
Balor: HLS Source Code Evaluator
Based on Custom Graphs and Hierarchical GNNs

Emmet Murphy
ETH Zürich

Zürich, Switzerland

Lana Josipović
ETH Zürich

Zürich, Switzerland

ABSTRACT
While High-Level Synthesis (HLS) enables circuit generation di-
rectly from languages like C/C++ and OpenCL, optimal implemen-
tations require additional design specification through compiler
directives. Automated optimization of these directives requires
evaluation of candidate designs, but is bottlenecked by the high
computational cost. Graph Neural Networks (GNNs) have recently
emerged as the state-of-the-art for estimating the required Quality
of Results (QoR) directly from high-level source code, but they come
with associated challenges: the difficulty of information propaga-
tion, the complexity of software-oriented graph representations,
and high levels of extraneous computation increase both error and
computational cost. We present Balor, an HLS source code evaluator,
which consists of a graph compiler and a GNN-based QoR estimator.
The modular graph compiler is tailor-made for HLS QoR estimation,
producing smaller graphs that contain only HLS-specific informa-
tion. Balor analytically propagates important information across
the graph, allowing us to pivot to small, local GNNs, while outper-
forming more expensive networks. Additionally, we make use of
the natural hierarchy of an HLS kernel, and cluster the graph by
basic block, to further propagate and process information—without
the need for additional datasets. Combined, our contributions simul-
taneously reduce estimation error by 41%, and computational cost
by 82%. Balor is open-sourced at github.com/emmet-murphy/balor

CCS CONCEPTS
• Hardware→ High-level and register-transfer level synthe-
sis; Software tools for EDA; • Computing methodologies→
Supervised learning by regression.

KEYWORDS
HLS, GNNs, QoR estimation

ACM Reference Format:
Emmet Murphy and Lana Josipović. 2024. Balor: HLS Source Code Evaluator
Based on CustomGraphs and Hierarchical GNNs. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’24), October 27–31, 2024, New
York, NY, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3676536.3676788

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1077-3/24/10.
https://doi.org/10.1145/3676536.3676788

1 INTRODUCTION
In the modern computing landscape, FPGAs are an attractive choice
of accelerator for many workloads. They offer flexibility of imple-
mentation and low power consumption when compared to GPUs,
and low turnaround times offer quicker adaptation versus ASIC
implementations. High-level synthesis (HLS) aims to reduce the bar-
riers to entry to FPGA accelerators by generating implementations
directly from high-level languages such as C/C++ and OpenCL.
However, the use of HLS is still impeded by several issues.

Hardware Expertise Requirements: Although HLS abstracts away
many low-level details of hardware design, it still requires hardware
expertise—unoptimized software kernels often perform several or-
ders of magnitude worse on an FPGA than on a CPU. Issues such
as buffer management, memory access patterns, loop pipelining,
parallelism, and more must be dealt with in the kernel’s source
code by a hardware engineer, a process known as design space
exploration (DSE). This problem is compounded by the fact that
any difference in use case requires the kernel to be re-optimized:
different operating frequencies, different chips, different HLS tools
or tool versions require different source code implementations in
order to achieve optimal performance. For years, research has aimed
to relieve this burden by automating the process of DSE for HLS.

Difficulty of Optimization Evaluation: For HLS, even the most
commonly applied optimizations must be both well-parameterized
and judiciously applied. The possible optimizations therefore form
a large search space of designs to be evaluated. For economic search-
ing, DSE for HLS relies on sophisticated techniques from the field
of multi-objective optimization problems (MOOPs) such as search
space pruning, search space partitioning, analytical modeling of
optimization dependencies, and heuristic-guided searching [21, 25].

High Cost of Candidate Design Evaluation: The cost of candidate
design evaluation further impedes DSE. For a large kernel, a MOOP
solver would need a budget exceeding thousands of evaluations, but
the computational cost of HLS means a single evaluation can take
hours. As the Quality of Results (QoR) estimates after HLS have high
error, placement and routingmust also be performed in order to find
truly Pareto-optimal designs, pushing the computational cost even
higher. As such direct executions make HLS DSE computationally
infeasible, much work has gone into exploring HLS QoR estimation.

