two fundamental steps must be carried out—building the traffic infrastructure
(building routing resource graph under the help of routing guidance model) and
navigating each trip (route all signals with routing engines).

Problem Definition: For each application design net, source is at which all nets
begin, sink is at which all net terminals end. There can be one source (. s_. i) and
multiple sinks (. T _. i = . t_.i1, t ı2, …. t_. ik, which refers to all k sinks of . s_. i), so the
application design has set of sources (. S = . s_1, . s_2, …. s_. i) and set of sets of sinks
(.T = . T _1, . T _2, …. T _. i , . T _. i = . t_i1, . t ı2, …. t_. ik). Routing problem is to find paths
from each source . s_. i to all sinks in . T _. i , paths emanating from different sinks that
must be disjoint (cannot share any nodes or edges).

Similar to placement, routing is extremely important for FPGA application design,
since a poor solution will lead to a lower maximum operating speed, increase power
consumption, slow implementation time or even a failure to route all signals. Given
the fact that routing is a NP complete problem, finding a good routing is challenging,
let alone relative scarcity of routing resources and signals will compete for the same
routing resources.

Fig. 10.17 Routing’s position in FPGA application EDA flow

194 10 Physical Implementation

Fig. 10.18 FPGA RRG example [69]

Fig. 10.19 FPGA RRG processing flow

Routing Resource Graph: The primary data structure representing FPGA routing
resources is the directed Routing Resource Graph (RRG).G = (V, E), where. V is the
set of vertices and. E is the set of edges. Each vertex.v ∈ V represents wires and pins,
each edge .ei j ∈ E represents a programmable connection between a pin and a wire
segment, or a programmable routing switch between two wire segments (Fig. 10.18).
Programmable switches can be fabricated as pass transistors, tri-state buffers, or
multiplexers. Multiplexers are the dominant form of programmable interconnect in
recent FPGAs due to a superior area-delay product and thus unidirectional.

RRG can be represented by readable file. VTR-XML [70] is the only publicly
known format to describe RRG. The RRG building, parsing and writing flow can be
described as (Fig. 10.19).

10.3 Routing 195

Mainstream Algorithms: Routing engines can be categorized from different
perspectives:

1. By algorithmic logic
Negotiation-based routing algorithms[69, 71] typically consist of two major steps:
path searching and congestion removal. During path searching, it explore all fea-
sible paths for each net and identify the best one. After path searching, rip-up and
rerouting operation is carried out to eliminate congestion. Boolean-based routing
algorithms [72– 76] transform the FPGA routing task to one of simultaneously
satisfying a set of Boolean constraints. If successful, the solution found by the
solver is converted into a valid route, otherwise the signal is unroutable.
The negotiation-based routing algorithm is in dominant use in the FPGA com-
munity due to its superior performance and quality of results.

2. By optimization objectives
Routability-driven routing prioritizes congestion avoidance as its primary goal[77];
timing-driven routing maximizes the circuit speed[69, 78, 79]; power-aware rout-
ing saves the power consumption [43, 80], etc. An excellent routing engine would
always balance well among these objectives.

3. By computation acceleration
In order to reduce compilation time while maintaining quality of results, routing
computations can be accelerated either by parallelism or by AI.

4. By targeted architecture
For other special modern FPGA architecture features (such as advanced package
(2.5D/3D), complexed clocking), there are additional routing considerations to
adapt to them.

10.3.2 Negotiation-Based Routing Algorithms

Negotiation-based routing methods route nets one by one. Larry McMurchie and
Carl Ebling proposed a negotiation approach in 1995, called Pathfinder [71], which
is very famous in routing society. Pathfinder first gives every edge (connection) in
RRG a cost that depends on current usage and historical usage, then each net is
routed by a breath first searching (BFS), making the cost the lowest. Multiple nets
may use the same node in RRG (flagged as a congestion). A congestion node is given
a higher cost. If a route must include a congested node, it will “negotiate” with the
other routes and make them go around (rip-up and re-route).

The criteria of negotiation-based routing for FPGA application design includes:

1. Routing Schedule (Negotiation-based)—Defines how to explore the solution
space, or the algorithmic strategies of invoking each action.

2. Cost Function—It is used to evaluate the impact of each proposed status change
based on the desired optimization objectives.

196 10 Physical Implementation

(a) Search the path from the source to the first
sink

(b) Set the cost of nodes on the previous path
to 0 and search for the second sink

Fig. 10.20 Routing schedule for multiple sinks in the same net

(a) BFS without direction (b) BFS with direction

Fig. 10.21 When BFS meets a concave obstacle

3. Computation Time—Having the same concerns with annealing techniques in the
previous section, reducing placement time is an endless optimization direction
for every researcher.

Routing Schedule (Negotiation-based)
Route nets in decreasing order of fanout is a common schedule, because high-fanout
nets tend to span the larger area of FPGA and easier to route when there is less
congestion to other nets routed earlier, low fanout nets tend to be more localized and
relatively easier to route even in the presence of some congestion.

When routing a net with one source and multiple sinks, breath first searching (BFS)
is invoked to find the first sink like the process of wave expansion. The wavefront
always have the biggest cost. After that, the cost of nodes on the previous path is set
to 0 and the second sink is searched iteratively (Fig. 10.20).

In general, BFS without direction is time-consuming and directed search is far
more effective, however, when the obstacle is concave, BFS without direction finds
the best route but time-consuming, BFS with direction is time saving but sometimes
can not find the best route (Fig. 10.21).

10.3 Routing 197

Fig. 10.22 Banlanced BFS
searching in FPGA routing

Therefore, cost function must be proper balanced between directed searching
and directionless searching. Just like authoritarian and democracy, a good political
governance model would always balance them well (Fig. 10.22).

The general negotiation process’s pseudo code is shown in Algorithm 6.

Let: RTi be the set of nodes in the current routing of net i ;
while shared resources exist(routing congestion occurs) do

foreach net, i do
rip-up routing tree RTi ;
RTi = si ;
foreach sinkti j do

Initialize priority queue PQ to RTi at cost 0;
while sink ti j not found do

Remove lowest cost node m from PQ;
foreach fan-out node n of node m do

Add n to PQ at PathCost (n) = Costn + PathCost (m);
end

end
foreach node n in path ti j to si do

Update cn ;
Add n to RTi ;

end
end

end
update historical cost for n;

end

Algorithm 6: Negotiation process in negotiation-based routing algorithm
(pseudo-code)

In VTR routing, this consideration is expressed by adding an. ExpectedCost(n, j)
to the .PathCost(n) (Eq. 10.14).

198 10 Physical Implementation

.TotalCost(n) = PathCost(n) + α · ExpectedCost(n, j) (10.14)

where .ExpectedCost(n, j) is an estimated cost from current node n to target sink j,
.PathCost(n) is the cost of the path from the current partial routing tree to node . n.

Cost Function

1. Routability (Congestion)
In real life, there has been a system of surcharging for use of public roads that are
subject to congestion through excess demand. This traffic control measure has
been applied to many big cities (Fig. 10.23).
Pathfinder [71] has set a classic example of routability cost, for node n in the
RRG, the cost function is presented as (Eq. 10.15).

.RoutabilityCost(n) = (b(n) + h(n)) · p(n) (10.15)

where .b(n) is the base cost of a routing through node .n, h(n) is related to the
history of congestion on node n during previous iterations, and .p(n) is related
to the number of nets (signals) presently routed through node n at the current
iteration.
VTR router [69] is based upon the Pathfinder negotiated congestion algorithm,
the modified routability cost it defined is shown as (Eq. 10.16).

.RoutabilityCost(n) = b(n) · h(n) · p(n) + Bend(n,m) (10.16)

where .b(n), h(n) and .p(n) has exactly the same meaning with those in the
Pathfinder, the additional parameter Bend (.n,m) penalize global routes with bends
since these routes are less likely to use long wires, making detailed routes difficult
to implement (congestion more likely to occur). Meanwhile, multiplying.b(n) and
.h(n) eliminates normalization.

2. Timing
Cost of using a RRG node n in the routing of a connection c can be represented
as (Eq. 10.17).

.TimingCost(n) = TimingCriticality(c) · Delay(n) (10.17)

The timing criticality is the ratio of the connection slack to the longest delay in
the circuit (Eq. 10.18).

.TimingCriticality(c) = 1 − Slack(c)

Delaymax
(10.18)

where.Delaymax is the critical path delay (maximum arrival time of all sinks in the
circuit), and .Slack(c) is the amount of delay that can be added to the connection
c without increasing the critical path delay.
In Pathfinder, it uses .TimingCriticality(c) as the weighted factor of timing cost.

10.3 Routing 199

3. Power
Lamoureaux [43] modified VPR’s cost function by adding a power cost (Eq.
10.19):

.PowerCost(n) = ActCriticality(i) · Cap(n) (10.19)

where .Cap(n) is the capacitance associated with routing resource node n and
.ActCriticality(i) is the activity criticality of net . i .
In [43], it uses .ActCriticality(i) as the weighted factor of timing cost.

.ActCriticality(i) = min

(
Act(i)

MaxAct
,MaxActCriticality

)

(10.20)

where.Act(i) is the switching activity in net i,.MaxAct is the maximum switching
activity of all the nets, and.MaxActCriticality is the maximum activity criticality
that any net can have.

Total cost function often trades off these objectives above. If the trade-off variable. λ

determines how much weight to give timing cost, variable . γ determines how much
weight to give power cost, then the total cost could be described as (Eq. 10.21).

. WeightedCost = λTimingCost + γPowerCost + (1 − λ − γ)RoutabilityCost
(10.21)

Computation Time

1. Parallel acceleration
Researchers have been tirelessly looking for ways to accelerate FPGA routing
through parallelism, since routing is one of the most time-consuming compilation
step in the whole flow. Most of the parallel acceleration work for FPGA routing
focuses on the negotiation-based methods. An ideal parallel router is not only
fast, but also scalable and deterministic.

