
SimGen: Simulation Pattern Generation for
Efficient Equivalence Checking

Carmine Rizzi
ETH Zurich, Switzerland

crizzi@ethz.ch

Sarah Brunner
ETH Zurich, Switzerland

sarbrunn@ethz.ch

Alan Mishchenko
UC Berkeley, USA

alanmi@berkeley.edu

Lana Josipović
ETH Zurich, Switzerland

ljosipovic@ethz.ch

ABSTRACT
Combinational equivalence checking for hardware designs tends
to be slow due to the number and complexity of intermediate node
equivalences considered by the SAT solver. This is because the
solver often spends a lot of time disproving nodes that appear
equivalent under random simulation. This work focuses on the gen-
eration of expressive simulation patterns that help disprove the ma-
jority of non-equivalent nodes without the SAT solver, thus substan-
tially speeding up equivalence checking. We propose and evaluate
several novel heuristics and strategies inspired by Automatic-Test
Pattern Generation (ATPG). Experiments demonstrate the effective-
ness of using the resulting simulation patterns, compared to those
generated by state-of-the-art random and guided simulation.

1 INTRODUCTION
Combinational equivalence checking (CEC) determines whether two
circuit networks or subnetworks have an equivalent logic func-
tion. A common approach to discovering equivalent points in two
circuit networks is boolean satisfiability (SAT) or binary decision
diagram (BDD) sweeping, where a SAT or BDD solver proves or dis-
proves the equivalence of a pair of candidate points [13]. However,
a naive checking of all point pairs is time-consuming due to the re-
quirement to disprove equivalence among numerous non-matching
points [3]. Thus, sweeping is usually performed after iterative cir-
cuit simulation that partitions the equivalence classes (i.e., sets of
circuit points that may be equivalent and must be checked) of the
considered networks and, consequently, reduces the number of
time-consuming equivalence checks.

The key to the success of simulation is to employ simulation vec-
tors that will effectively partition the equivalence classes. Several
approaches use fully random simulation patterns [12, 18]. However,
random simulations cannot guarantee the separation of a specific
class and, consequently, often remain stuck at a local minimum. For
this reason, Zhang et al. [26] propose reverse simulation to efficiently
separate equivalence classes and reduce the number of expensive
equivalence proofs (e.g., using SAT calls). Reverse simulation gen-
erates simulation vectors as follows: (1) Randomly select a pair of
nodes from the same class, also called target nodes. (2) Assign com-
plementary values to the target node outputs. (3) For each target
node, determine a set of inputs for which the node’s logic function
produces the desired value; assign these values to the target node
inputs (i.e., the outputs of the predecessor nodes). If multiple assign-
ments are possible, pick one randomly. (4) Traverse the networks
backward while assigning a value to each node following the same
strategy (i.e., to honor the logic function of the previously visited
nodes). (5) Terminate if the inputs of the networks are reached or
if a conflicting assignment occurs at any internal node.

A B C

1

1 1

1 0

D

z

x y

1 2

3
4

(a) Reverse
simulation: 1-4

A B C

1

1 1

1 0 0
0

1

D

z

x y
5 6

7

(b) Reverse
simulation: 5-7

A B C

1

1 1

1 0 0
1

D

z

x y

5

6

(c) Our work

Figure 1: The limitations of reverse simulation. Figures a and b show
the steps of a classic reverse simulation. Assuming that D needs to
evaluate to ‘1’, reverse simulation propagates values backward to find
a suitable input assignment. In Figure 1a, a series of propagations
(represented by arrows and enumerated by their order) assign ‘1’
and ‘0’ to A and B. Yet, the propagation of the remaining values,
shown in Figure 1b, causes a conflict when it tries to set the input B
to ‘1’ at step 7 (in red). Applying an implication would mitigate this
issue, as shown in Figure 1c (the red arrow at step 5): the 0 value of B
implies the value of 1 at the left input of gate y. This, in turn, sets the
value of input C to ‘0’ (step 6 in the figure). This strategy successfully
identifies a correct input vector without a collision. The goal of
SimGen is to exploit this and other strategies to reduce the number
of conflicts and improve the success rate of reverse simulation.

If reverse simulation successfully reaches the network’s inputs,
the values assigned to the inputs serve as a simulation vector that
aims to disprove the equivalence of the target nodes.

1.1 The Limitations of Reverse Simulation
Figure 1 illustrates the concept of reverse simulation. Assume that
the node z belongs to an equivalence class; we select this node as
the target node (step 1 of the procedure above). For simplicity, we
do not show the other nodes of the class and their networks. We
aim to demonstrate that node z is non-equivalent to other nodes of
the same class. To this end, we need to identify a simulation pattern
that, when applied to the inputs of these networks, produces a value
at D opposite to the other nodes’ outputs. Thus, the second step of
the procedure above assigns D with a value (e.g., ‘1’). In the third
step, we assign values to the inputs of gate z that ensure the desired
value of D (e.g., by assigning ‘1’ to the output of gate x and to the
one of y). This procedure repeats for the preceding nodes (see step
4). For gate x, it assigns to the network’s inputs, A and B, the values
shown in Figure 1.a1 (‘1’ and ‘0’ respectively).

Similarly, we have to decide which values the inputs of gate y
should have to obtain ‘1’ at its outputs. Since gate y represents a

nand gate, there are three possible input assignments (e.g, ‘0’ to one
input and ‘1’ to the other or ‘0’ to both inputs); we randomly choose
to assign ‘0’ to both inputs. In this way, input C and the output of
the inverter have the value ‘0’. The last step assigns ‘1’ to the input
of the inverter since we allocated ‘0’ to its output. Yet, this generates
a collision since the algorithm already assigned ‘0’ to input B, as
depicted in Figure 1.a2. At this point, the reverse simulation fails
and terminates without identifying an appropriate input vector.
Thus, the procedure repeats with the next pair of target nodes.

This example illustrates the limitations of reverse simulation: due
to the inability to exploit information regarding previous assign-
ments or the circuit’s structure, in many situations, it terminates
unsuccessfully; the number of subsequent SAT calls remains exces-
sive and impractical for sweeping realistic circuits.

1.2 SimGen: A Guided and Controlled Reverse
Simulation Strategy

Figure 1.b shows an alternative solution to the strategy above. After
setting the value of input B to ‘0’, we realize that an inverter uses the
value of B as input; due to the inverter’s logic function, we know that
its output is ‘1’ and make this assignment before making any other
decision. This information helps us to assign the other input of y:
now, the only possibility that respects the previous assignments is to
set input C to ‘0’. At this point, all internal values are assigned with
no conflict and we successfully reached the inputs of the network
with a valid simulation vector that guarantees the desired value at
output D. Clearly, exploiting functional and structural information
can help with avoiding conflicts and obtaining a simulation vector.