Why Graph Neural Networks? Graph neural networks (GNNs)
are the current state-of-the-art in data-driven HLS QoR estimators
[8, 24]. This is because, uniquely among data-driven estimators,
they fully encode the interactions between source code structure
and compiler directives. By representing an HLS kernel as a graph,
a GNN can encode both its contents and topological structure into
a single vector representation. With all the relevant information
represented numerically, traditional estimation techniques (most
commonly deep learning models) can be used to map to the QoR.

https://doi.org/10.1145/3676536.3676788
https://doi.org/10.1145/3676536.3676788
https://doi.org/10.1145/3676536.3676788


ICCAD ’24, October 27–31, 2024, New York, NY, USA Emmet Murphy and Lana Josipović

While traditional compiler graph representations benefit from
decades of refinement, new interactions with GNN architectures
require us to re-evaluate many details of their construction. Pre-
vious works [8, 15, 23, 24] have taken steps in this direction, but
are still hindered by oversmoothing, poor information propagation,
and extraneous computation. These problems come from the pro-
gram representation as well as the GNN architecture itself, so any
solution must engage with both.

Balor: AnOpen-Source, Cost-Effective, Directive-Focused HLS Source
Code Evaluator. In this work, we present Balor, an HLS source code
evaluator, which consists of a custom graph compiler and a GNN
QoR estimator. Balor capitalizes on the following insights:

• Typical compiler graph representations contain complex soft-
ware implementation details irrelevant to the HLS process and omit
HLS-relevant hardware information. In Section 4, we introduce a
graph representation tailor-made for the HLS process. Our graph
representation is small enough to strongly reduce computational
cost, and results in similar error.

• Compiler directives must be carefully incorporated into the
HLS graph representation due to their impact on the HLS process,
but existing methods are impaired by the fundamental weakness
of GNNs. In Section 5, we push for an entirely new philosophy of
graph annotation, strongly reducing estimation error by analytically
propagating the directive information to all relevant nodes.

• Until now, GNN architectures have prioritized long-range in-
teractions, sending information as far as possible across the graph.
But due to the structure of GNNs, this leads to extremely high
levels of redundant processing, and fails to deliver on its promise
of increased accuracy. In Section 6, we discuss a series of GNN
design choices that alleviate this issue: by making our GNN archi-
tectures local, deep, and hierarchical, we significantly reduce their
computational cost while also reducing estimation error.

For evaluation, we perform QoR estimation on a set of 25 Mach-
suite [20] kernels, both with and without these insights, and show
that they reduce the resource estimation error by 41%, timing es-
timation error by 41%, and computational cost by 82%. As these
insights are general and transferable, both to recent state-of-the-art
works [8, 24] and future ones, we envision that our open-source
framework can serve as a foundation for accurate, cost-effective
HLS DSE.

2 BACKGROUND
2.1 Graph Neural Network Theory
Figure 1 shows the process of GNN-based QoR estimation, which
has three data structures: graph representation, graph embedding,
and the QoR estimates. The input is a list of vectors (one for each
node), and a list of edges. The vectors consist of the metrics of
interest: for Balor’s graph compiler, these are primarily node type,
data type, and directive information. The output of a GNN is also a
list of vectors, the node embeddings. The output node embeddings
contain information on nodes within a certain radius of the original,
and the topological structure of the local neighborhood. The key
characteristic of GNNs aremessage-passing layers, which propagate
information along the graph edges [37].

Receptive Field: For GNNs, we often measure a particular path in
"hops": the number of edges traversed. For a single message-passing

Graph
Representation

GNN

Graph
Embedding

QoR
Estimates

Generic Task-Specific

Decoder

Figure 1: Balor employs an encoder-decoder structure for
GNN QoR estimation, as shown in the figure. With a compact
HLS-specific graph representation, preprocessor-directive-
focused node annotation, and local-focused GNN architec-
tures, it provides cheap and accurate QoR estimates.

layer, a node receives information about nodes one hop away. For
each message-passing layer added, the node receives information
about nodes further and further away. This gives the concept of a
node’s receptive field: the set of nodes it receives information from.
A GNN with N message-passing layers has an N-hop receptive field.

Over-smoothing: Since every node of the graph has its own em-
bedding, GNNs are inherently predisposed towards redundancy.
This can be seen in a phenomenon known as over-smoothing. With
every GNN layer, the receptive field of each node increases in size. It
also becomes more similar to the receptive field of the neighboring
nodes. This means their computations become more similar, and so
their embeddings become more similar. At the limit, a GNN layer
calculates the same output once for every node in the graph [1].