Fig. 10.23 Congestion charging in central London

200 10 Physical Implementation

a. In terms of algorithmic logic (Software)
Almost all parallel routers are either coarse-grain or fine-grain. Coarse-grain
parallel routers [81– 83] distribute the problem by partitioning the nets and
then route them independently, whilst fine-grain parallel routers accelerate the
routing of a single net. For coarse-grain parallel routers, nets are partitioned
based on the independence of their bounding boxes. If the bounding boxes of
two nets overlap, the possibility of conflicts between the nets is high and they
should probably not be routed in parallel. For fine-grain parallel routers [84],
works for an individual net such as maze expansion could be accelerated.

b. In terms of computation architecture (Hardware)
Scalar architecture (CPU)—Most of the parallelization work on FPGA routing
is based on CPU [81– 83].
Vector architecture (GPU)—GPU-accelerated EDA has been studied for years
[85], however, the first published work on utilizing GPU to accelerate FPGA
routing [86] came out later in 2017. It leverage Bellman-Ford algorithm to
optimize the computation and experimental results show that an average of
18.72% speedup is achieved.
Spatial architecture (FPGA)—[87] is the first attempt on FPGA-accelerated
FPGA routing, however, it ends up with 4–6.× slower than running on pure
CPU platform due to the limited performance of the chosen hardware platform
(mid-end ARM+FPGA SoC).

2. AI acceleration
FPGA negotiation-based router start to benefit from AI technologies from the
2010s.

a. In terms of algorithmic logic (Software)
Reinforcement learning (RL)—The agent is guided toward achieving legal
routing solution by formulating a reward function. Every time an action is
taken by an agent while moving from one node to another, it must get a reward
that is added to its experience for any future moves regarding that particular
node. In [88], the reward formulation is defined as (Eq. 10.22), showing that
the objective of the routing is to minimize the number of conflicts.

.rt = −Δconflict (10.22)

The agent continuously learns and adjusts the award values until get the opti-
mized solution. It is reported that on average, the RL technique can reduce
30% routing time for similar quality of results.

b. In terms of computation architecture (Hardware)
Scalar architecture (CPU)—CPUs are still the most traditional computation
platform for AI-aided FPGA negotiation-based routing.
Works on vector (GPU) or matrix (TPU) computing platforms still needs time
to emerge.

References 201

10.3.3 Summary and Trends

Modern FPGA routing are essentially RRG searching problem, balancing concerned
metrics such as routability, timing, and power. Negotiation-based algorithms have
been proved to be the most efficient solvers, and hence have ruled the FPGA rout-
ing world for years. VTR is the most popular open-sourced implementation of
negotiation-based FPGA router. How to further refine it in terms of QoR or compu-
tation time has been the main researching topic and this trend will continue in the
foreseeable future.

AI(ML)-aided techniques has emerged in accelerating FPGA routing tasks. These
intelligent routing algorithms can significantly improve the efficiency and reliability
of FPGA designs, while also reducing the design time and cost [89]. As the study
deepens, AI-aided router will play an increasingly important role.

References

1. V. Betz, J. Rose, VPR: a new packing, placement and routing tool for FPGA research. FPL
(1997)

2. A.S. Marquardt, V. Betz, J. Rose, Using cluster-based logic blocks and timing-driven packing
to improve FPGA speed and density, in Proceedings of the 1999 ACM/SIGDA Seventh Inter-
national Symposium on Field Programmable Gate Arrays, ser. FPGA ’99. (Association for
Computing Machinery, New York, NY, USA, 1999), pp. 37–46. [Online]. Available: https://
doi.org/10.1145/296399.296426

3. E. Bozorgzadeh, S. Ogrenci-Memik, M. Sarrafzadeh, Rpack: Routability-driven packing for
cluster-based FPGAs, in Proceedings of the ASP-DAC 2001. Asia and South Pacific Design
Automation Conference 2001 (Cat. No.01EX455) (2001), pp. 629–634

4. A. Singh M. Marek-Sadowska, Efficient circuit clustering for area and power reduction in
FPGAs, in Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’02. (Association for Computing Machinery, New York,
NY, USA, 2002), pp. 59–66. [Online]. Available: https://doi.org/10.1145/503048.503058

5. J. Luu, J. H. Anderson, J.S. Rose, Architecture description and packing for logic blocks with
hierarchy, modes and complex interconnect, in Proceedings of the 19th ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, ser. FPGA ’11. (Association for
Computing Machinery, New York, NY, USA, 2011), pp. 227–236. [Online]. Available: https://
doi.org/10.1145/1950413.1950457

6. J. Luu, J. Rose, J. Anderson, Towards interconnect-adaptive packing for FPGA, in Proceedings
of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’14 (Association for Computing Machinery, New York, NY, USA, 2014), pp. 21–30.
[Online]. Available: https://doi.org/10.1145/2554688.2554783

7. W. Feng, K-way partitioning based packing for FPGA logic blocks without input bandwidth
constraint, in 2012 International Conference on Field-Programmable Technology (2012), pp.
8–15

8. W. Feng, J. Greene, K. Vorwerk, V. Pevzner, A. Kundu, Rent’s rule based FPGA packing for
routability optimization, in Proceedings of the 2014 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’14 (Association for Computing Machinery,
New York, NY, USA, 2014), pp. 31–34. [Online]. Available: https://doi.org/10.1145/2554688.
2554763

https://doi.org/10.1145/296399.296426
https://doi.org/10.1145/296399.296426
https://doi.org/10.1145/296399.296426
https://doi.org/10.1145/296399.296426
https://doi.org/10.1145/296399.296426
https://doi.org/10.1145/296399.296426
https://doi.org/10.1145/296399.296426
https://doi.org/10.1145/503048.503058
https://doi.org/10.1145/503048.503058
https://doi.org/10.1145/503048.503058
https://doi.org/10.1145/503048.503058
https://doi.org/10.1145/503048.503058
https://doi.org/10.1145/503048.503058
https://doi.org/10.1145/503048.503058
https://doi.org/10.1145/1950413.1950457
https://doi.org/10.1145/1950413.1950457
https://doi.org/10.1145/1950413.1950457
https://doi.org/10.1145/1950413.1950457
https://doi.org/10.1145/1950413.1950457
https://doi.org/10.1145/1950413.1950457
https://doi.org/10.1145/1950413.1950457
https://doi.org/10.1145/2554688.2554783
https://doi.org/10.1145/2554688.2554783
https://doi.org/10.1145/2554688.2554783
https://doi.org/10.1145/2554688.2554783
https://doi.org/10.1145/2554688.2554783
https://doi.org/10.1145/2554688.2554783
https://doi.org/10.1145/2554688.2554783
https://doi.org/10.1145/2554688.2554763
https://doi.org/10.1145/2554688.2554763
https://doi.org/10.1145/2554688.2554763
https://doi.org/10.1145/2554688.2554763
https://doi.org/10.1145/2554688.2554763
https://doi.org/10.1145/2554688.2554763
https://doi.org/10.1145/2554688.2554763

202 10 Physical Implementation

9. D.T. Chen, K. Vorwerk, A. Kennings, Improving timing-driven FPGA packing with physical
information, in 2007 International Conference on Field Programmable Logic and Applications
(2007), pp. 117–123.

10. Z. Huang, Z. Li, N. Wang, P. Tao, X. Zhou, L. Wang, Repack: a packing algorithm to enhance
timing and routability of a circuit, in 2012 IEEE 11th International Conference on Solid-State
and Integrated Circuit Technology (2012), pp. 1–5

11. S.T. Rajavel, A. Akoglu, Mo-pack: many-objective clustering for FPGA CAD, in 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC) (2011), pp. 818–823

12. K.E. Murray, O. Petelin, S. Zhong, J.M. Wang, M. Eldafrawy, J.-P. Legault, E. Sha, A.G.
Graham, J. Wu, M.J.P. Walker, H. Zeng, P. Patros, J. Luu, K.B. Kent, V. Betz, Vtr 8: high-
performance cad and customizable FPGA architecture modelling. ACM Trans. Reconfigurable
Technol. Syst. 13(2) (2020). [Online]. Available: https://doi.org/10.1145/3388617

13. G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, in Proceedings of the 36th
Annual ACM/IEEE Design Automation Conference, ser. DAC ’99 (Association for Computing
Machinery, New York, NY, USA, 1999), pp. 343–348. [Online]. Available: https://doi.org/10.
1145/309847.309954

14. J. Luu, Architecture-aware packing and cad infrastructure for field-programmable gate arrays,
Ph.D. dissertation, University of Toronto (2014)

15. K. Keutzer, Dagon: technology binding and local optimization by DAG matching, in 24th
ACM/IEEE Design Automation Conference (1987), pp. 341–347

16. G. Chen, J. Cong, Simultaneous timing driven clustering and placement for FPGAS, in Inter-
national Conference on Field Programmable Logic and Applications (Springer, 2004), pp.
158–167

17. Z. Marrakchi, H. Mrabet, H. Mehrez, Hierarchical FPGA clustering based on multilevel par-
titioning approach to improve routability and reduce power dissipation, in 2005 International
Conference on Reconfigurable Computing and FPGAs (ReConFig’05) (2005), pp. 4–25

18. G. Karypis, V. Kumar, Hmetis: a hypergraph partitioning package. ACM Trans. Architect.
Code Optim. (1998)

19. H. Zhang, L. Song, Z. Han, Y. Zhang, Basics of hypergraph theory, in Hypergraph Theory in
Wireless Communication Networks (Springer, 2018), pp. 1–19

20. S. Yang, Logic synthesis and optimization benchmarks user guide: version 3.0. Citeseer (1991)
21. S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz, P. Sanders, High-quality hyper-

graph partitioning. ACM J. Exp. Algorithmics (2022). [Online]. Available: https://doi.org/10.
1145/3529090

22. X. Tang, P.-E. Gaillardon, G. De Micheli, Pattern-based FPGA logic block and clustering algo-
rithm, in 2014 24th International Conference on Field Programmable Logic and Applications
(FPL) (2014), pp. 1–4

23. P.-E. Gaillardon, X. Tang, G. Kim, G. De Micheli, A novel FPGA architecture based on ultrafine
grain reconfigurable logic cells. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(10),
2187–2197 (2015)

24. P. Maidee, C. Ababei, K. Bazargan, Fast timing-driven partitioning-based placement for
island style FPGAs, in Proceedings 2003. Design Automation Conference (IEEE Cat.
No.03CH37451) (2003), pp. 598–603

25. A. Khatkhate, C. Li, A.R. Agnihotri, M.C. Yildiz, S. Ono, C.-K. Koh, P.H. Madden, Recursive
bisection based mixed block placement, in Proceedings of the 2004 International Symposium
on Physical Design, ser. ISPD ’04 (Association for Computing Machinery, New York, NY,
USA, 2004), pp. 84–89. [Online]. Available: https://doi.org/10.1145/981066.981084

26. J. Zhao, Q. Zhou, Y. Cai, Fast congestion-aware timing-driven placement for island FPGA,
in 2009 12th International Symposium on Design and Diagnostics of Electronic Circuits and
Systems (2009), pp. 24–27

27. Intel, Intel Quartus Prime pro edition user guide: design compilation. https://www.intel.com/
content/www/us/en/programmable/documentation/zpr1513988353912.html.

28. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state
calculations by fast computing machines 3 (1953)

https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/309847.309954
https://doi.org/10.1145/309847.309954
https://doi.org/10.1145/309847.309954
https://doi.org/10.1145/309847.309954
https://doi.org/10.1145/309847.309954
https://doi.org/10.1145/309847.309954
https://doi.org/10.1145/309847.309954
https://doi.org/10.1145/3529090
https://doi.org/10.1145/3529090
https://doi.org/10.1145/3529090
https://doi.org/10.1145/3529090
https://doi.org/10.1145/3529090
https://doi.org/10.1145/3529090
https://doi.org/10.1145/981066.981084
https://doi.org/10.1145/981066.981084
https://doi.org/10.1145/981066.981084
https://doi.org/10.1145/981066.981084
https://doi.org/10.1145/981066.981084
https://doi.org/10.1145/981066.981084
https://doi.org/10.1145/981066.981084
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html

References 203

29. J. Yuan, J. Chen, L. Wang, X. Zhou, Y. Xia, J. Hu, Arbsa: adaptive range-based simulated
annealing for FPGA placement. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 38(12),
2330–2342 (2019)

30. K.E. Murray, O. Petelin, S. Zhong, J.M. Wang, M. Eldafrawy, J.-P. Legault, E. Sha, A.G.
Graham, J. Wu, M.J.P. Walker, H. Zeng, P. Patros, J. Luu, K.B. Kent, V. Betz, Vtr 8: high-
performance cad and customizable FPGA architecture modelling. ACM Trans. Reconfigurable
Technol. Syst. 13(2) (2020). [Online]. Available: https://doi.org/10.1145/3388617

31. K. Vorwerk, A. Kennings, J.W. Greene, Improving simulated annealing-based FPGA placement
with directed moves. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 28(2), 179–192 (2009)

32. M.A. Elgammal, K.E. Murray, V. Betz, Rlplace: using reinforcement learning and smart per-
turbations to optimize FPGA placement. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst.
41(8), 2532–2545 (2022)

33. A. Ludwin, V. Betz, Efficient and deterministic parallel placement for FPGAs 16(3) (2011).
[Online]. Available: https://doi.org/10.1145/1970353.1970355

34. T. Kong, A novel net weighting algorithm for timing-driven placement, in IEEE/ACM Inter-
national Conference on Computer Aided Design, 2002. ICCAD 2002 (2002), pp. 172–176

35. H. Ren, D. Pan, D. Kung, Sensitivity guided net weighting for placement-driven synthesis.
IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 24(5), 711–721 (2005)

36. A. Marquardt, V. Betz, J. Rose, Timing-driven placement for FPGAs in FPGA ’00 (2000)
37. K. Eguro, S. Hauck, Enhancing timing-driven FPGA placement for pipelined netlists, in 2008

45th ACM/IEEE Design Automation Conference (2008), pp. 34–37
38. C. Guth, V. Livramento, R. Netto, R. Fonseca, J.L. Güntzel, L. Santos, Timing-driven placement

based on dynamic net-weighting for efficient slack histogram compression, in Proceedings of
the 2015 Symposium on International Symposium on Physical Design, ser. ISPD ’15 (Associa-
tion for Computing Machinery, New York, NY, USA, 2015), pp. 141–148. [Online]. Available:
https://doi.org/10.1145/2717764.2717766

39. W. Swartz, C. Sechen, Timing driven placement for large standard cell circuits, in Proceedings
of the 32nd Annual ACM/IEEE Design Automation Conference, ser. DAC ’95 (Association for
Computing Machinery, New York, NY, USA, 1995), pp. 211–215. [Online]. Available: https://
doi.org/10.1145/217474.217531

40. A. Chowdhary, K. Rajagopal, S. Venkatesan, T. Cao, V. Tiourin, Y. Parasuram, B. Halpin,
How accurately can we model timing in a placement engine? in Proceedings 42nd Design
Automation Conference (2005) pp. 801–806

41. T. Luo, D. Newmark, D.Z. Pan, A new lp based incremental timing driven placement for high
performance designs, in 2006 43rd ACM/IEEE Design Automation Conference (2006), pp.
1115–1120

42. N. Viswanathan, G.-J. Nam, J. A. Roy, Z. Li, C. J. Alpert, S. Ramji, C. Chu, Itop: integrating
timing optimization within placement, in Proceedings of the 19th International Symposium on
Physical Design, ser. ISPD ’10 (Association for Computing Machinery, New York, NY, USA,
2010), pp. 83–90. [Online]. Available: https://doi.org/10.1145/1735023.1735048

43. J. Lamoureux, S.J.E. Wilton, On the interaction between power-aware FPGA cad algo-
rithms, in ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat.
No.03CH37486) (2003) pp. 701–708

44. W.-J. Sun, C. Sechen, A parallel standard cell placement algorithm. IEEE Trans. Comput.-Aid.
Des. Integr. Circ. Syst. 16(11), 1342–1357 (1997)

45. S. Birk, J.G. Steffan, J.H. Anderson, Parallelizing FPGA placement using transactional mem-
ory, in 2010 International Conference on Field-Programmable Technology (2010), pp. 61–69

46. J.B. Goeders, G.G. Lemieux, S.J. Wilton, Deterministic timing-driven parallel placement by
simulated annealing using half-box window decomposition, in 2011 International Conference
on Reconfigurable Computing and FPGAs (2011), pp. 41–48

47. B. Huang, H. Zhang, Application of multi-core parallel computing in FPGA placement, in
2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network
and Automation (IMSNA) (2013), pp. 884–889

https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/1970353.1970355
https://doi.org/10.1145/1970353.1970355
https://doi.org/10.1145/1970353.1970355
https://doi.org/10.1145/1970353.1970355
https://doi.org/10.1145/1970353.1970355
https://doi.org/10.1145/1970353.1970355
https://doi.org/10.1145/1970353.1970355
https://doi.org/10.1145/2717764.2717766
https://doi.org/10.1145/2717764.2717766
https://doi.org/10.1145/2717764.2717766
https://doi.org/10.1145/2717764.2717766
https://doi.org/10.1145/2717764.2717766
https://doi.org/10.1145/2717764.2717766
https://doi.org/10.1145/2717764.2717766
https://doi.org/10.1145/217474.217531
https://doi.org/10.1145/217474.217531
https://doi.org/10.1145/217474.217531
https://doi.org/10.1145/217474.217531
https://doi.org/10.1145/217474.217531
https://doi.org/10.1145/217474.217531
https://doi.org/10.1145/217474.217531
https://doi.org/10.1145/1735023.1735048
https://doi.org/10.1145/1735023.1735048
https://doi.org/10.1145/1735023.1735048
https://doi.org/10.1145/1735023.1735048
https://doi.org/10.1145/1735023.1735048
https://doi.org/10.1145/1735023.1735048
https://doi.org/10.1145/1735023.1735048

204 10 Physical Implementation

48. M. An, J.G. Steffan, V. Betz, Speeding up FPGA placement: parallel algorithms and methods, in
2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing
Machines (2014), pp. 178–185

49. C. Fobel, G. Grewal, D. Stacey, A scalable, serially-equivalent, high-quality parallel placement
methodology suitable for modern multicore and FPU architectures, in 2014 24th International
Conference on Field Programmable Logic and Applications (FPL) (2014), pp. 1–8

50. A. Al-Kawam, H.M. Harmanani, A parallel GPU implementation of the timber wolf placement
algorithm, in 2015 12th International Conference on Information Technology - New Genera-
tions (2015), pp. 792–795

51. M.G. Wrighton, A.M. DeHon, Hardware-assisted simulated annealing with application for fast
FPGA placement, in Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’03 (Association for Computing Machinery,
New York, NY, USA, 2003), pp. 33–42. [Online]. Available: https://doi.org/10.1145/611817.
611824

52. C. Tian, L. Chen, Y. Wang, S. Wang, J. Zhou, Y. Zhang, G. Li, Improving simulated annealing
algorithm for FPGA placement based on reinforcement learning, in 2022 IEEE 10th Joint
International Information Technology and Artificial Intelligence Conference (ITAIC), vol. 10
(2022), pp. 1912–1919

53. W. Li, S. Dhar, D.Z. Pan, Utplacef: a routability-driven FPGA placer with physical and conges-
tion aware packing. IEEE Trans. Comput-Aid. Des. Integr. Circ. Syst. 37(4), 869–882 (2018)

54. C.-W. Pui, G. Chen, W.-K. Chow, K.-C. Lam, J. Kuang, P. Tu, H. Zhang, E.F.Y. Young, B. Yu,
RippleFPGA: a routability-driven placement for large-scale heterogeneous FPGAs, in 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2016), pp. 1–8