In this paper, we propose SimGen, an open-source simulation
vector generator for effective and controlled equivalence class par-
titioning. The main idea of our strategy is that, after determining a
desired simulation value of targetted network points (e.g., those of
a critical equivalence class), we traverse the graph to identify a sim-
ulation vector compatible with the desired targets. Yet, in contrast
to standard reverse simulation, we incorporate techniques from the
Automatic-Test Pattern Generation (ATPG) domain to decrease the
chances of failure. We exploit structural and logic information of
the circuit to postpone random decisions as much as possible, like
in the example above: we establish signal correlations between a
node and its neighboring nodes, postpone critical decisions and,
when they are inevitable, leverage structural information to make
educated decisions. We identify different ways of interleaving these
ATPG techniques to minimize the number of required SAT calls and,
consequently, SAT runtime. On a set of standard logic synthesis
benchmarks, we show that our strategy is superior to recent reverse
and random simulation approaches.

The rest of the paper is organized as follows. Section 2 describes
previous works related to SimGen and the relevant background.
Section 3 outlines the structure of SimGen. Section 4 and Section 5
explain two fundamental ATPG concepts incorporated in SimGen.
Section 6 details our experimental setup and results.

2 BACKGROUND AND RELATEDWORK
In this section, we present previous work related to SimGen and
the background necessary to understand its mechanisms.

2.1 Boolean Network
ABoolean network is a Directed Acyclic Graph (DAG). Each node of
this graph represents a logic function corresponding to a logic gate
or any logic expression. In this paper, without the loss of generality,
we assume that each node produces a single output bit.

The fanins of a node n are the input nodes of n. The fanouts
of a node n are the output nodes of n. A Primary Input (PI) and
Primary Output (PO) are, respectively, the nodes with no fanins
and with no fanouts. The level of a node corresponds to the length
of the longest path from any PI. The fanin/fanout cones of a node
n are the set of nodes that can reach one of the fanins/fanouts. A
Fanout-Free Cone (FFC) is a subset of the fanin cone of a node n
where all the paths from each node inside the cone towards the
POs of the network have to pass through n. The leaves of a cone
are the first nodes of the cone encountered on any path from any
PI to any node of the cone. A Maximum Fanout-Free Cone (MFFC)
is the largest among the possible FFCs of a certain node [19].

2.2 CEC and SAT-Sweeping
Combinational equivalence checking (CEC) evaluates the equiva-
lence of the outputs of two circuits. Different verification tools can
prove this equivalence; initially, they were based on BDDs [13, 14]
but, due to their large memory consumption, researchers’ interest
has shifted towards ATPG and SAT-based CEC methods [4, 15, 20].
A common technique across these methods is sweeping; it proves
the equivalence of the internal nodes to simplify the equivalence
proof of the circuit’s outputs. Apart from CEC, sweeping is a key
constituent of various applications: extracting structural choices
for technology mapping [6], pipelining an untimed circuit (e.g., to
track the circuit’s topological modifications and accurately identify
its critical path [23, 25]), logic optimizations [16], and Engineering
Change Order (ECO) synthesis [11]. Yet, to avoid excessive calls
to the verification tool, the formal proof is typically preceded by
circuit simulation, which can prove the inequality of two candidate
nodes with lower memory and runtime consumption [11, 20].

2.3 Circuit Simulation
Circuit simulation determines the value of each wire based on the
values assigned to the circuit’s PIs (also called input vectors) and
the functions within the circuits. Different applications employ
simulation to quickly assess circuit properties [16, 21].

The workflow of a typical sweeping tool is depicted in Figure 2,
inside the blue box. This tool receives as an input two networks.
The first step of this flow is circuit simulation. It generates a set of
random input vectors and simulates them through both networks.
Then, it categorizes nodes into multiple equivalence classes. If two
nodes have the same values at their outputs across all the simula-
tions, they are in the same equivalence class. Once all nodes are
considered, the simulator can send these classes to a verification
tool like BDD or SAT to test the nodes’ equivalence. The verifica-
tion tool will select a pair of nodes from the equivalence classes
and it will attempt to find an input combination for which they
are not equivalent. If it succeeds, it will obtain a counter-example
that the random generator could not create; it will thus send this
input vector to the circuit simulator to separate additional classes.
Hence, the main sources of the input vectors in SAT-sweeping are

2

the counter-examples from the verification tools and the randomly
generated input vectors. However, both these techniques come with
restrictions: the former requires the use of the verification tool and
can generate only one input vector per call; the latter cannot gen-
erate input vectors to disprove the equivalence of specific nodes
and it might become trapped in a local minimum.

For this reason, researchers proposed alternative simulation tech-
niques. Mischenko et al. [20] introduce a 1-distance simulation vec-
tor which selectively flips one bit of the input vector obtained from
a counter-example. Yet, the effectiveness of the flipping is difficult to
control and predict. Lee at al. [16] and Amarù et al. [3] employ a SAT
solver to generate respectively “expressive” and “high-toggle rate”
input vectors. Yet, the newly proposed input vector still depends
on SAT calls. On the other hand, Zhang et al. [26] propose “reverse
simulation” that does not depend on SAT or other verification tools.
Despite its effectiveness with respect to random simulation, it is
prone to failure, as we have shown in Section 1.

2.4 ATPG
Automatic-Test Pattern Generation (ATPG) represents a fundamen-
tal step in circuit fabrication [10, 15]. It generates input vectors
to expose the presence of a fault inside a fabricated circuit. The
generation of test patterns is divided into two steps: activation and
propagation. In the first step, the tool identifies the values of the
PIs needed to activate the desired value to test the fault; in the
second, it selects the input values to propagate the fault value to
the network’s output and make it visible outside the circuit.

Definition 2.1. A propagation is the assignment of input/output
node values such that all previously assigned values remain un-
changed and the node’s function is respected.

In this work, we assume that propagation assigns values 0 and
1; a don’t-care is treated as an unassigned value. Analogously to
ATPG, SimGen propagates the value of a certain node towards the
network’s PIs to retrieve a meaningful input vector.

The D-algorithm [24] is one of the first ATPG methods that em-
ploys information related to the circuit’s structure for efficient test
generation; PODEM [9] and FAN [8] build upon this algorithm.
They all rely on backtracking: once a collision occurs during the
signal propagation, they backtrack to their last decision and change
their choice. Yet, backtracking is time-consuming; thus, it is advan-
tageous to avoid conflicts whenever possible. To this end, PODEM
employs forward implication to assign values to internal nodes,
whereas FAN uses MFFCs to identify independent circuit portions
and to postpone the propagation of specific values. To reduce ex-
ecution time, SimGen omits backtracking and exploits different
variations of implication and MFFCs, as we will later discuss.

Two fundamental concepts that we inherit from ATPG are im-
plication and decision.

Definition 2.2. An implication is a propagation that occurs when
there is only one available input/output assignment that respects all
previously assigned values; it sets all input/output values to respect
the values of this single assignment.