The optimal receptive field size decides the optimal number of
message-passing layers to include in the network. A smaller recep-
tive field results in a local-focused network, while a larger receptive
field results in a global-focused network. Section 6.1 discusses the
impact of this on QoR estimation.

Over-squashing: For information to pass from one node on the
graph to a distant node, it must pass through nodes connecting
them. For distantly connected nodes, information bottlenecks form
on the path(s), with connecting nodes becoming responsible for
passing more information than their dimensionality allows. This
is known as over-squashing, and limits the ability of GNNs to
propagate information across the graph [26].

Section 5 discusses the impact of over-squashing on adding com-
piler directives to the graph.

Graph Embeddings: Once an output embedding has been gener-
ated for each node in the graph, they can be aggregated by graph
or sub-graph to produce a representation for any region of interest.
These representations can then be used as inputs to traditional
neural networks for any classification or regression task. The GNN
therefore acts as an encoder, transforming graphs into vector rep-
resentations in feature space. As an encoder, ideally it should be
generic: usable as a front-end for any decoder rather than highly
coupled to a particular use case. While having a powerful GNN is
important, the often-overlooked task-specific decoder must also
be complex enough to map from a graph encoding to the desired
output. The encoder-decoder structure can be seen in Figure 1.

2.2 GNN QoR Estimators for HLS
Applications: GNNs offer an extremely cheap method of estimating
QoR directly from HLS source code, but they currently only achieve



Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs ICCAD ’24, October 27–31, 2024, New York, NY, USA

rough accuracy. This means they cannot be relied upon to decide the
final solution, but their speed of evaluation makes them an excellent
tool to prune the search space. By using them to generate a list of
candidate designs, which will be evaluated using an HLS tool, a
high-quality design can be found in a fraction of the time [5, 23].

Fine-Tuning Cost: Additionally, for GNNs to be of use, the amount
of data required to fine-tune them to new kernel types, synthesis
settings, FPGAs, or HLS tools must be low enough to justify them:
transfer learning has been shown to be effective for GNNs [24], but
the cost of changing these conditions cannot be denied.

3 RELATEDWORKS
3.1 Analytical HLS QoR Estimators
Analytical estimation models take kernel source code and extract
metrics of interest. These metrics are then used as inputs to hand-
crafted formulae for QoR estimation. Their analytical nature results
in very low computational costs, offering speed-ups of 100×-1000×.
Several works on analytical models for DSE were published from
2016-2018 [28, 34, 35]. However, analytical models have high main-
tenance and portability costs, requiring updates each time HLS tools
change. Few analytical models have appeared in recent years: most
work in this area focuses on data-driven estimators. Additionally,
these works [28, 34, 35] focus heavily on their low performance
estimation error, but either do not estimate resource usage or do
not present their results on the accuracy of their resource usage
estimation. Since there are many cases in which analytical mod-
els would struggle to predict an HLS tool’s decision-making [25],
we conclude that while analytical models perform excellently for
performance estimation when well-designed and well-maintained,
they fail to estimate resource usage adequately.

3.2 Data-Driven Methods for HLS
Data-driven estimation models are appealing due to the reduced
man-hours required to both construct and maintain them, and
the possibility of accurate resource estimation. While the cost of
generating the data required for good performance is high, the
process is automatic when moving to a new use case, and scalable
in a way code maintenance is not. However, achieving acceptable
estimation error is challenging, as few numerical representations of
an HLS kernel properly encode the complex interactions between
source code structure and compiler directives.

Non-GNN Data-Driven HLS QoR Estimators: One approach is to
estimate the desired QoR from a different, related QoR [4, 16–18]
(including pre-route QoR, CPU performance, and on a different
FPGA). This is a much easier estimation problem than directly from
source code, but the cost of obtaining the input QoR still prohibits
DSE. Kwon and Carloni [12] estimate the QoR purely from the com-
piler directives, encoded in a vector, but this is limited by the fact
the estimator receives no explicit information about the source code.
Wang and Schafer [29] and Ferretti et al. [7] both build a library of
micro-benchmarks to compare sections of the kernel to, but their
strongly local methods do not capture more global interactions.
MPSeeker [36] builds on an analytical model, Lin-Analyzer [35],
extracting metrics of interest from the source code and analytical
latency estimate. The constructed feature vector is processed us-
ing gradient boosting to estimate flip-flop (FF) and look-up table

(LUT) results. Goswami et al. [9] instead extract metrics from a
graph representation of the kernel. Hand-picked metrics struggle
to represent the source code structure in a way that encodes all
characteristics. While graph metrics do add topological information
to the embedding, kernels with vastly different properties may still
end up with similar feature vectors.