55. R. Pattison, Z. Abuowaimer, S. Areibi, G. Gráwal, A. Vannelli, Gplace: a congestion-
aware placement tool for ultrascale FPGAs, in 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD) (2016), pp. 1–7

56. Y. Meng, W. Li, Y. Lin, D.Z. Pan, “elf place: electrostatics-based placement for large-scale
heterogeneous FPGAs. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 41(1), 155–168
(2022)

57. M. Gort, J.H. Anderson, Analytical placement for heterogeneous FPGAs, in 22nd International
Conference on Field Programmable Logic and Applications (FPL) (2012) pp. 143–150

58. D. Vercruyce, E. Vansteenkiste, D. Stroobandt, Liquid: high quality scalable placement for large
heterogeneous FPGAs, in 2017 International Conference on Field Programmable Technology
(ICFPT) (2017), pp. 17–24

59. Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Gréwal, S. Areibi, A. Vannelli,
Gplace3.0: routability-driven analytic placer for ultrascale FPGA architectures. ACM Trans.
Des. Autom. Electron. Syst. 23(5) (2018). [Online]. Available: https://doi.org/10.1145/
3233244

60. W. Li, D.Z. Pan, A new paradigm for FPGA placement without explicit packing. IEEE Trans.
Comput.-Aid. Des. Integr. Circ. Syst. 38(11), 2113–2126 (2019)

61. T. Lin, C. Chu, Polar 2.0: an effective routability-driven placer, in 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC) (2014), pp. 1–6

62. R. Pattison, C. Fobel, G. Grewal, S. Areibi, Scalable analytic placement for FPGA on GPGPU,
in 2015 International Conference on ReConFigurable Computing and FPGAs (ReConFig)
(2015), pp. 1–6

63. C.-X. Lin, M.D.F. Wong, Accelerate analytical placement with GPU: a generic approach, in
2018 Design, Automation and Test in Europe Conference and Exhibition (DATE) (2018), pp.
1345–1350

64. S. Dhar, L. Singhal, M.A. Iyer, D.Z. Pan, FPGA-accelerated spreading for global placement,
2019 IEEE High Performance Extreme Computing Conference (HPEC) (2019), pp. 1–7

65. A. Al-Hyari, A. Shamli, T. Martin, S. Areibi, G. Grewal, An adaptive analytic FPGA placement
framework based on deep-learning, in 2020 ACM/IEEE 2nd Workshop on Machine Learning
for CAD (MLCAD) (2020), pp. 3–8

https://doi.org/10.1145/611817.611824
https://doi.org/10.1145/611817.611824
https://doi.org/10.1145/611817.611824
https://doi.org/10.1145/611817.611824
https://doi.org/10.1145/611817.611824
https://doi.org/10.1145/611817.611824
https://doi.org/10.1145/611817.611824
https://doi.org/10.1145/3233244
https://doi.org/10.1145/3233244
https://doi.org/10.1145/3233244
https://doi.org/10.1145/3233244
https://doi.org/10.1145/3233244
https://doi.org/10.1145/3233244

References 205

66. H. Wang, X. Tong, C. Ma, R. Shi, J. Chen, K. Wang, J. Yu, Y.-W. Chang, CNN-inspired
analytical global placement for large-scale heterogeneous FPGAs, in Proceedings of the 59th
ACM/IEEE Design Automation Conference, ser. DAC ’22 (Association for Computing Machin-
ery, New York, NY, USA, 2022), pp. 637–642

67. P. Esmaeili, T. Martin, S. Areibi, G. Grewal, Guiding FPGA detailed placement via rein-
forcement learning, in 2022 IFIP/IEEE 30th International Conference on Very Large Scale
Integration (VLSI-SoC) (2022), pp. 1–6

68. T. Liang, G. Chen, J. Zhao, S. Sinha, W. Zhang, AMF-placer 2.0: open source timing-driven
analytical mixed-size placer for large-scale heterogeneous FPGA (2022)

69. K.E. Murray, S. Zhong, V. Betz, Air: A fast but lazy timing-driven FPGA router, in 2020 25th
Asia and South Pacific Design Automation Conference (ASP-DAC) (2020), pp. 338–344

70. V. Developers, Routing resource graph-vtr. https://docs.verilogtorouting.org/en/latest/api/vpr/
rr_graph/

71. L. McMurchie, C. Ebeling, Pathfinder: a negotiation-based performance-driven router for
FPGAs, in Third International ACM Symposium on Field-Programmable Gate Arrays (1995),
pp. 111–117

72. R. Wood, R. Rutenbar, FPGA routing and routability estimation via Boolean satisfiability. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 6(2), 222–231 (1998)

73. G.-J. Nam, F. Aloul, K. Sakallah, R. Rutenbar, A comparative study of two Boolean formula-
tions of FPGA detailed routing constraints. IEEE Trans. Comput. 53(6), 688–696 (2004)

74. S. Mukherjee, S. Roy, Sat based multi pin net detailed routing for FPGA, in 2010 International
Symposium on Electronic System Design (2010), pp. 141–146

75. V. Chopra, C. Deptt, P. India, A. Singh, P.P. India, Ant colony optimization approach for solving
FPGA routing with minimum channel width (2011)

76. H. Fraisse, A. Joshi, D. Gaitonde, A. Kaviani, Boolean satisfiability-based routing and its
application to Xilinx ultrascale clock network, in Proceedings of the 2016 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, ser. FPGA ’16 (Association for
Computing Machinery, New York, NY, USA, 2016), pp. 74–79. [Online]. Available: https://
doi.org/10.1145/2847263.2847342

77. S. Boshra, H. Abbas, A. Darwish, I. Talkhan, Performance and routability improvements for
routability-driven FPGA routers, in 2006 IEEE International Symposium on Circuits and Sys-
tems (ISCAS) (2006) pp. 4

78. D. Vercruyce, E. Vansteenkiste, D. Stroobandt, Croute: a fast high-quality timing-driven
connection-based FPGA router, in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM) (2019), pp. 53–60

79. Y. Zhou, P. Maidee, C. Lavin, A. Kaviani, D. Stroobandt, RWRoute: an open-source timing-
driven router for commercial FPGAs. ACM Trans. Reconfigurable Technol. Syst. 15(1) (2021).
[Online]. Available: https://doi.org/10.1145/3491236

80. C.H. Hoo, Y. Ha, A. Kumar, A directional coarse-grained power gated FPGA switch box
and power gating aware routing algorithm, in 2013 23rd International Conference on Field
programmable Logic and Applications (2013), pp. 1–4

81. C. H. Hoo, A. Kumar, Y. Ha, Paralar: A parallel FPGA router based on Lagrangian relaxation,
in 2015 25th International Conference on Field Programmable Logic and Applications (FPL)
(2015), pp. 1–6.

82. D. Wang, Z. Duan, C. Tian, B. Huang, N. Zhang, Parra: a shared memory parallel FPGA router
using hybrid partitioning approach. IEEE Trans Comput-Aided Des Integrated Circ Syst 39(4),
830–842 (2020)

83. M. Shen, G. Luo, N. Xiao, Coarse-grained parallel routing with recursive partitioning for
FPGAs. IEEE. Trans. Parallel Distrib. Syst. 32(4), 884–899 (2021)

84. Y. Moctar, M. Stojilović, P. Brisk, Deterministic parallel routing for FPGAs based on Galois
parallel execution model, in 2018 28th International Conference on Field Programmable Logic
and Applications (FPL) (2018) pp. 21–214.

85. J.F. Croix, S.P. Khatri, Introduction to GPU programming for EDA, in 2009 IEEE/ACM Interna-
tional Conference on Computer-Aided Design—Digest of Technical Papers (2009) pp. 276–280

https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://docs.verilogtorouting.org/en/latest/api/vpr/rr_graph/
https://doi.org/10.1145/2847263.2847342
https://doi.org/10.1145/2847263.2847342
https://doi.org/10.1145/2847263.2847342
https://doi.org/10.1145/2847263.2847342
https://doi.org/10.1145/2847263.2847342
https://doi.org/10.1145/2847263.2847342
https://doi.org/10.1145/2847263.2847342
https://doi.org/10.1145/3491236
https://doi.org/10.1145/3491236
https://doi.org/10.1145/3491236
https://doi.org/10.1145/3491236
https://doi.org/10.1145/3491236
https://doi.org/10.1145/3491236

206 10 Physical Implementation

86. M. Shen, G. Luo, Corolla: GPU-accelerated FPGA routing based on subgraph dynamic
expansion,” in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’17 (Association for Computing Machinery, New York,
NY, USA, 2017) pp. 105–114. [Online]. Available: https://doi.org/10.1145/3020078.3021732

87. D. Korolija, M. Stojilovi. ć, FPGA-assisted deterministic routing for FPGAs, in 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2019),
pp. 155–162

88. U. Farooq, N. Ul Hasan, I. Baig, M. Zghaibeh, Efficient FPGA routing using reinforcement
learning, in 2021 12th International Conference on Information and Communication Systems
(ICICS) (2021), pp. 106–111

89. T. Martin, C. Barnes, G. Grewal, S. Areibi, Integrating machine-learning probes into the VTR
FPGA design flow, in 2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits
and Systems Design (SBCCI) (2022), pp. 1–6

https://doi.org/10.1145/3020078.3021732
https://doi.org/10.1145/3020078.3021732
https://doi.org/10.1145/3020078.3021732
https://doi.org/10.1145/3020078.3021732
https://doi.org/10.1145/3020078.3021732
https://doi.org/10.1145/3020078.3021732
https://doi.org/10.1145/3020078.3021732

Chapter 11
Bitstream Configuration

Abstract This chapter will introduce the final step of FPGA application design
EDA–bitstream configuration, including bitstream generation, compression, encryp-
tion, and programming. Bitstream is the bottom level machine code that actually
makes FPGA work, after all the efforts made by previous EDA engines are assem-
bled in this image by the bitstream generator, it will be downloaded into the FPGA
by the bitstream programmer. However, modern FPGA technology also introduced
challenges, such as the excessive growth of the file size and stealthy attack threats
against the programming system. Bitstream compression and encryption is thereby
rise to the challenges.