We note that reverse simulation applies a subset of implication,
sometimes referred to as backward implication: it sets all inputs
according to the output value when only one input assignment is

Network 1
Network 2

Circuits
Simulator

Verification
Tool

EC

OUTgold
Generator OUTgold

SimGen

Decision

Implication

IV

Sweeping

EC
IV

Figure 2:Workflow of a sweeping tool with our SimGen plugin. The
flow receives as input two networks for sweeping. The circuits pass
through a simulator that generates random input vectors (IV). The
extracted equivalence classes (EC) are then sent to the verification
tool or to SimGen. SimGen generates OUTgold values that aim to
split the equivalence classes for one of the two networks. Then, it
generates the IV that propagates these values towards the inputs by
interleaving two propagation techniques, decision and implication.

possible, as discussed in the example of Figure 1. Some implemen-
tations [5] extend this strategy to check the subsequent (i.e., lower)
level for conflicts before making an assignment. We will consider
the more general definition above and imply values both back-
ward (from output to inputs) and forward (from inputs to output),
independently from the levels of a node.

Definition 2.3. A decision is a propagation that occurs when mul-
tiple available assignments respect all previously assigned values;
it chooses one of the possible assignments according to a decision
policy. Then, it sets the values of the selected assignment.

As shown in Figure 1, to set the output of gate z to ‘1’, there
is only one possible combination for the inputs (e.g., both should
be equal to ‘1’). Hence, this propagation is an implication. On the
other hand, the propagation of the output of gate x is a decision
since we could select among three possible assignments (e.g., one of
the two inputs is set to ‘0’ or both are set to ‘0’). We will see in the
following sections how SimGen uses these techniques to efficiently
compute input vectors to separate equivalent classes.

3 SIMGEN FLOW OVERVIEW
So far, we highlighted the constraints and limits of the state-of-the-
art and hinted at the potential application of ideas from the ATPG
domain. We next show how we leverage these concepts within the
SimGen framework to create impactful simulation input vectors.

Figure 2 depicts the interaction of SimGen with a typical sweep-
ing tool. SimGen receives as inputs the equivalence classes and a
network. There are two main steps in SimGen:

(1) OUTgold value generation. OUTgold values are the desired
output values for target nodes belonging to the same equivalence
classes. SimGen will compute an input vector that aims to maximize
the number of target nodes whose value is equal to its desired OUT-
gold value. For simplicity, we assign alternating values of zeros and
ones as OUTgold values according to the node IDs to split them into
different classes. Other strategies could be explored for OUTgold
selection (e.g., circuit topology-aware methods or runtime-adaptive
OUTgold generation) and effortlessly integrated into SimGen.

(2) Input vector generation. Input vectors are the vectors applied
to the PIs of the network during simulation. As shown in Figure 2,
the main steps for the generation of the input vector are implication

3

Algorithm 1: Input Vector Generator
getInputVectors(OUTgold[Ntargets], targetNodes[Ntargets],
network, implicationStrategy, decisionStrategy){

1 nodeVals = []
2 orderedTargetNodes = orderTargetNodes (targetNodes) ;
3 for targetNode in orderedTargetNodes do
4 initVals = nodeVals;
5 nodeVals[targetNode] = OUTgold[targetNode];
6 listDfs = dfs (targetNode);
7 candidateNode = targetNode;
8 while ! PIsSet (listDfs , nodeVals) do
9 tmpVals = implication (nodeVals, candidateNode ,

implicationStrategy);
10 conflict= compareVals (tmpVals , nodeVals);
11 if conflict== 1 then
12 nodeVals= initVals;
13 break;

14 nodeVals= tmpVals ;
15 candidateNode = latestUpdated (listDfs , nodeVals);
16 decision (nodeVals, candidateNode , decisionStrategy);

17 return nodeVals; }

and decision. The rest of the paper will focus on how to efficiently
employ and interleave these techniques.

If SimGen cannot generate an input vector to respect at least a
pair of target nodes of opposite OUTgold values, the simulation is
skipped and SimGen receives a new equivalence class to split.

3.1 SimGen’s Input Vector Generation
Algorithm

Algorithm 1 describes our input vector generation strategy. The
algorithm’s core is a nested loop. In the outer loop (Line 3), we iter-
ate through the target nodes and assign them the desired OUTgold
values. In the inner loop (Line 8), we search for a PI assignment that
satisfies the target node value. We execute a series of implications;
if we identify a conflict (Line 11), we terminate the inner loop and
select a new target node. If no conflict is found and there is still a
candidate node, we make a decision. We repeat the inner loop until
all PIs in the fanin cone of the target node are set or we identify a
conflict. The rest of this section details the algorithm.

The inputs to our algorithm are the desired OUTgold values, the
network with the target nodes, the list of targetNodes, and the im-
plication and decision strategies (respectively, implicationStrategy
and decisionStrategy). Ntargets is the number of target nodes. The
variable nodeVals is the main result of this function. It represents a
mapping between nodes’ IDs and the node’s output values for all
network nodes, including the PIs and POs. Initially, the nodeVals
does not contain any value.

In Line 2, we order the target nodes by decreasing network depth
and save them into the variable orderedTargetNodes ; the first nodes
to be processed will be the ones furthest from the PIs. Then, we
save the initial value assignment in the variable initVals and assign
a value to the first target node. We generate the list of nodes in the
fanin cone of the target node and save the result of the depth-first
search in the variable listDfs . The first candidate node is the target

f2

0

B

A C E

F G

f1 f1

D

1

1

- 1 0
- 0 0
1 - 1
0 - 1

1
0
1
0

I1 I2 I3 O

0 1

2 1 3 1

41

Figure 3: Implication example. The truth table on the right de-
scribes the nodes 𝑓1; node 𝑓2 is an and gate. Initially, the output F
and the inputs C and D have the values ‘0’, ‘0’, and ‘1’. In step 1, an
implication from F assigns ‘1’ to A. This enables the assignment of
‘1’ to the output of the left node 𝑓1. Yet, this implication strategy
does not apply further. However, by examining the truth table, ad-
vanced implication can determine the output of this node can be
only ‘1’; it enables this value’s propagation and avoids a decision.
Consequently, there is a new implication opportunity for node 𝑓2
that assigns its output to ‘1’. Implication opportunities enabled by
advanced implication are highlighted in red in the figure.

node. In Line 8, in a while loop, we search for a PI assignment that
results in the desired OUTgold value at this node. The condition
of the while loop checks if the PIs present in the variable listDfs
(i.e., those that belong to the input cone of the target node) have
already been set in the nodeVals variable.

The next step is the implication function. It starts from the
candidateNode and uses the values in nodeVals to identify im-
plication opportunities. It executes a certain number of impli-
cations according to the strategy specified with the variable
implicationStrategy and returns the new values after the implica-
tions. We then validate if the implication assignments conflict with
any previous assignments using the function compareVals . If there
is a conflict, the values are reset to the initial values before the
OUTgold assignment and the search for this target node terminates;
we repeat the procedure for a new target node from the list.

On the other hand, if there is no conflict, we update the node
values with the implied ones. Then, we set the latest updated value
in nodeVals (i.e., the input cone of the targeted node) as the new
candidateNode . Since there are no implication opportunities at this
point, we decide its inputs using the decision function. Depending
on the variable decisionStrategy, this function will select a different
assignment and modify the nodeVals.