Non-DSE GNNs for HLS: Ustun et al. [27] show that GNNs have
superior performance to profiling libraries for estimating the la-
tency of arithmetic chains. PowerGear [15] and HGBO-DSE [11]
use GNNs to estimate post-route QoR, but both use post-HLS QoR
estimates from an HLS tool, and so are too expensive to be used
for DSE. Wu et al. [31] do GNN QoR estimation purely from source
code, but do not consider the impact of compiler directives.

GNNs for HLS DSE: IronMan-Pro [30] is a GNN-based QoR esti-
mator which takes only the source code as input. However, it only
considers resource directives and so cannot explore the full design
space. The GNN approach from Ferretti et al. [5], GNN-DSE [23],
and HARP [24] were the first works to explore the relevant use case:
they do not rely on HLS tools, and consider a wide range of pragmas.
Ferretti et al. ’s approach [5] takes an augmented control flow graph
as input, with a specific focus on properly encoding read and write
dependencies. Without instruction-level encoding, transferability
is limited, as the resource cost of each basic block must be learned
from scratch for each new kernel. Therefore the instruction-level
representation used in GNN-DSE [23] and HARP [24] has won out
as the state-of-the-art approach. However, these works miss oppor-
tunities to make the graph representation simpler and more concise,
causing high levels of redundant calculation. Their accuracy is also
strongly impaired by oversquashing. The approach from Gao et
al. [8] contributes post-route results, as well as additional graph
augmentations which reduce estimation error. But those augmen-
tations are highly dependent on an analytical back-end estimation
tool and strongly increase the redundant processing.

As our approach is most similar to GNN-DSE [23], HARP [24],
and the approach from Gao et al. [8]; we compare to them in detail
in Sections 4.2 and 5.

4 GRAPH REPRESENTATIONS:
FROM HIGH-LEVEL CODE TO AN
HLS-TAILORED GRAPH

While software-oriented graph representations can be extended
to include HLS-specific details, many details of their construction
conflict with how HLS is performed. Information important to HLS
is also often absent in these representations, due to not affecting
software compilation. Section 4.1 details how we construct our
graph representation, while Section 4.2 compares it to recent works.

4.1 Graph Construction
Balor’s graph compiler takes as input an abstract syntax tree (AST).
However, it could equally work with lower IRs such as LLVM [13]
or MLIR [14]. The output graph representation is heavily inspired
by ProGraML [3] and is built as follows:

Action Nodes: A line of high-level code can be broken down
into several atomic actions: arithmetic operations, reads and writes,
comparisons, function calls, etc. We add a node to the graph for each
atomic action, with each type of action having a corresponding node



ICCAD ’24, October 27–31, 2024, New York, NY, USA Emmet Murphy and Lana Josipović

Write
i32

Read
i32

Compare
i32

Read
i32

Read
i32 Multiply

i32
Add
i32 Write

i32

Return
void

A
Parameter i32

B
Local i32

Memory Element Edge
Ordering Edge
Data Flow Edge

Figure 2: HLS-tailored graph representation of a simple ker-
nel. The structure mitigates the inherent weaknesses of
GNNs and is economical for processing.

type. These nodes also contain data type and directive information,
which we discuss in detail in Section 5.

Ordering Edges:Although actions are not executed sequentially in
hardware, we still want to order them sequentially on the graph, as it
is a simple way to connect independent actions that are temporally
close. We therefore connect every action node to the action node
that follows it in program order, using an ordering edge. In the case
of variable program order, such as if statements or loops, we add
additional ordering edges so that each action node is connected to
all possible program order neighbours.

Data Flow Edges: We then add data flow edges to the graph:
Atomic actions have data dependencies, and these edges connect
data-producing nodes directly to where that data is consumed.

Memory Element Nodes and Memory Element Edges: Each variable
declaration is then added to the graph as a memory element node,
such as variable ’b’ in Figure 2. Different declaration types (local or
parameter, scalar or array) are added as different node types. The
nodes are then directly connected to all the read and write nodes
of that variable using memory element edges.

Subfunctions and Call Edges: Once finished with the main kernel,
Balor adds each subfunction to the graph representation, initially
leaving them disconnected from the main kernel. The sub-functions
are then connected to the correct function call nodes using call
edges: one edge to the first action node in the sub-function, and
one from the last action node.