11.1 Bitsream Generation

11.1.1 Overview

In FPGA application design flow, after physical implementation is complete, all
configuration information (in the design checkpoint) then has been determined. Based
on this information, the bitstream generation process is ready to launch.

The bitstream configuration system of commercial tools (such as AMD Vivado
and Intel Quartus) has been kept as secret because it is highly related to proprietary
hardware architecture. In academic world, studies on bitstream focused on these
aspects (Table 11.1): reverse engineering, manipulation interface, and conventional
generation.

1. Reverse Engineering
Due to lack of commercial FPGA’s bitstream details, reverse engineering has
been intensively studied by academic researchers. Strictly speaking, it is not about
“generate the bitstream”, but to derive the original design from bitstream. Mature
commercial FPGA devices are the most ideal targets for such research.
Benefit from their popularity, AMD/Xilinx devices are the most frequently
addressed. Debit [1], BIL [2], DAT [3], Bit2NCD [4], BRET [5], BRT/NRT [6],
X-Ray/U-Ray [7– 9] are the representative works in this category.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_11

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_11&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11
https://doi.org/10.1007/978-981-99-7755-0_11

208 11 Bitstream Configuration

Lattice devices are another hot spot because of their simplicity. Icestorm/Trellis
[10, 11] projects are well known among these type of works.
Besides, Microchip devices related attempts [12] are emerging as well.
Although reverse engineering has been called the “dark side” of semiconductor
industry [13], studies in this field do have their unique value, that is, revealing
possible security threats and avoiding potential attacks [14, 15].

2. Manipulation Interface
Running the full EDA flow and get the final bitstream is time consuming and
sometimes unnecessary. In order to modify the bitstream quickly and precisely
without invoking the previous intricate EDA processes such as place and route,
many research works (or even the vendor themselves) offer low level manipulation
interfaces (such as JHDLBits [16], JBits [17], Abits [18], BitMan [19], MaNaBit
[20], RapidSmith [21], RapidWright [22]). These APIs give the user a greater
freedom of direct interact with the bitstream without knowing too much bit level
information of the device.

3. Conventional Generation
Having known all the details of FPGA device library mentioned in Sect. 2.2
(can also be derived by reverse engineering), the conventional bitstream genera-
tion process extract information from design database/checkpoint and output the
bitstream under the specified configuration protocol. The bitstream generation
efficiency (time) is the main concern for methods in this field. The bitstream gen-
eration time can be divided into three parts: time for device database loading, time
for bitstream configuration, and time for bitstream file writing. Among them, time
for bitstream configuration can be various depends on the method it takes, and
the other two times are relatively fixed.

11.1.2 Mode-Based Technique

Mode-based bitstream generation methods are the most commonly used in industry.
The work flow is shown in Fig. 11.1.

The flow begins with the given application design database, which contains all
the Programmable Point (PP) information that needs to be configured. After all the
PP information is extracted, configuration mode matching is performed to decide
each configuration bit’s logical address, then the address mapping phase finds out
the correlation of logical to physical address of each configuration bit, at last, the
final bitstream is written out based on the physical addresses of configuration bits.

1. Configuration mode matching
Having discussed in Sect. 2.2.3, PP is defined to be the basic configuration ele-
ment, it may include one or multiple atoms/primitives’ configure information. In
bitstream generation guidance model, all PPs are pre-defined by illustrating all
their possible configuration modes, each mode carrying bits’ logical address that
need to be configured. All effort made by previous EDA steps, to some extent, is
a process that gives every PP a certain mode in the design database.

2.2
 33419 20673 a 33419
20673 a

http://dx.doi.org/10.1007/978-981-99-7755-0_2
2.2.3
 11130 51778 a 11130 51778
a

http://dx.doi.org/10.1007/978-981-99-7755-0_2

11.1 Bitsream Generation 209

Table 11.1 Bitstream related representative research works

Work Type Targeted FPGA Year

JBits [17] Manipulation Interface AMD/Xilinx XC4000 and Virtex 2001

JHDLBits [16] Manipulation Interface AMD/Xilinx Virtex II 2004

Abits [18] Manipulation Interface Microchip/Atmel FPSLIC 2007

Debit [1] Reverse Engineering AMD/Xilinx
Spartan-3/Virtex-2,3,4,5

2008

BIL [2] Reverse Engineering AMD/Xilinx Virtex-5 2012

DAT [3] Reverse Engineering AMD/Xilinx Spartan-3 2013

Bit2NCD [4] Reverse Engineering AMD/Xilinx
Spartan-3,3E/Virtex-2,4,5

2013

[23] Conventional Generation Any architecture 2013

Icestorm [10] Reverse Engineering Lattice iCE40 2015

RapidSmith [21] Manipulation Interface AMD/Xilinx 2015

BitMan [19] Manipulation Interface AMD/Xilinx 6, 7, US, US+ 2017

BRET [5] Reverse Engineering AMD/Xilinx Virtex-5 2018

RapidWright [22] Manipulation Interface AMD/Xilinx 2018

BRT/NRT [6] Reverse Engineering AMD/Xilinx Spartan-6 2019

Trellis [11] Reverse Engineering Lattice ECP5 2019

X-Ray [7, 8] Reverse Engineering AMD/Xilinx 7 2020

U-Ray [9] Reverse Engineering AMD/Xilinx US, US+ 2020

[12] Reverse Engineering Microchip/Microsemi ProASIC3 2021

MaNaBit [20] Manipulation Interface AMD/Xilinx 7, US+ 2022

2. Bit address mapping
Once the configuration mode is fully matched, logical address of each configu-
ration bit is identified. Bit address mapping then derives bit’s physical address
from its logical address in the device, under the help of device configuration bit
structure model Fig. 2.21 mentioned in Sect. 2.3. This mapping process is com-
monly hierarchical, that is, figure out the local physical address in the first place
and then adjust it with offsets to recursively achieve the global physical address.

The future research directions of mode-based bitstream generation technique
includes:

1. Reducing generation time
Software or hardware acceleration/parallel schemes can be applied to bitstream
generator to shorten running time, just like the situation of placer.

2. Improving guidance model
More simple and efficient guidance model can help to shrink the memory footprint.

2.21

8626 40304 a 8626 40304 a

http://dx.doi.org/10.1007/978-981-99-7755-0_2
2.3
 19475 40304 a 19475 40304 a

http://dx.doi.org/10.1007/978-981-99-7755-0_2

210 11 Bitstream Configuration

Fig. 11.1 FPGA bitstream generation conventional flow

11.2 Bitsream Compression

11.2.1 Overview

The original bitstream file size based on application design CBS model
(see Sect. 3.2) is related to the application design size. Thanks to the fast shrinking of
technology nodes, the resource capacity of FPGA device has been bloomed dramat-
ically and therefore can accommodate more intricate application designs. However,
the increasing of bitstream file size could possibly bring memory footprint and com-
munication bandwidth problems, and consequently becomes a drawback that can
not be neglected. Bitstream compression and decompression is the most straight-
forward way to overcome this obstacle–compression outside the FPGA by software
and decompression inside the FPGA by hardware (Fig. 11.2). In this section, we will
discuss several renowned bitstream compression methods.

The efficiency of bitstream compression is measured by Compression Ratio (CR)
and Compression Time (CT). CR is the ratio between the compressed size and the

3.2
 2344 43879 a 2344 43879 a

http://dx.doi.org/10.1007/978-981-99-7755-0_3

11.2 Bitsream Compression 211

Fig. 11.2 FPGA bitstream compression and decompression flow

original size, CT is the time spent for the compression process. The smaller CR and
CT indicates more effective compression. CR and CT are the most important metrics
that compression algorithms must concern.

Entropy is a concept borrowed from information theory, it measures the disorder
of the target information data. Entropy encoding methods consider the entropy of the
bitstream and therefore can often achieve a lower CR, yet the non-entropy encoding
methods don’t, so they can achieve lower CT.

11.2.2 Non-entropy Encoding

1. Run-Length Encoding (RLE)
Run-Length Encoding (RLE) is a typical non-entropy coding method, and it’s one
of the most deceptively simple and powerful encoding techniques. The principle
is to replace runs of same data by the count and the data value only once. When

212 11 Bitstream Configuration

input include digits, a translation must be done to avoid conflict between data and
counts.
For example, a string of “AAAAAFDDBBCCCCCCC” can be compressed to
“5A1F2D2B7C”, that is, from 17 characters to 10.
Applications of RLE in bitstream compression are deeply studied [24– 28].

2. Lempel-Ziv Encoding (LZE)
The Lempel-Ziv Encoding (LZE) and its variants are so classic, that in the past
decades, there hasn’t been another algorithm to replace them. LZ77 [29] and LZ78
[30] are the first LZE algorithms published in papers by Abraham Lempel and
Jacob Ziv in 1977 and 1978. They are also known as LZ1 and LZ2, respectively.
LZE algorithms work by defining a fixed-size dictionary to hold bytes from an
input bitstream, and then referring to the dictionary when compressing the remain-
der of the input source to find existing patterns. If a pattern in the input source is
already in the dictionary, this pattern is replaced with a reference to the position
in the dictionary and the length of the pattern.
Take LZ77 as an example, assume a 6-byte search buffer (dictionary) size and
an 3-byte look-ahead buffer size, the first 6 bytes from the input bitstream are
loaded into the search buffer, the following 3 bytes are loaded into the look-ahead
buffer. Then search for a sequence in the search buffer that begins with the byte
in look-ahead buffer position 0 (“B”). Such a sequence of three bytes starts at
search buffer position 2 (“BBC”). So these three bytes can be replaced by an
(Offset, Length), that is (2, 3). After that, three bytes from the look-ahead buffer
are shifted into the search buffer, and three new bytes from the input bitstream
are shifted into the look-ahead buffer. The algorithm keeps doing this iteratively
until all the bytes shift out of the look-ahead buffer (Fig. 11.3) .