In the following sections, we will explain the strategies used for
implication and decision and the insights behind them.

4 HOWMUCH TO IMPLY?
Implication can drastically affect the quality of results and the
presence of conflicts. In this section, we investigate the effectiveness
of standard implication and propose a more powerful alternative.

Our procedure to apply implication from Definition 2.2 consid-
ers the truth table of the node’s function and its already assigned
input/output values. We iterate through the rows of the truth table
and identify those that match the already set values. If only one
row matches the already assigned values, we apply implication by

4

assigning the row’s values to the previously unassigned inputs and
output. The newly set values may create new implication opportu-
nities that we can exploit next, as per Algorithm 1.

A complete implication example is shown in Figure 3. On the
left, there is a portion of a circuit with different propagation steps.
On the right, the table shows the truth table of node 𝑓1. The symbol
‘-’ represents a don’t-care. We assume that node 𝑓2 implements a
logical and function. We also assume an initial value assignment in
the graph: the output F has value ‘0’ and the inputs C and D have
respectively values ‘0’ and ‘1’. We start the propagation from output
F. Given the value of F, the only possible inverter input value is
‘1’; hence, we imply this value for input B. This new assignment
generates a sequence of implication opportunities: the values now
assigned to B and C fully respect only the first row of the truth
table of 𝑓1. Thus, we imply the values of O as 1, as specified by
the row. Note that the row has a don’t-care for A; in line with our
propagation definition, we keep A’s value unassigned.

It is desirable to continue applying the same strategy to the rest
of the network; however, the implication strategy that we have
applied so far will not be able to proceed. We now know that inputs
B and D both evaluate to ‘1’. In this case, two table rows match
these input values: the first row and the third one. Hence, we cannot
apply an implication as we cannot identify a single suitable row. A
typical way to proceed would be to now employ a decision; yet, as
discussed before, decisions may set an unsuitable value—we should
employ them as late and as rarely as possible.

There is an alternative, though: if we analyze the truth table, we
notice that the already existing input assignments match only rows
where 𝑓1 evaluates to ‘1’. Meanwhile, the second and fourth rows
(in which 𝑓1 evaluates to ‘0’) cannot be fulfilled. Therefore, the only
possible output value for the right 𝑓1 node is ‘1’ and we can safely
assign the node’s output value, even if we cannot set all the input
values. We define this type of implication as advanced implication:

Definition 4.1. An advanced implication is a propagation that
occurs when multiple available assignments respect all previously
assigned values and evaluate the output to the same value. It sets all
previously unassigned inputs/outputs whose values are equal in all
matching assignments and leaves the different values unassigned.

In the example above, advanced implication sets O to 1 as both
the first and the third row contain this value. E remains unassigned
as its values in the two rows are different.

The benefit of advanced implication is, intuitively, clear: assign-
ing more values will enable other implications and postpone the
usage of undesired decision-making. For instance, in the example
above, the advanced implication now enables the implication of G
to 1. We will quantitatively evaluate this benefit in Section 6.

5 WHICH ROW IS THE BEST?
When no further implications can be done, we have to make a
decision for a specific candidate node (i.e., we have to pick one
out of multiple possible assignments from the candidate node’s
truth table). Of course, it is not always possible to predict how an
assignment in one portion of the circuit could influence another. In
this section, we propose a set of heuristics to decide on a truth table
row depending on the probability of avoiding a future conflict.

A B C

D

z

x y

E

t

0

0

1

1

A B C

D

z

x y

E

t

1

1 1

0

0

1 2 1 2 3

E

z

x y

n

m

A B C D

(a) (b)

(c)

0

3

4

3

2

1

0

1

x y z
0 - 0
- 0 0
1 1 1

row1

row2

row3

(d)

dcsize mffcrank
1
1
0

0
1
1

Figure 4: Example of value assignment without and with the MFFC
heuristic. In graph a, we randomly assign a DC value to x, which
causes a conflict at y. In graph b, we identify the MFFC (the orange-
dotted triangle) and assign the DC to the output of y since it does not
belong to any MFFC. In graph c, the right MFFC has a higher depth
than the left one. We assign ‘0’ to the right one and a don’t-care to
the left one reducing the possible number of collisions. Hence, we
can exploit MFFCs to avoid conflicts.

Don’t-cares. Truth table rows can have don’t cares (DCs). Choos-
ing a rowwithDCs providesmore flexibility for future propagations:
leaving a particular input unassigned reduces the chance of conflict
with other assignments at this network point. Consider an and gate
whose output is set to ‘0’, and the input values need to be decided
on. One of its inputs must certainly be set to ‘0’. If we were to decide
on a ‘0’ or ‘1’ value for the other input, this value could potentially
conflict with some future propagation (e.g., if the same input is con-
nected to another node that requires the opposite value); leaving it
unassigned prevents this issue, while still enforcing the desired and
gate function. In other words, selecting a truth table row with the
largest number of DCs reduces the number of decision-assigned
values and, consequently, the chance of conflict.

We incorporate this strategy in SimGen; for every decision, we
rank candidate truth table rows based on the number of DCs that
each row contains, dcsize :

dcsize (rowi) =
𝑁𝑖𝑛𝑝𝑢𝑡𝑠∑︁
𝑖𝑛𝑝𝑢𝑡=0

dc(input (rowi)), (1)

where dc(input) is 1 if the input’s value in 𝑟𝑜𝑤𝑖 is a DC. SimGen
then prioritizes the row with the largest dcsize .

Max fanout free cones. Our strategy above shows the importance
of considering the DCs during row selection. However, the truth
table of a function could contain multiple rows with an identical
number of DCs. For this reason, we propose an additional metric
for the decision of a row based on Max Fanout-Free Cones (MFFC).

Figure 4.a shows a circuit with initial assignments ‘0’ and ‘1’ to
D and E, respectively. Assume that we first propagate the value of
D. There are two possible assignments for the inputs of gate z, as
the truth table below suggests: ‘0’ to the output of gate x and DC
to the output of gate y, and vice versa. Since they both have one
DC, we randomly select one of the two—for instance, a DC to the
output of gate x and ‘0’ to the other input, as shown in the figure.
The next step is the propagation of E. It is an implication since t is
an and gate and both inputs must be ‘1’. Yet, this causes a conflict
with the previous assignment and the propagation fails. The reason

5

is the assignment of ‘0’ to the output of y, which is the input of two
gates connected to two different POs. In other words, y belongs to
the fanin cones of both z and t. Assigning a DC to the output of y
during the propagation of D would have been a wiser choice, as it
would allow the subsequent assignment to set this value without a
conflict; this scenario is shown in Figure 4.b.

The key to avoiding conflicts as in this example is to identify
gates that are shared across different fanin cones—these gates will
be reached during propagations from different POs and, thus, con-
flicts may occur. Hence, it is favorable to assign them a DC when
making a decision. To this end, we rely on the concept of MFFC,
defined in Section 2.1. Gates that are in the MFFC of the gate under
decision lead exclusively to this gate and, thus, conflicts cannot
occur—this is the case for gate x, which is the output of the MFFC
of z, shown in dashed in Figure 4.b . Gates that are not in any MFFC
lead to other gates as well and, thus, may be points of conflict—this
is the case for gate y. Our strategy favors the assignment of a DC
to the latter; more generally, it assigns DCs to smaller MFFCs.