A simple example kernel can be seen in Figure 2, showing the
different node and edge types. Our graph representation is as con-
cise as possible, has all relevant information, and directly connects
each node to all other relevant nodes. By prioritizing small graphs
and direct connections, we optimize GNN performance for both
accuracy and cost, as we show in Section 8.

4.2 Comparison to Recent Works
When compared with recent approaches [8, 23, 24] our representa-
tion differs in the following ways:

Trivial Nodes: Instructions such as extending and truncating bit
width, or casting pointer types, are trivial or nonexistent from a
hardware perspective, and are additionally encoded through opera-
tion data type. These are all omitted from our representation.

Pointer Saving: Pointers passed to a function as arguments are
stored in a pointer to a pointer. This requires both a memory allo-
cation and a store, neither of which happens in a hardware setting,
and so neither of these are included in our representation.

Function Call
void

A
Parameter Array

i32[1024]

B
Local Array

i32[1024]
Ordering Edge
Data Flow EdgeReturn

void

Software Graph Representation:
Data Type Nodes

Pointer Casts
Pointer Saving

HLS Tailored Graph Representation:
Variable Declaration Types Specified

Data Types on Existing Nodes
No Irrelevent Information

Memory Element Edge

Alloca: A

Store Alloca: B Get Element Ptr

Load

Function Call Return

i32

i64

i32

i64

i32[1024]

i64
i64

i64

i64

Figure 3: Comparison of previous graph representations to
our HLS-tailored representation. Previous approaches add in-
formation inapplicable to an HLS context, and add expensive
data type nodes. The reduced graph size results in cheaper,
faster inference with improved accuracy.

Pointer Loading: A pointer to a pointer requires two loads in
software, but one in hardware. Our representation has only a single
load on the graph no matter the address type.

Arithmetic Operation Bit Width: The graph representations used
in previous works [8, 23, 24] did not support all arithmetic opera-
tions at all bit widths. An example of this is the bitwise or, which
would have its inputs extended to 32 bits, and then the output trun-
cated back to 8 bits. Balor’s graph compiler instead supports all
operations at all bit widths.

Struct Indexing: In software, a struct is the same as an array, but
using names instead of indices. In hardware, a struct becomes an
ultra-wide vector, so no indexing occurs. Our representation does
not add indexing nodes for struct accesses.

External Functions: In previous works [8, 23, 24], all external func-
tions were marked as the same operation. We use separate labels
for common external functions present in HLS kernels, including
cosine, sine, and square root.

Variable Types: In a hardware context, an array passed as a pa-
rameter is very different from a locally declared array. Yet, from a
software perspective, both are simply pointers. Our graph represen-
tation labels use different node types for different types of variable
declarations.

Improved Data Reuse: The graph representations from previous
works [8, 23, 24] often recalculate the pointer to an array element.
Balor’s graph compiler detects multiple loads and stores to a single
memory address in a single basic block, and will only calculate the
address once.

Data Type: Previous works [8, 23, 24] all add data type informa-
tion to the graph by adding a data type node for every use of a
variable or a constant. Since this more than doubles the computa-
tional cost of a GNN, and also complexifies the topological structure
of the graph unnecessarily, Balor instead annotates the data infor-
mation directly onto the existing nodes. Operations without an
output data type have a custom data type label.



Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs ICCAD ’24, October 27–31, 2024, New York, NY, USA

Compare
i32

UNROLL
2

Information Has Location
GNNs struggle to propagate
parallelization information to

distant nodes 

Information Is Implicit
Individual nodes receive no explicit

parallelization information
Identical, redundant calculations performed

for replicated nodes

Locations Have Information
Nodes are directly given information

No redundant calculations

Compare
i32

Compare
i32

2 2
1

1

2 2

Figure 4: Visualization of Compiler Directive Philosophies
for a Parallelization Directive. "Locations Have Information"
is the only philosophy inwhich all nodes receive the directive
information and has no redundant calculations—improving
accuracy and reducing computational cost.

Figure 3 shows two graph representations for a simple kernel.
Above is a software graph representation of the types used in re-
cent works [8, 23, 24], based on ProGraML [3]. In the lower left
is our HLS-tailored graph representation, which removes irrele-
vant software implementation details, and includes the important
information of whether each array was locally declared. The sub-
function and call edges have been omitted from both for readability.
As we show in Section 8.3, any reduction in graph size reduces the
computational cost by the same factor—our graph representation
gives cheaper, faster inference with no reduction in accuracy.