Non-entropy encoding methods are currently most adopted by FPGA industry
because they are mature and relatively easier to implement. LZ77/LZ78/LZSS/LZW
are the representative variants of LZE and has been proudly used for commercial
FPGAs [31– 35].

Fig. 11.3 LZ77 compression example

11.2 Bitsream Compression 213

11.2.3 Entropy Encoding

1. Huffman Encoding
Huffman encoding is a typical entropy encoding method developed by David
Huffman in 1952 [36]. This method is based on the building a full binary tree for
the different symbols that are in the original file after calculating the probability
of each symbol and put in descending order [37, 38].
For example, there is an initial string of “BAAADDDCCCACACA”, Huffman
encoding first calculate the frequency of each character in the string and sort the
characters in increasing order of the frequency (Fig. 11.4).
To build the Huffman tree, make each unique character as a leaf node. Create
an node .N0, assigning the minimum frequency to the left child of .N0 and the
second minimum frequency to the right child of .N0, setting the frequency value
of the .N0 as the sum of the above two minimum frequencies. After that, repeat
the same actions for the two nodes that currently have the lowest frequencies (. N0
and . C) until all nodes are involved. For each non-leaf node, assign 0 to the left
edge and 1 to the right edge (Fig. 11.5). After encoding, . A, . B, . C , .D would be 0,
100, 11, 101.

Fig. 11.4 Huffman compression example—ordering characters by frequency

Fig. 11.5 Huffman compression example—Huffman tree

214 11 Bitstream Configuration

Fig. 11.6 Arithmetic compression example

2. Arithmetic Encoding
Arithmetic encoding considers the sequence characteristic and estimates the con-
ditional probability of each bit. It allows storing symbols using a fractional number
of bits based on the probability of occurrence [39, 40].
For example, a string with three kinds of characters–A, B, and C, with probabil-
ities of 0.3, 0.6, and 0.1, respectively. We assign them ranges in the interval [0,
1) according to their probability. If the target string needs encoding is “BBC”,
as seen in (Fig. 11.6), the first character from the input stream is “B”, according
to the probability, the interval of “B” is [0.3, 0.9), then we subdivide the number
space between the values of 0.3 and 0.9 according to probabilities, which gives
us a new range of intervals. The second character is also “B”, we again subdivide
the new interval of “B” according to the probability, and make a new range of
intervals. The third character is “C”, we finally pick a value (e.g., 0.82) from the
newest interval of “C”.

The future research directions of entropy encoding for FPGA bitstream includes:

1. Characteristics comparison
When dealing with bitstream, which has a highly specialized structure, encod-
ing characteristics (such as CR, CT, and memory footprint) comparison among
entropy and non-entropy methods can be surveyed.

2. AI-assist compression
Compressing data with the help of AI technology is attracted by the academic
community to further improve CR. For example, neural network-based probability
predictor can be used to accurate estimate the probability distribution of each bit
during arithmetic encoding process [41, 42].

11.3 Bitsream Encryption 215

11.3 Bitsream Encryption

11.3.1 Overview

FPGAs security issues have been with them since their inception. Bitstream is the
only vessel that finally carry the configuration information, and naturally becomes
the primal target by the attackers [43] (Fig. 11.7).

FPGA bitstream life cycle usually has five stages:

1. Bitstream-Generation
The stage that the bitstream is being generated by EDA tools.

2. Bitstream-At-Rest
The stage that the bitstream has been generated and is stored in a non-volatile
memory that is not currently configuring the FPGA.

3. Bitstream-Loading
The stage that the bitstream is being loaded into the FPGA configuration memory.

4. Bitstream-Running
The stage that the bitstream has been loaded into the FPGA configuration memory
and the FPGA is operating.

5. Bitstream-End-Of-Life
The stage that the bitstream has been decommissioned.

To meet various bitstream security challenges at each stage, modern FPGAs rely
on both encryption and authentication [44]. Encryption provides the basic design
security to protect the design from copying or reverse engineering, while authenti-
cation provides assurance that the bitstream is the original and intact one created by
an authorized user. In industry, decryption are usually done on-chip by hardware,
while encryption is responsible for EDA software. Since our book focuses on the
EDA side, we emphatically discuss encryption in this section.

The most commonly used bitstream encryption method in industry (both AMD
and Intel) is Advanced Encryption Standard (AES) [45].

Fig. 11.7 FPGA bitstream security threats [43]

216 11 Bitstream Configuration

Fig. 11.8 AES algorithm flow for bitstream encryption

11.3.2 AES-Based Technique

Advanced Encryption Standard (AES) is a symmetric encryption algorithm devel-
oped by two Belgian cryptographer Joan Daemen and Vincent Rijmen [46]. AES
was designed to be efficient in both hardware and software, and supports a block
length of 128 bits and key lengths of 128, 192, and 256 bits. Other input, output, and
cipher key lengths are not permitted by this standard. AES has 10 rounds for 128-bit
keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys.

AES algorithm follows the steps shown in Fig. 11.8.
AES considers each block as a 16 byte (4byte. × 4 = 128 bits) grid and each round

has four steps: sub-byte, shift rows, mix columns, and add round key.

1. Sub-byte
In this step each byte is substituted by another byte in a pre-defined lookup table
called substitution box(S-box).

2. Shift rows
In this step each row is shifted a particular number of times. The first row is not
shifted, the second row is shifted once to the left, the third row is shifted twice to
the left, the fourth row is shifted thrice to the left.

3. Mix columns
In this step each column is multiplied with a specific matrix and thus the position
of each byte in the column is changed as a result. This step is skipped in the last
round.

4. Add round key
In this step the resultant output of the previous stage is XOR-ed with the corre-
sponding round key. Here, the 16 bytes is not considered as a grid but just as 128
bits of data.

11.4 Bitstream Programming 217

After one cycle, 128 bits of encrypted data is given back as output, and this process
is repeated until all the data to be encrypted are treated.

11.4 Bitstream Programming

11.4.1 Overview

Program the bitstream file into the targeted FPGA device is the final ritual of the EDA
flow. There are a number of methods to program FPGAs that can be broadly described
as parallel or serial, master or slave. In the slave modes (Fig. 11.9), the FPGA is
controlling the configuration upon power-up or when triggered by a configuration
pin, while in master modes (Fig. 11.10) a non-volatile memory (external or internal)
controls the configuration interface. Serial configuration is slower than parallel but
uses less signals, therefore leaving more signals to be used for the application itself
(Table 11.2).

Joint Test Action Group (JTAG) is a special serial programming mode that can
be done via a boundary scan interface (Fig. 11.11). JTAG has TCK, TMS, TDI, and
TDO lines for communication, the configuration process can be either master (from
non-volatile memory) or slave (from processor).

Bitstream programming (or the programmer) needs co-work of on-chip hard-
ware (downloading circuit) and EDA software, just like bitstream encryption and
decryption. For different commercial FPGA structures, downloading circuits are
proprietary [47].

Fig. 11.9 Illustration of FPGA slave mode configuration

Fig. 11.10 Illustration of FPGA master mode configuration (left for external memory, right for
internal memory)

218 11 Bitstream Configuration

Table 11.2 Bitstream configuration mode comparison

Modes Master or
Slave

Serial or
Parallel

External device
dependency

Width of data bus
(in bits)

Relative
configuration time

MS Master Serial Memory + Cable 1 Moderate

MP Master Parallel Memory + Cable . >1 Moderate

SS Slave Serial Cable 1 Slow

SP Slave Parallel Cable . >1 Fast

Fig. 11.11 Illustration of FPGA JTAG mode configuration

11.4.2 JTAG-Based Technique

For JTAG (slave) configuration mode, both software and hardware are needed to
working together.

On the software side, Open On-Chip Debugger (OpenOCD) is an open-source
project that aims to provide debugging, in-system programming, and boundary scan
using a debug adapter [48].

On the hardware side, a adapter (commonly USB to JTAG) is a hardware module
that provides the right signals for the target to understand. Most of these adapters are
based on FT2232H (a chip made from Future Technology Devices International Ltd.)
[49], which supports an interface mode known as Multi-Protocol Synchronous Serial
Engine (MPSSE). The MPSSE supports a number of complex synchronous-serial
operations, some of which are specifically designed for use with JTAG.