We now describe the main steps of our algorithm and illustrate
it on Figure 4.c. Just like in the previous example, the initial assign-
ment of output E is ‘0’; we have to propagate it down the and gate
and there are two possible input combinations.

(1) Calculate the MFFC for each input of the node under decision. In
Figure 4.c, the MFFCs of gate z are shown as dotted orange triangles.

(2) Compute the depth of each MFFC. The depth represents the
average distance between each leaf of the MFFC and its output. We
compute it as follows:

𝑑𝑒𝑝𝑡ℎ =

𝑁𝑙𝑒𝑎𝑣𝑒𝑠∑︁
𝑙𝑒𝑎𝑓 =0

(𝑙𝑒𝑣𝑒𝑙 (𝑜𝑢𝑡𝑝𝑢𝑡) − 𝑙𝑒𝑣𝑒𝑙 (𝑙𝑒𝑎𝑓))
𝑁𝑙𝑒𝑎𝑣𝑒𝑠

, (2)

where 𝑁𝑙𝑒𝑎𝑣𝑒𝑠 is the number of leaves of the MFFC, output is
the highest-level node of the MFFC, and 𝑙𝑒𝑣𝑒𝑙 (𝑖) is a function that
returns the level of node 𝑖 . Figure 4.c shows the level next to each
gate. The left MFFC has only one leaf, gate x, with level 3; its depth
is 0. The right MFFC has three leaves, m, n, and y, with levels 1, 2,
and 3; its depth is ((3 − 1) + (3 − 2) + (3 − 3))/3 = 1. The higher
the MFFC depth, the more conflicts are potentially avoided by a
non-DC assignment at its output; thus, we prefer to assign DC
values to outputs of MFFCs with lower depths.

(3) Compute the rank of each truth table’s row based on MFFC
depths.We compute the ranks of the rows as follows:

mffcrank (rowi) =
𝑁𝑖𝑛𝑝𝑢𝑡𝑠∑︁
𝑖𝑛𝑝𝑢𝑡=0

((1 − dc(input)) × depth(input)) (3)

where dc(input) and depth(input) are the values defined in Equa-
tions 1 and 2. The truth table of z in Figure 4 has two rows for which
z is ‘0’, row1 and row2 ; their ranks are 0 and 1, respectively. We prior-
itize rows with a higher rank—in this case, row2 . Yet, this metric on
its own does not differentiate rows with different DC counts, (e.g.,
although not acceptable for an assignment of ‘0’ to z, row3 ranks
the same as row2 , even though it has no DCs). Hence, we combine
the MFFC ranking with the previously described DC metric.

(4) Calculate row priority based on DC and MFFC ranking. Our
final row priority metric is:

priority(rowi) = 𝛼 × dcsize (rowi) + 𝛽 ×mffcrank (rowi) (4)

where dcsize andmffcrank are the two functions of the two heuris-
tics and 𝛼 and 𝛽 are two coefficients. We choose 𝛼 >> 𝛽 to prioritize
DC count over the MFFC metric. Without the loss of generality, we
incorporate our priorities into a standard roulette wheel selection
algorithm [17], where the priorities serve as probabilities of select-
ing a truth table row; the algorithm thus preferentially chooses
rows with the fewest input value assignments and targets inputs
with the lowest chance of conflict.

6 EVALUATION
In this section, we evaluate SimGen and compare it with reverse [26]
and random simulation. In Section 6.2, we analyze the effectiveness
of our different implication and decision strategies and show their
superiority over reverse simulation at a negligible runtime cost. In
Section 6.3, we evaluate the impact of SimGen on SAT calls and
runtime. Finally, we demonstrate the effectiveness of combining
random simulation and SimGen in Section 6.5.

6.1 Methodology and Benchmarks
The workflow of SimGen is shown in Figure 2. Our open-source
tool [1] is integrated with ABC [5] which performs SAT sweeping.
We evaluate SimGen on a total of 42 benchmarks from the VTR [22],
EPFL [2], and ITC’99 benchmark suites [7]. We omit benchmarks
whose SAT sweeping runtime is below 1 ms.

We use the command “if -K 6” from ABC to apply technology
mapping to each benchmark. Then, the sweeping tool receives
as input the LUT-mapped version of the benchmark. Firstly, ABC
executes a series of random simulations; in our experiments of Sec-
tion 6.2, we employ a single round of random simulation, whereas
we will tune this number in Section 6.5. Once the random sim-
ulation terminates, SimGen receives the equivalence classes, the
LUT-mapped circuit, and the OUTgold values, and runs for 20 it-
erations. Our goal is to separate LUTs from the same equivalence
class; thus, we use OUTgold with an equal number of zeros and
ones for the nodes of each class. We use the following formulation
to evaluate the cost of the classes:

cost =
𝑁∑︁
𝑖=0

(size(i) − 1), (5)

where 𝑁 is the number of equivalence classes and 𝑠𝑖𝑧𝑒 (𝑖) is the
number of LUTs in class i. The function computes the number of
SAT calls to execute in the worst-case scenario if the SAT tool
does not generate useful counter-examples (e.g. if the nodes are
all equivalent). Lower cost corresponds to a lower number of SAT
calls and a better separation of the classes.

6.2 Cost and Simulation Runtime Analysis
We use reverse simulation (RevS) as a baseline to evaluate differ-
ent combinations of our implication and decision strategies. In
particular, we evaluated the simple and advanced implication meth-
ods (Section 4) with random decisions (respectively, SI+RD and
AI+RD). Then, we combined advanced implication with the don’t-
care heuristic and with the fanout-free cone heuristic (Section 5) as
decision techniques (i.e., AI+DC and AI+DC+MFFC).

Table 1 shows the average cost value (Equation (5)) achieved
by the different techniques and the average execution time across

6

RevS SI+RD AI+RD AI+DC AI+DC+MFFC

Cost 1.000 0.814 0.812 0.810 0.807 (-19.3%)

Simulation Runtime 1.000 1.204 1.263 1.262 1.130 (+13.0%)

Table 1: Average normalized Cost and Simulation Runtime of our
methods with respect to reverse simulation (RevS) for a total of 42
benchmarks from VTR [22], EPFL [27], and ITC’99 [7] benchmark
suites.We evaluate simple implicationwith randomdecision (SI+RD),
advanced implication with random decision (AI+RD), advanced im-
plication and don’t-care heuristic (AI+DC), and the MFFC heuristic
on top of the latter (AI+DC+MFFC). The addition of each method
contributes to the cost improvement. The minor runtime increase
indicates the practicality of our methods.

all the benchmarks after one round of random simulation. We
normalized both values with respect to RevS. If the average value of
a method is lower than 1, this method has a smaller cost or runtime.
All the proposed methods from SimGen outperform on average
the reverse simulation approach in terms of cost at the price of a
slight runtime increase. Especially, the last method achieves the
best average cost, indicating the usefulness of all implication and
decision methods we presented in the previous sections.