5 COMPILER DIRECTIVES
An important question for GNN-based QoR estimation is how to
augment the graph representation with compiler directive informa-
tion. This has been approached from two different angles, which
differ fundamentally on a philosophical level. We introduce a third
approach, with a third philosophy, which we show achieves high
performance at a fraction of the cost. How these affect graph con-
struction for a parallelization directive is shown in Figure 4.

5.1 Philosophies
1) Information Has Location: GNN-DSE [23] and HARP [24] are
two works that showcase the first philosophy, "Information Has
Location". This approach augments the graph with a node for each
compiler directive, and connects that node to the graph using a
single edge. This edge connects to the node most relevant to the
compiler directive, e.g. the loop comparison node for a loop direc-
tive. As compiler directives can impact many nodes on the graph,
including distant ones, this technique is strongly impaired by over-
squashing. Several of HARP’s main contributions are attempts to
mitigate this effect, including making the graph denser, as well as
directive-specific multi-layer perceptrons (MLPs).

However, increasing graph density also worsens over-smoothing,
as the receptive fields expand at a faster rate. While the directive-
specific networks are computationally cheap, the approach means
most of the network receives no directive information at all. Since
these mitigations have associated drawbacks, approaches that avoid
the issue entirely can achieve improved performance.

2) Information Is Implicit: The approach from Gao et al. [8] in-
stead uses the directives to construct the graph, and to affect how
the graph is processed. The preprocessor information is therefore
implicit, rather than added to the graph directly.

For parallel directives, an instruction parallelized by a factor
of N is added to the graph N times. This direct replication means
that after the nodes are aggregated to form a graph embedding, it
contains parallelization information. But GNNs are deterministic: a
node with the same input embedding and the same neighbors has
the exact same output embedding. Since parallelization factors often
reachmore than a hundred, this approachmeans only a tiny fraction
of the calculations are unique. It is also limiting: parallelization
factors interact unpredictably with the resource cost increase. The
implicit parallelization information does propagate to nodes near
the edges of the loop, allowing them to respond non-linearly, but for
large loopsmany of the nodes receive no parallelization information
at all: this reduces the approach to linearly scaling these nodes by
their parallelization factor.

For pipelining directives, Gao et al. [8] use a multi-model ap-
proach, training separate sub-GNNs for pipelined loops versus
non-pipelined loops, with additional annotation from an analytical
scheduling estimator. Training separate GNNs is a clean solution
to the problem of information propagation, but is unfortunately
limited to directives with few parameters, such as pipeline and
function inline directives. While hybrid (combining analytical and
data-driven) approaches give improved performance, we consider
only the data-driven side in this work; any benefit to data-driven
approaches also benefits hybrid ones.

3) Locations Have Information: We propose a third philosophy, of
"Locations Have Information". Compiler directives add information
to the graph, each relevant to a subset of nodes. We analytically
propagate this information to those relevant nodes by directly an-
notating them. With the information already propagated, the GNN
is relieved of this responsibility. With each node being on the graph
only once, there are no redundant calculations. For resource usage,
the main piece of information to annotate on each node is its to-
tal parallelization factor, as well as the constituent parallelization
factors: multi-dimensional array accesses parallelize differently de-
pending on the specific loop. We annotate a total of 4 parallelization
factors on each node, but datasets with deeper nesting may require
more. Pipelining directive information is almost equally important
from a timing point of view, as this type of directive can impact
many nodes. It also applies implicit parallelization directives to
the sub-loops, which must be annotated with the resulting paral-
lelization factors. We annotate array directives such as partition
style and partition factor, which specify how an array should be
divided among separate memory elements, directly on the array
nodes, and we annotate function inlining directive information on
the call nodes.

While "Information Is Implicit" and "Locations Have Informa-
tion" both overcome the limitations of "Information Has Location",
"Locations Have Information" does it a fraction of the computa-
tional cost. It is also the only approach in which compiler directive
information, the most important information for estimation accu-
racy, is visible to every node.