References

1. J.B. Note, É. Rannaud, From the Bitstream to the Netlist. Proceedings of the ACM/SIGDA 16th
International Symposium on Field Programmable Gate Arrays (FPGA) (2008)

2. S.A.F. Benz, H.S.A, Eds., Bil: a tool-chain for bitstream reverse-engineering, in 22nd Interna-
tional Conference on Field Programmable Logic and Applications (FPL), (2012)

3. D. Cheremisinov, Design automation tool to generate EDIF and VHDL descriptions of circuit
by extraction of FPGA configuration, in East-West Design and Test Symposium (EWDTS 2013)
(2013), pp. 1–4

4. Z. Ding, Q. Wu, Y. Zhang, Zhu, L. Deriving an ncd file from an FPGA bitstream: methodology,
architecture and evaluation. Microproc. Microsyst. 37(3), 299–312 (2013)

References 219

5. J. Yoon, Y. Seo, J. Jang, M. Cho, J. Kim, H. Kim, T. Kwon, A bitstream reverse engineering
tool for FPGA hardware trojan detection (2018), 2318–2320

6. T. Zhang, J. Wang, S. Guo, Z. Chen, A comprehensive FPGA reverse engineering tool-chain:
From bitstream to RTL code. IEEE Access (2019)

7. F4PGA, Project x-ray https://github.com/f4pga/prjxray (2022)
8. H. Yu, H.-M. Lee, Y. Shin, Y. Kim, FPGA reverse engineering in Vivado design suite based on

x-ray project, in 2019 International SoC Design Conference (ISOCC), (2019), pp. 239–240
9. F4PGA, Project u-ray. https://github.com/f4pga/prjuray (2022)
10. F4PGA, Project icestorm. https://github.com/f4pga/icestorm (2022)
11. F4PGA, Project trellis. https://github.com/f4pga/prjtrellis (2022)
12. Y. Kim, E.-G. Jung, C. Kim, Bitstream reverse engineering of microsemi’s versatile-based

FPGAs, in 2021 IEEE Physical Assurance and Inspection of Electronics (PAINE) (2021) pp.
1–8

13. S. Wallat, M. Fyrbiak, M. Schlögel, C. Paar, A look at the dark side of hardware reverse
engineering—a case study, in 2017 IEEE 2nd International Verification and Security Workshop
(IVSW) (2017), pp. 95–100

14. M. Jeong, J. Lee, E. Jung, Y. H. Kim, K. Cho, Extract LUT logics from a downloaded bitstream
data in FPGA, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018),
pp. 1–5

15. M. Ender, A. Moradi, C. Paar, The unpatchable silicon: a full break of the bitstream encryption of
xilinx 7-series FPGAs, in 29th USENIX Security Symposium (USENIX Security 20) (USENIX
Association, 2020), pp. 1803–1819. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/ender

16. A. Poetter, J. Hunter, C. Patterson, P. Athanas, B. Nelson, N. Steiner, Jhdlbits: the merging of
two worlds 3203 (2004), 414–423

17. P. C, G. S. A, (eds.) JBits.T M Design abstractions. The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’01) (2001)

18. A. Megacz, A library and platform for FPGA bitstream manipulation, in 15th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM 2007) (2007), pp.
45–54

19. K. Dang Pham, E. Horta, D. Koch, Bitman: a tool and API for FPGA bitstream manipulations,
in Design, Automation and Test in Europe Conference and Exhibition (DATE), 2017 (2017),
pp. 894–897

20. N. Charaf, C. Tietz, D. Goehringer, Manabit: a versatile tool for manipulating and analyzing
FPGA bitstreams, in 2022 IEEE 30th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), (2022), pp. 1–1

21. C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, B. Hutchings, Rapidsmith: do-
it-yourself cad tools for xilinx FPGAs, in 2011 21st International Conference on Field Pro-
grammable Logic and Applications (2011), pp. 349–355

22. C. Lavin, A. Kaviani, Rapidwright: enabling custom crafted implementations for FPGAs, in
2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM) (2018), pp. 133–140

23. R.K. Soni, N. Steiner, M. French, Open-Source Bitstream Generation (IEEE Computer Society,
USA, 2013) [Online]. Available: https://doi.org/10.1109/FCCM.2013.45

24. J. Vliegen, N. Mentcns, I. Verbauwhede, A single-chip solution for the secure remote configu-
ration of FPGAs using bitstream compression, in 2013 International Conference on Reconfig-
urable Computing and FPGAs (ReConFig) (2013), pp. 1–6

25. R. Jia, F. Wang, R. Chen, X.-G. Wang, H.-G. Yang, JTAG-based bitstream compression for
FPGA configuration, in 2012 IEEE 11th International Conference on Solid-State and Integrated
Circuit Technology, (2012), pp. 1–3.

https://github.com/f4pga/prjxray
https://github.com/f4pga/prjxray
https://github.com/f4pga/prjxray
https://github.com/f4pga/prjxray
https://github.com/f4pga/prjxray
https://github.com/f4pga/prjuray
https://github.com/f4pga/prjuray
https://github.com/f4pga/prjuray
https://github.com/f4pga/prjuray
https://github.com/f4pga/prjuray
https://github.com/f4pga/icestorm
https://github.com/f4pga/icestorm
https://github.com/f4pga/icestorm
https://github.com/f4pga/icestorm
https://github.com/f4pga/icestorm
https://github.com/f4pga/prjtrellis
https://github.com/f4pga/prjtrellis
https://github.com/f4pga/prjtrellis
https://github.com/f4pga/prjtrellis
https://github.com/f4pga/prjtrellis
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://doi.org/10.1109/FCCM.2013.45
https://doi.org/10.1109/FCCM.2013.45
https://doi.org/10.1109/FCCM.2013.45
https://doi.org/10.1109/FCCM.2013.45
https://doi.org/10.1109/FCCM.2013.45
https://doi.org/10.1109/FCCM.2013.45
https://doi.org/10.1109/FCCM.2013.45
https://doi.org/10.1109/FCCM.2013.45

220 11 Bitstream Configuration

26. F. Duhem, F. Muller, P. Lorenzini, Reconfiguration time overhead on field programmable gate
arrays: reduction and cost model. Comput. Dig. Tech. IET 6, 105–113 (2012)

27. A. Abdelhadi, G.G. Lemieux, Configuration bitstream reduction for SRAM-based FPGAs by
enumerating LUT input permutations, in 2011 International Conference on Reconfigurable
Computing and FPGAs (2011), pp. 20–26

28. P. Hemnath, V. Prabhu, Compression of FPGA bitstreams using improved RLE algorithm,
in 2013 International Conference on Information Communication and Embedded Systems
(ICICES), (2013), pp. 834–839.

29. J. Ziv, A. Lempel, A universal algorithm for sequential data compression. IEEE Trans. Inf.
Theo. 23(3), 337–343 (1977)

30. J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding. IEEE Trans.
Inf. Theo. 24(5), 530–536 (1978))

31. Z. Li, S. Hauck, Configuration compression for virtex FPGAs, in The 9th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM’01) (2001), pp. 147–159

32. A. Khu, Xilinx FPGA configuration data compression and decompression (2001)
33. R. Stefan, S.D. Cotofana, Bitstream compression techniques for virtex 4 FPGAs, in 2008

International Conference on Field Programmable Logic and Applications (2008), pp. 323–
328

34. Y. Gao, H. Ye, J. Wang, J. Lai, FPGA bitstream compression and decompression based on lz77
algorithm and bmc technique, in 2015 IEEE 11th International Conference on ASIC (ASICON)
(2015), pp. 1–4

35. R. Iša, J. Matoušek, A novel architecture for lzss compression of configuration bitstreams within
FPGA, in 2017 IEEE 20th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS) (2017), pp. 171–176

36. D.A. Huffman, A method for the construction of minimum-redundancy codes. Proc. IRE 40(9),
1098–1101 (1952)

37. M.R. Ashila, N. Atikah, D.R. Ignatius Moses Setiadi, E.H. Rachmawanto, C.A. Sari, Hybrid
AES-Huffman coding for secure lossless transmission, in 2019 Fourth International Conference
on Informatics and Computing (ICIC) (2019), pp. 1–5

38. M.E. Hameed, M.M. Ibrahim, N.A. Manap, A.A. Mohammed, A lossless compression and
encryption mechanism for remote monitoring of ecg data using huffman coding and cbc-
aes. Future Generat. Comput. Syst. 111, 829–840 (2020). [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167739X19313950

39. J. Rissanen, G.G. Langdon, Arithmetic coding. IBM J. Res. Dev. 23, 149–162, (1979).
40. V. Čeperković, M. Prokin, D. Prokin, Efficient cumulative probability distribution estimation for

arithmetic coding, in 2020 9th Mediterranean Conference on Embedded Computing (MECO)
(2020), pp. 1–4

41. M. Goyal, K. Tatwawadi, S. Chandak, I. Ochoa, Deepzip: lossless data compression using
recurrent neural networks, in 2019 Data Compression Conference (DCC) (2019), pp. 575–575

42. J. Wang, Y. Kang, Y. Feng, Y. Li, W. Wu, G. Xing, Lossless compression of bit-
stream configuration files: towards FPGA cloud, in 2021 IEEE International Conference
on Parallel and Distributed Processing with Applications, Big Data and Cloud Com-
puting, Sustainable Computing and Communications, Social Computing and Networking
(ISPA/BDCloud/SocialCom/SustainCom) (2021), pp. 1410–1421

43. A. Duncan, F. Rahman, A. Lukefahr, F. Farahmandi, M. Tehranipoor, FPGA bitstream security:
a day in the life, in 2019 IEEE International Test Conference (ITC) (2019), pp. 1–10

44. AMD/Xilinx, Using encryption and authentication to secure an ultrascale/ultrascale+ FPGA bit-
stream application note https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
(2022)

45. S. Sunkavilli, Z. Zhang, Q. Yu, New security threats on FPGAs: from FPGA design tools
perspective in 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2021), pp.
278–283

46. N. Pub, 197: advanced encryption standard (AES), federal information processing standards
publication 197, 441–0311 (2001)

https://www.sciencedirect.com/science/article/pii/S0167739X19313950
https://www.sciencedirect.com/science/article/pii/S0167739X19313950
https://www.sciencedirect.com/science/article/pii/S0167739X19313950
https://www.sciencedirect.com/science/article/pii/S0167739X19313950
https://www.sciencedirect.com/science/article/pii/S0167739X19313950
https://www.sciencedirect.com/science/article/pii/S0167739X19313950
https://www.sciencedirect.com/science/article/pii/S0167739X19313950
https://www.sciencedirect.com/science/article/pii/S0167739X19313950
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program
https://docs.xilinx.com/v/u/en-US/xapp1267-encryp-efuse-program

References 221

47. J. Wang, L.-g. Chen, and J.-m. Lai, FPGA downloading circuit design and implementation,”
in 2006 8th International Conference on Solid-State and Integrated Circuit Technology Pro-
ceedings (2006), pp. 1950–1953

48. T.O. Project, Open on-chip debugger. https://openocd.org/ (2023)
49. F.T.D.I. Ltd., Ft2232h dual high speed usb to multipurpose UART/FIFO IC datasheet. http://

www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf (2023)

https://openocd.org/
https://openocd.org/
https://openocd.org/
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf

Part VI
Summary and Outlook

Chapter 12
Summary and Outlook

Abstract In this chapter, a brief look back of vanilla FPGA EDA is summarized.
Commercial FPGA EDA tools for both chip design and application design is very
mature and ML-aided engines are starting to show their superior power against tradi-
tional engines. Using high-level languages to unify the programming models across
computing platforms is continuously evolving, mainly by the “big two” vendors. On
the other hand, using mostly open-sourced EDA tools to democratize vanilla FPGA
technology across industry and academia also draws a lot of attention. At the end,
future works of this book is presented to make a more comprehensive coverage of
FPGA EDA knowledge domain.