Figure 5 shows the per-benchmark results of AI+DC+MFFC,
where the first and the second bar indicate the normalized dif-
ference in cost and simulation runtime of SimGen with respect to
RevS. SimGen either improves both metrics or trades off runtime
for improved cost, which aligns with our optimization goals. Also,
it achieves significant SAT call reductions, as we will discuss next.
In the rest of the paper, we refer to AI+DC+MFFC as SimGen.

6.3 SAT Calls and Runtime
To assess the benefits of SimGen in reducing SAT sweeping time,
we evaluated the number of SAT calls and runtime of the SAT
sweeping tool inside ABC of RevS and SimGen. Table 2 shows the
number of SAT calls and SAT time of these two techniques, with
SimGen’s relative improvements in SAT time. The SAT time and
SAT calls follow similar trends: SimGen’s decrease in SAT calls,
generally, results in a decrease in SAT time with respect to RevS.
The occasional discrepancies arise from variations in execution time
for each call, stemming from differences in circuit complexities and
target nodes. The fact that SimGen improves execution time over
the majority of benchmarks indicates its effectiveness.

Figure 5 links the cost and runtime of SimGen with the SAT
sweeping calls and runtime: the first and second columns for each
benchmark indicate the normalized difference of cost and execution
runtime of SimGen with respect to reverse simulation, the second
and third refer to SAT sweeping performance. Generally, the cost,
the SAT calls, and SAT runtime follow a similar trend: a decrease
in the cost matches a decrease in SAT calls and runtime, which
is exactly what we aim to achieve. Occasional differences occur
due to effective SAT counter-examples that reduce the number of
SAT calls in RevS more than in SimGen; this effect is accidental
and orthogonal to the particular simulation strategies. The main
takeaway is that SimGen either Pareto-dominates RevS by reducing
cost, simulation runtime, SAT calls and SAT runtime simultaneously,
or achieves Pareto-optimality by achieving lower cost at a runtime

Bmk SAT calls SAT time (ms) Bmk SAT calls SAT time (ms)
RevS SGen RevS SGen RevS SGen RevS SGen

alu4 138 136 2.3 2.4 table5 134 97 2.0 1.4
apex1 137 120 2.0 1.7 sin 124 134 4.5e3 2.5e3
apex2 226 204 4.7 4.3 square 54 27 3.0 1.6
apex3 184 173 2.5 2.3 arbiter 44 49 2.2 2.4
apex4 519 511 6.4 6.5 dec 194 200 1.8 1.8
apex5 78 67 1.3 1.0 m_ctrl 3739 3756 191.6 200.2
cordic 105 72 2.3 1.8 priority 83 79 3.1 3.3
cps 105 83 1.8 1.4 voter 1550 1522 2.1e3 2.7e3
dalu 45 42 1.3 1.1 log2 734 690 1.4e6 1.0e6
des 151 143 2.1 2.2 b14_C 159 102 11.2 6.7
e64 61 56 1.4 1.2 b14_C2 156 101 10.5 8.4
ex1010 1157 1145 16.1 15.6 b15_C 1495 1395 107.2 93.7
ex5p 104 115 4.0 3.5 b15_C2 1379 1370 118.3 98.2
i10 149 124 4.5 3.7 b17_C 4837 4741 258.2 215.0
k2 91 73 1.3 1.1 b17_C2 4744 4469 270.2 260.3
misex3 210 203 3.9 3.9 b20_C 258 167 22.7 19.2
misex3c 50 35 1.0 0.8 b20_C2 1227 305 72.5 36.0
pdc 989 976 20.9 18.8 b21_C 1369 271 66.6 22.9
seq 331 232 5.9 4.5 b21_C2 1280 275 71.4 35.3
spla 807 776 13.5 13.5 b22_C 1762 1778 81.0 88.0
table3 148 108 2.2 1.5 b22_C2 1808 1802 82.4 92.1

Bmk SAT calls SAT time (s) Bmk SAT calls SAT time (s)
RevS SGen RevS SGen RevS SGen RevS SGen

alu4 (15) 4872 4239 79.8 72.0 b17_C2 (5) 10K 8748 27.9 24.9
square (7) 339 326 5.3 4.2 b20_C2 (8) 3220 2828 26.2 15.9
arbiter (15) 13.9K 13.4K 93.2 67.7 b21_C2 (8) 3544 3169 20.7 17.7
b15_C2 (8) 4691 3989 20.7 18.7 b22_C (6) 2948 2494 55.9 43.9
b17_C (5) 9650 8298 48.3 29.5

Table 2: SAT calls and SAT time (execution runtime in𝑚𝑠) of the
SAT sweeping tool for the same 42 benchmarks as in Table 1. RevS
and SGen refer to reverse simulation and SimGen. Generally, the
improvement in the number of SAT calls translates into decreased
SAT time; the magnitude of this runtime reduction depends on the
verification tool’s efficiency and the benchmark complexity. The
lower table shows similar results when we increase the complexity
of some of the benchmarks with ABC’s “&putontop” command. The
number in parenthesis represents the quantity of repeated graphs.

expense. Only rarely SimGen designs is Pareto-dominated by RevS,
demonstrating SimGen’s broad usefulness and effectiveness.

The experiments of this and the previous section demonstrate
the superiority of SimGen over reverse simulation: it successfully
improves cost and SAT sweeping runtime—sometimes, at a simula-
tion runtime increase. In Section 6.5, we propose a practical way
to combine SimGen with random simulation to exploit SimGen’s
benefits while also improving the simulation time.

6.4 SimGen’s Scalability
The SAT runtime of many standard benchmarks we evaluated so
far—and, consequently, the gains of SimGen—are small in absolute
terms. We now explore whether SimGen’s advantages hold for
prolonged SAT times. To this end, we increase the complexity of
our benchmarks as follows: for each benchmark, we put several
copies of its network on top of each other by connecting the outputs
of a bottom network to the inputs of the one on top of it. If there
are more outputs than inputs, we create new POs; if there are more
inputs than outputs, we create new PIs. We execute this operation
by applying the command “&putontop” in ABC.

7

alu
4

ap
ex

1
ap

ex
2

ap
ex

3
ap

ex
4

ap
ex

5
cor

dic cps da
lu de

s
e6

4

ex
10

10
ex

5p i10 k2
mise

x3

mise
x3

c
pd

c
seq spl

a
tab

le3
tab

le5 sin
squ

are
arb

ite
r

de
c

mem
_ct

rl

pri
ori

ty
vo

ter log
2

b1
4_C

b1
4_o

pt_
C

b1
5_C

b1
5_o

pt_
C

b1
7_C

b1
7_o

pt_
C

b2
0_C

b2
0_o

pt_
C

b2
1_C

b2
1_o

pt_
C

b2
2_C

b2
2_o

pt_
C Avg

Benchmarks

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ize

d
Di

ffe
re

nc
es

 w
rt

Re
vS

Cost Results
Sim Runtime
SAT calls
SAT sweep Runtime

Figure 5: Normalized difference of cost, simulation runtime, SAT calls, and SAT runtime of SimGen with respect to reverse simulation. SimGen
achieves significant improvements in cost, SAT calls, and SAT runtime, at an occasional simulation time penalty.

alu
4 (

15
)

squ
are

 (7
)

arb
ite

r (1
5)

b1
5_o

pt_
C (8

)

b1
7_C

 (5
)

b1
7_o

pt_
C (5

)

b2
0_o

pt_
C (8

)

b2
1_o

pt_
C (8

)

b2
2_C

 (6
)

Avg

Benchmarks

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ize

d
Di

ffe
re

nc
es

 w
rt

Re
vS Cost Results

Sim Runtime
SAT calls
SAT sweep Runtime

Figure 6: The same metrics as in Figure 5, plotted for more complex
versions of our benchmarks. The results follow the same trends as
before, indicating the effectiveness and scalability of SimGen.

In Table 2 and Figure 6, we evaluate and plot the same metrics as
in Sections 6.2 and 6.3 for the modified benchmarks whose runtimes
are greater than 1 s; each benchmark is annotated with the number
of graph copies we use. The results follow the same trends as before:
SimGen reduces the number of SAT calls and, consequently, the
SAT runtime, at only an occasional simulation time penalty. This
shows that SimGen is not only effective but also scalable.

6.5 Random Simulation and SimGen
As mentioned in Section 2, the first step of SAT sweeping is random
simulation. Despite the speed of this technique [26], its lack of infor-
mation about the circuit typically hinders efficient class separation.
On the other hand, guided simulation strategies (such as reverse
simulation and SimGen) can split equivalence classes by generating
efficient input vectors but may suffer from prolonged runtimes, as
Table 1 suggests. In this section, we contrast these techniques and
show that their synergy—especially that of random simulation and
SimGen—can successfully exploit their complementary benefits.

Figure 7 compares the cost and runtime of three types of simu-
lation runs for two benchmarks, apex2 and cps: (1) Only random
simulation (RandS), (2) RandS followed by reverse simulation (RevS),
and (3) RandS followed by SimGen. In the second and third sce-
narios, we switch to RevS and SimGen, respectively, after random
simulation achieves the same cost in three consecutive iterations.
As the figure shows, RandS quickly reduces the number of SAT
calls in the first iterations, but it soon reaches a local minimum and
all subsequent simulations improve the cost only marginally or not
at all. In contrast, SimGen and RevS continue splitting equivalence
classes and reducing the overall cost, but at a runtime increase.
While SimGen Pareto-dominates RevS in apex2 (i.e., it achieves
better cost at a lower execution time), in cps, SimGen compromises

0 10 20 30 40 50
Iterations

250

300

350

400

450

Co
st

SimGen
RevS
RandS

0 10 20 30 40 50
Iterations

0.3

0.4

0.5

Ru
nt

im
e

(s
)

SimGen
RevS
RandS

(a) Benchmark apex2

0 10 20 30 40
Iterations

150

200

Co
st

SimGen
RevS
RandS

0 10 20 30 40
Iterations

0.06

0.08

0.10

0.12

0.14

Ru
nt

im
e

(s
)

SimGen
RevS
RandS

(b) Benchmark cps

Figure 7: Runtime and cost at different iterations by random simula-
tion (RandS) and a combination of random simulation with SimGen
or RevS in apex2 and cps. After a few iterations, RandS gets stuck in a
local minimum and cannot improve the cost. Replacing it SimGen at
that point achieves a lower cost at an increased runtime. This points
to the usefulness of enhancing random simulation with SimGen.

runtime for cost; this is in line with our findings in Table 1, indi-
cating the continuous cost superiority of SimGen at an occasional
runtime tradeoff. Overall, these results demonstrate that a synergy
between random simulation and SimGen is desirable: the former
achieves fast class division, and the latter is most effective in split-
ting classes when the former is stuck. This points to the relevance
and need to incorporate SimGen into sweeping tool simulators.

7 CONCLUSION
Simulation is a fundamental step to accelerating CEC and SAT
sweeping; yet, is it only effective if provided with appropriate input
vectors to simulate. In this work, we propose SimGen, a framework
for effective simulation input vector generation. SimGen borrows
concepts from the ATPG domain to leverage structural and logic
information of the network under simulation, thus generating input
vectors that are customized to the network at hand and suitable for
separating its equivalent classes. We explore several ATPG concepts
and their interactions, and demonstrate their success over prior
strategies (i.e., random and reverse simluation): at a modest runtime
increase, SimGen leverages simulation more effectively and reduces
the number and runtime of SAT calls. Our open-source framework
serves as a foundation for implementing and exploring further
simulation vector generation strategies.

8

REFERENCES
[1] . 2024. "SimGen: Simulation Pattern Generation for Efficient Equivalence Checking"

source code. https://doi.org/10.5281/zenodo.11119715
[2] Luca Gaetano Amarù, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli.

2015. The EPFL Combinational Benchmark Suite. In Proceedings of the 24th
International Workshop on Logic & Synthesis. Mountain View, CA.

[3] L. Amarú, F. Marranghello, E. Testa, C. Casares, V. Possani, J. Luo, P. Vuillod,
A. Mishchenko, and G. De Micheli. 2020. SAT-Sweeping Enhanced for Logic
Synthesis. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
Virtual Event, USA, 1–6. https://doi.org/10.1109/DAC18072.2020.9218691

[4] D. Brand. 1993. Verification of Large Synthesized Designs. In Proceedings of
the 1993 IEEE/ACM International Conference on Computer-Aided Design. IEEE,
Washington, DC, USA, 534–537.

[5] Robert Brayton, Alan Mishchenko, Leonardo De Moura, and Alexandre Piette.
2011. ABC: A System for Sequential Synthesis and Verification. EECS Dept. UC
Berkeley. http://www.eecs.berkeley.edu/~alanmi/abc/

[6] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam. 2005. Reducing
structural bias in technology mapping. In ICCAD-2005. IEEE/ACM International
Conference on Computer-Aided Design, 2005. IEEE, USA, 519–526. https://doi.org/
10.1109/ICCAD.2005.1560122

[7] F. Corno, M.S. Reorda, and G. Squillero. 2000. RT-level ITC’99 benchmarks
and first ATPG results. IEEE Design & Test of Computers 17, 3 (2000), 44–53.
https://doi.org/10.1109/54.867894

[8] H. Fujiwara. 1985. FAN: A Fanout-Oriented Test Pattern Generation Algorithm.
In Proceedings of the 1985 IEEE International Symposium on Circuit and Systems (IS-
CAS). 671–674.

[9] P. Goel and B. C. Rosales. 1981. PODEM-X: An Automatic Test Generation System
for VLSI Logic Structures. In 18th Design Automation Conference. Association for
Computing Machinery, Nashville, TN, USA, 260–268.