12.1 FPGA EDA’s Crossroads

There are four top performance art awards in United States of America–Emmy,
Grammy, Oscar, and Tony. Respectively, these awards honor outstanding achieve-
ments in television, recording, film, and theater. People who have won all four of
those awards is given a designation of “EGOT” (Fig. 12.1). Musical theater is the
only “live” show among the four types of art (half by the producer, half by the
actors’ “live” performance), so that the comprehensive capability requirements for
actors is probably the highest of all. In the computing chip world, there are also four
mainstream architecture: Scalar, Vector, Matrix, and Spatial, typically represented
by CPU, GPU, TPU, and FPGA. Every outstanding chip company is eager to become
the “EGOT” in the chip industry—collecting all these four technologies. FPGA is
the only “field” programmable hardware among the four types of architecture (half
by the producer, half by the users’ “field” programming), which gives this technol-
ogy a high entry barrier of learning. Besides, FPGA can be programmed to simulate
every other computing architecture, just like an excellent musical artist usually can
be easily fitted in any other form of performance.

As the “big two” (Xilinx and Altera) were aquired by AMD and Intel respectively,
vanilla FPGA has been reduced to an element serving mighty hybrid computing
complex such as Versal or Agilex series chips. Vanilla FPGA EDA (for chip design—
from transistor to layout; for application design—from HDL to bitstream) has come

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_12

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_12&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12
https://doi.org/10.1007/978-981-99-7755-0_12

226 12 Summary and Outlook

Fig. 12.1 Four most important rewards of performance art in the USA. Source Sporcle

to a crossroads. At this point, industry and academia both turned their focuses mainly
into three directions:

1. Keep optimizing vanilla FPGA EDA tools by accelerators or AI technologies.
2. Create new FPGA EDA tools by increasing the level of abstraction that the com-

piler can understand.
3. Make vanilla FPGA EDA tools open source.

All of these technical routes are serving the same ultimate purpose: democratize
the FPGA technology.

At the moment this book is writing, most of the published works mentioned above
concentrate at the FPGA application design EDA side. To further improve the quality
and speed, AI-aided EDA engines has been applied to AMD’s Vivado. To increase the
level of abstraction that the compiler can understand, AMD’s Vitis unifies the design
methodologies and programming models across different computing platforms by
using Tensorflow/Caffe/C++/Python etc., whilst Intel’s oneAPI tries to further inte-
grate the programming languages into DPC++, a new programming model across
all computing platforms. To make tools open source, VTR, Yosys, and many other
pioneer masterpieces have been very popular in the learning community and together
they have forged the cornerstone of FPGA academic research.

12.2 Our Book’s Future Works

A series of new chapters will be added in the next edition to enrich the knowledge
spectrum.

12.2 Our Book’s Future Works 227

For [Part. IV]—FPGA Chip Design EDA, one new chapter will be added.

1. Full-custom EDA
Introducing full-custom EDA technologies for FPGA chip design studied in
academia.

For [Part. V]—FPGA Application Design EDA, three extra chapters will be
enrolled.

1. Engine Fusion
In previous edition, every single EDA engine has been orderly discussed, however,
in modern FPGA application design EDA, boundaries across conventional engines
are blurred, these engines are often fused together to improve quality-of-results
(QoR) or enable new functionalities in practical situations.

2. Generic GUI Framework
A generic open-source Graphic User Interface (GUI) framework is presented, it
follows the classic EDA tool design pattern of Tcl-driven QT GUIs. It offers a
collection of widgets and allow users to create their own GUI without having to
reinvent the wheel.

3. Test Benchmarks
The FPGA community relies heavily on standard and fair benchmarks to evaluate
their hardware and software solutions. In this chapter, a set of up-to-date bench-
mark suites are introduced and analyzed to ensure the effectiveness and efficiency
of the test activity.

	Foreword
	Preface
	Contents
	Part I Introduction
	1 Introduction
	1.1 FPGA Hardware Brief Introduction
	1.1.1 FPGA Concept
	1.1.2 FPGA Hardware Evolution
	1.1.3 FPGA Compares With Other Architectures

	1.2 FPGA EDA Brief Introduction
	1.2.1 FPGA EDA Concept
	1.2.2 FPGA Chip Design EDA
	1.2.3 FPGA Application Design EDA

	References

	Part II FPGA Data Modeling
	2 Device (Chip Design) Modeling
	2.1 Device Description Levels
	2.1.1 Abstract Levels
	2.1.2 Reuse Levels

	2.2 Device Model Classifications
	2.2.1 Primary Class
	2.2.2 Metric Class
	2.2.3 Guidance Class

	2.3 Device Model Implementations
	2.3.1 Logic Resource Structure Model
	2.3.2 Configuration Bit Structure Model
	2.3.3 Power Model
	2.3.4 Performance (Timing) Model
	2.3.5 Area Model
	2.3.6 Packing/Placement Guidance Model
	2.3.7 Routing Guidance Model
	2.3.8 Bitstream Generation Guidance Model

	References

	3 Design (Application Design) Modeling
	3.1 Design Description Levels
	3.1.1 Abstract Levels
	3.1.2 Reuse Levels

	3.2 Design Model Classifications
	3.2.1 Primary Class
	3.2.2 Constraint Class
	3.2.3 Report Class

	3.3 Design Model Implementations
	3.3.1 Logic Resource Structure Model
	3.3.2 Configuration Bit Structure Model
	3.3.3 Constraint Model
	3.3.4 Report Model

	References

	Part III FPGA Metric Analysis
	4 Power Analysis
	4.1 Overview
	4.2 Power Analysis Techniques
	4.3 Summary and Trends
	References

	5 Performance (Timing) Analysis
	5.1 Overview
	5.2 Timing Analysis Techniques
	5.3 Summary and Trends
	References

	6 Area Analysis
	6.1 Overview
	6.2 Area Analysis Techniques
	6.3 Summary and Trends
	References

	Part IV FPGA Chip Design EDA
	7 Semi-custom EDA
	7.1 Overview
	7.2 Extended Architecture Description Language
	7.2.1 Circuit Modeling
	7.2.2 Physical Mode Modeling
	7.2.3 Configuration Protocol

	7.3 Netlist Generator
	7.4 Testbench Generator
	7.5 Showcase
	7.5.1 Methodologies
	7.5.2 Performance Evaluation

	7.6 Summary and Trends
	References

	Part V FPGA Application Design EDA
	8 High-Level Synthesis
	8.1 Overview
	8.1.1 From Software Program to Intermediate Representation
	8.1.2 From Intermediate Representation to Hardware Design

	8.2 Datapath Scheduling
	8.2.1 Unconstrained Scheduling
	8.2.2 Constrained Scheduling
	8.2.3 Timing Optimizations
	8.2.4 Resource Binding and Sharing

	8.3 Extracting Parallelism Through HLS Scheduling
	8.3.1 SDC-Based Modulo Scheduling
	8.3.2 Polyhedral Analysis and Optimization
	8.3.3 Dynamic Scheduling

	8.4 Current Status and Outlook
	8.4.1 HLS Frameworks
	8.4.2 HLS Code Restructuring and Annotations
	8.4.3 Design Space Exploration
	8.4.4 Functional and Formal Verification in HLS
	8.4.5 Frequency Estimates in HLS

	References

	9 Logic Synthesis
	9.1 Overview
	9.2 Fundamentals of Boolean Logic
	9.2.1 Boolean Algebra
	9.2.2 Functional Representation
	9.2.3 Directed-Acyclic-Graph (DAGs) Boolean Network

	9.3 Logic Optimization
	9.3.1 Functional Methodologies
	9.3.2 DAG-Aware Logic Optimization
	9.3.3 Exact Logic Optimization
	9.3.4 Exact Synthesis Algorithm Flow
	9.3.5 SAT-Based Encoding
	9.3.6 Sequential Logic Optimization
	9.3.7 Advanced Logic Optimization Techniques

	9.4 Technology Mapping
	9.4.1 Flow-Based and Cut-Based LUT Mapping
	9.4.2 Cut-Less LUT Mapping

	9.5 AI in Logic Synthesis
	9.6 Summary and Trends
	References

	10 Physical Implementation
	10.1 Packing
	10.1.1 Overview
	10.1.2 Seed-Based Packing Algorithms
	10.1.3 Partition-Based Packing Algorithms
	10.1.4 Summary and Trends

	10.2 Placement
	10.2.1 Overview
	10.2.2 Annealing Placement Algorithms
	10.2.3 Analytical Placement Algorithms
	10.2.4 Summary and Trends

	10.3 Routing
	10.3.1 Overview
	10.3.2 Negotiation-Based Routing Algorithms
	10.3.3 Summary and Trends

	References

	11 Bitstream Configuration
	11.1 Bitsream Generation
	11.1.1 Overview
	11.1.2 Mode-Based Technique

	11.2 Bitsream Compression
	11.2.1 Overview
	11.2.2 Non-entropy Encoding
	11.2.3 Entropy Encoding

	11.3 Bitsream Encryption
	11.3.1 Overview
	11.3.2 AES-Based Technique

	11.4 Bitstream Programming
	11.4.1 Overview
	11.4.2 JTAG-Based Technique

	References

	Part VI Summary and Outlook
	12 Summary and Outlook
	12.1 FPGA EDA's Crossroads
	12.2 Our Book's Future Works