[10] R. Hulle, P. Fiser, J. Schmidt, and J. Borecky. 2016. SAT-ATPG for application-
oriented FPGA testing. In 2016 15th Biennal Baltic Electronics Conference (BEC).
IEEE, Tallinn, Estonia, 83–86.

[11] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri. 2009. DeltaSyn: An efficient
logic difference optimizer for ECO synthesis. In 2009 IEEE/ACM International
Conference on Computer-Aided Design - Digest of Technical Papers. IEEE, San Jose,
CA, USA, 789–796. https://doi.org/10.1145/1687399.1687546

[12] A. Kuehlmann. 2004. Dynamic transition relation simplification for bounded
property checking. In Proceedings of the IEEE/ACM International Conference on
Computer Aided Design. IEEE, San Jose, CA, 50–7.

[13] A. Kuehlmann and F. Krohm. 1997. Equivalence Checking Using Cuts And Heaps.
In Proceedings of the 34th Design Automation Conference. IEEE, New York, NY,
USA, 263–268. https://doi.org/10.1109/DAC.1997.597155

[14] A. Kuehlmann, V. Paruthi, F. Krohm, and M.K. Ganai. 2002. Robust Boolean
reasoning for equivalence checking and functional property verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 21, 12
(2002), 1377–1394. https://doi.org/10.1109/TCAD.2002.804386

[15] R. P. Lajaunie and M. S. Hsiao. 2005. An Effective and Efficient ATPG-Based
Combinational Equivalence Checker. In Proceedings of the 15th ACM Great Lakes

Symposium on VLSI. Association for Computing Machinery, New York, NY, USA,
248–253.

[16] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli. 2022. A
Simulation-Guided Paradigm for Logic Synthesis and Verification. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 41, 8 (2022),
2573–2586. https://doi.org/10.1109/TCAD.2021.3108704

[17] A. Lipowski and D. Lipowska. 2012. Roulette-wheel selection via stochastic
acceptance. Physica A: Statistical Mechanics and its Applications 391, 6 (2012),
2193–2196. https://doi.org/10.1016/j.physa.2011.12.004

[18] Feng Lu, L.-C. Wang, Kwang-Ting Cheng, and R.C.-Y. Huang. 2003. A circuit SAT
solver with signal correlation guided learning. In 2003 Design, Automation and
Test in Europe Conference and Exhibition. IEEE, USA, 892–897. https://doi.org/10.
1109/DATE.2003.1253719

[19] AlanMishchenko, Satrajit Chatterjee, and Robert Brayton. 2006. Improvements to
technologymapping for LUT-based FPGAs. In Proceedings of the 2006 ACM/SIGDA
14th International Symposium on Field Programmable Gate Arrays (Monterey,
California, USA) (FPGA ’06). Association for Computing Machinery, New York,
NY, USA, 41–49. https://doi.org/10.1145/1117201.1117208

[20] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Een. 2006. Improvements to
Combinational Equivalence Checking. In 2006 IEEE/ACM International Conference
on Computer Aided Design. Association for Computing Machinery, New York,
NY, USA, 836–843. https://doi.org/10.1109/ICCAD.2006.320087

[21] A. Mishchenko, J.S. Zhang, S. Sinha, J.R. Burch, R. Brayton, and M. Chrzanowska-
Jeske. 2006. Using simulation and satisfiability to compute flexibilities in Boolean
networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25, 5 (2006), 743–755. https://doi.org/10.1109/TCAD.2005.860955

[22] Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jai MinWang, Mohamed ElDafrawy,
Jean-Philippe Legault, Eugene Sha, Aaron G. Graham, Jean Wu, Matthew J. P.
Walker, Hanqing Zeng, Panagiotis Patros, Jason Luu, Kenneth B. Kent, and
Vaughn Betz. 2020. VTR 8: High Performance CAD and Customizable FPGA
Architecture Modelling. ACM Transactions on Reconfigurable Technology and
Systems 13, 2, Article 9 (Jun. 2020), 55 pages.

[23] Carmine Rizzi, Andrea Guerrieri, and Lana Josipović. 2023. An Iterative Method
for Mapping-Aware Frequency Regulation in Dataflow Circuits. In 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, San Francisco, CA, 1–6.
https://doi.org/10.1109/DAC56929.2023.10247686

[24] J. Roth. 1966. Diagnosis of Automata Failures: A Calculus and a Method. In IBM
Journal of Research and Development. IBM Corp., USA, 278–291.

[25] M. Tan, S. Dai, U. Gupta, and Z. Zhang. 2015. Mapping-aware constrained
scheduling for LUT-based FPGAs. In Proceedings of the 23rd ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. Association for Computing
Machinery, Monterey, CA, 190–9.

[26] H.-T. Zhang, J.-H. R. Jiang, L. Amarú, A. Mishchenko, and R. Brayton. 2021.
Deep Integration of Circuit Simulator and SAT Solver. In 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, San Francisco, CA, USA, 877–882.
https://doi.org/10.1109/DAC18074.2021.9586331

[27] École polytechnique fédérale de Lausanne (EPFL). 2023. EPFL Combinational
Benchmark Suite. École polytechnique fédérale de Lausanne (EPFL). https:
//www.epfl.ch/labs/lsi/page-102566-en-html/benchmarks/

9

https://doi.org/10.5281/zenodo.11119715
https://doi.org/10.1109/DAC18072.2020.9218691
http://www.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.1109/ICCAD.2005.1560122
https://doi.org/10.1109/ICCAD.2005.1560122
https://doi.org/10.1109/54.867894
https://doi.org/10.1145/1687399.1687546
https://doi.org/10.1109/DAC.1997.597155
https://doi.org/10.1109/TCAD.2002.804386
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1016/j.physa.2011.12.004
https://doi.org/10.1109/DATE.2003.1253719
https://doi.org/10.1109/DATE.2003.1253719
https://doi.org/10.1145/1117201.1117208
https://doi.org/10.1109/ICCAD.2006.320087
https://doi.org/10.1109/TCAD.2005.860955
https://doi.org/10.1109/DAC56929.2023.10247686
https://doi.org/10.1109/DAC18074.2021.9586331
https://www.epfl.ch/labs/lsi/page-102566-en-html/benchmarks/
https://www.epfl.ch/labs/lsi/page-102566-en-html/benchmarks/

	Abstract
	1 Introduction
	1.1 The Limitations of Reverse Simulation
	1.2 SimGen: A Guided and Controlled Reverse Simulation Strategy

	2 Background and Related Work
	2.1 Boolean Network
	2.2 CEC and SAT-Sweeping
	2.3 Circuit Simulation
	2.4 ATPG

	3 SimGen Flow Overview
	3.1 SimGen's Input Vector Generation Algorithm

	4 How Much to Imply?
	5 Which row is the best?
	6 Evaluation
	6.1 Methodology and Benchmarks
	6.2 Cost and Simulation Runtime Analysis
	6.3 SAT Calls and Runtime
	6.4 SimGen's Scalability
	6.5 Random Simulation and SimGen

	7 Conclusion
	References