ICCAD ’24, October 27–31, 2024, New York, NY, USA Emmet Murphy and Lana Josipović

GNN Decoders

Architecture A:
GNN-DSE

Architecture B:
Local Focused

GNN

Architecture C:
Deep Local Focused

Action Level GNN

Architecture D:
Hierarchical Local Focus

GNN

Basic Block Level GNN

Decoders

Decoders

Decoders

M M M M M M

MM

M M

MM MRRR

R R

JKN

JKN FNN

FNN

FNN

FNNRBB

G

G

G

G

Figure 5: Layerwise GNN Architecture Comparisons. Our local architecture reduces computational cost, the deeper architecture
replaces the removed layers with residual blocks for more effective processing, and our hierarchical architecture adds an
aggregation by basic block for improved information propagation.

6 GNN ARCHITECTURES: FROM GRAPH
TO VECTOR

6.1 Local Architectures
Previously, GNN architectures have been designed to maximize
information propagation. They use a relatively high number of
message-passing layers: these pull as much information as possible
from across the graph, and do very little processing of the cur-
rently available information before obtaining more. However, the
GNN literature shows that fewer message-passing layers perform
best on many graph datasets [1, 33], with local-focused networks
outperforming more global ones on both accuracy and cost.

Local networks were not feasible with the compiler directive
augmentation philosophy "Information Has Location", as they do
not propagate the compiler directive information far enough. "Lo-
cations Have Information" analytically propagates the directive
information, taking this responsibility away from the GNN, allow-
ing the use of cheaper architectures while reducing estimation error.
However, directly pivoting to local networks also means pivoting
to smaller networks, and the reduction in computational power
can cause increased error, as can be seen in Section 8. While our
experiments show that for QoR estimation, graph topology matters
only within 1 or 2 nodes, it is undeniable that message-passing
layers cannot be simply removed- they must be replaced.

6.2 Deeper Architectures
After switching to a local focus, the next step is therefore to at-
tempt to deepen the network. Deeper networks can give improved
performance at increased cost, but the benefits are not guaranteed:
network depth is limited both by the richness of the input vector
and by the size of the training dataset.

As the network has become shallow due to the removal of
message-passing layers, the question becomes what to add instead
of them: we want increased depth without increasing the receptive
field. Residual blocks [10] preserve gradients well during training,
and so stand out as a natural alternative. While our contribution is
that adding residual blocks in place of the message-passing layers is
beneficial to both accuracy and cost, we do not explore the possible
engineering optimizations beyond this obvious first choice.

6.3 Hierarchical Architectures
While we show that very local GNNs have the best performance, it
is undeniable that HLS kernels still have some longer-range interac-
tions that cannot be localized. Hierarchical approaches have been

shown to improve performance by coarsening the graph, allowing
easier propagation of information [8, 11]. But previous approaches
discardmuch of the information they generate, and none have taken
advantage of the natural hierarchy of HLS kernels: basic blocks.
The state-of-the-art for hierarchical architectures is the approach
by Gao et al. [8]. First, they perform full QoR estimation on the
innermost loops, using both a GNN encoder and a decoder (and
additionally requiring the creation of additional innermost-loop-
only datasets). The "hierarchical" aspect of their approach is to then
replace all the innermost loops in the graph with a single node,
containing only that QoR estimation. But as Figure 1 shows, the
GNN encoder produced much richer graph embeddings, containing
all the information of the QoR estimate and more, and the QoR
estimate is a poor second choice. More importantly, using the sub-
graph embeddings does not require expensive additional datasets,
increasing the viability of fine-tuning and transfer learning.

Balor therefore directly uses the subgraph embeddings. Addition-
ally, instead of only clustering nodes in innermost loops, it clusters
by basic block, a strategy that applies to every node in the graph.

Our hierarchical architecture can be seen as Architecture D in
Figure 5. Our approach adds an interim aggregation by basic block,
and treats the resulting embeddings as nodes in the control flow
graph. Combined with the control flow edges, message-passing
layers can now propagate information along the much coarser
control flow graph. The original aggregation now also happens on
the control flow graph, but still results in a single graph embedding.

With a simple change to the approach, we can process longer-
range interactions without the high computational cost and associ-
ated limitations of many message-passing layers. With rich vectors,
the network can be deepened further. Basic-blocks-aggregation
gives us a natural coarse graph to use, providing benefit to the entire
graph. Compared to the approach from Gao et al. [8], which sepa-
rately trains sub-models on specially generated auxiliary datasets,
our approach is trained end-to-end on a single dataset.

7 EXPERIMENTAL SETUP
7.1 Graph Compiler
Balor’s graph compiler is built on ROSE [19], a compiler infrastruc-
ture designed for program analysis and source-to-source transfor-
mations. Unlike lowering IRs, which discard high-level information
as compilation progresses, ROSE allows the graph compiler access
to every high-level detail present in the source code.



Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs ICCAD ’24, October 27–31, 2024, New York, NY, USA

7.2 Database
For evaluation, we use the open-source database DB4HLS [6]. From
this, we take post-HLS results for 25 kernels from the MachSuite
benchmark [20], comprising 36,296 data points. All data is gener-
ated using Vivado HLS 2018.2. This means our models only estimate
post-HLS results, instead of post-implementation, introducing an
additional source of error. However, other works [8] have used
post-implementation results successfully, and none of our insights
are post-HLS specific: while post-implementation results are re-
quired for a final implementation, post-HLS datasets are cheaper to
generate and therefore larger, and so are useful for building insight.
Additionally, DB4HLS [6] contains explicit compiler directives only
for parallelization, array partitioning, and function inlining. While
Balor does support explicit pipelining directives, for this evaluation
pipelining decisions are done automatically by the HLS tool, and
are constant for each kernel.

7.3 GNN Implementation
Our models were trained on NVIDIA GeForce GTX 1080 GPUs. We
used a 70:15:15 split for training, validation and testing, the ADAM
optimizer with an initial learning rate of 0.0005, and trained for 1000
epochs. Models were selected based on the validation set, and final
results are from the test set. Based on previous works [8, 23, 24],
the message-passing layers chosen were TransformerConv [22]
with a feature size of 64. Graph aggregation was attention-based
summation. All residual blocks were two layers deep.

7.4 Architectures
Figure 5 shows the 4 architectures used in our evaluation: GNN-
DSE, Local Focused, Deep Local Focused and Hierarchical Local
Focused. Recent works [8, 23, 24] all use 6 message-passing layers,
in addition to other techniques which all increase the receptive
field size. As an example, we take the network from GNN-DSE
[23] (Architecture A) and reduce it to only 2 message-passing lay-
ers (Architecture B), creating a local-focused variant, which uses
a jumping knowledge network (JKN) [32] to combat the effects
of over-smoothing. With fewer message-passing layers, this is no
longer required, but we maintain it for direct comparison. We then
deepen the network using residual blocks (Architecture C), which
do not expand the receptive field. Finally, we also use our hierarchi-
cal approach (Architecture D), for additional processing on a basic
block level.

7.5 Comparison
As the graph constructors of previous works were tightly cou-
pled to their closed-source databases, we create a "baseline" im-
plementation to compare against, which is as similar as possible
to GNN-DSE [23]. We chose GNN-DSE for this baseline as both
HARP [24] and the approach from Gao et al. [8] build directly on
GNN-DSE’s design decisions. While we can compare "Locations
Has Information" directly to "Information Has Location", we cannot
compare to "Information is Implicit"—these comparisons would
require additional datasets, analytical back-ends, and complex data-
base structures. Our contributions relate to the foundations of GNN
estimation, and prioritize simplicity to enable application directly

into more complex optimization techniques. Our baseline differs
from GNN-DSE in three ways:

Compiler Directives: GNN-DSE uses Merlin Compiler [2] as a
front-end, and so only has loop compiler directives. As our data-
base uses Vitis HLS, our baseline also has compiler directives that
affect arrays. As the natural parallel of connecting loop directive
nodes directly to the loop comparison node, we connect these array
directive nodes directly to the array nodes.

Improved Data Reuse: GNN-DSE uses ProGraML as the basis for
its graph construction, which does not detect all forms of pointer
reuse. Rather than replicating the exact cases where it does and
does not detect reuse, our baseline detects all types of pointer reuse.

More Constant Nodes: The rules for adding data type nodes in
GNN-DSE [23] come also for ProGraML. A node is added for every
variable use, but only once per unique constant. Our baseline instead
adds a node for each constant use, regardless of uniqueness.

8 RESULTS AND DISCUSSION
8.1 Estimation Error
Resource percentage estimation error statistics can be seen Table 1,
with corresponding timing statistics in Table 2. Both tables show
statistics by individual metric, with the final column reporting the
average relative to the baseline.

Balor "Information Has Location" A: Relative resource error
drops to 0.87 while timing drops to 0.91, showing that Balor’s com-
pact graph representation enables more accurate inference. Balor
"Information Has Location" B: Our smallest architecture is local-
focused, but the size reduction means it does not have enough
computational power. It has a relative error of 1.15 for resources
and 1.20 for timing. Balor "Information Has Location" C: Our deep,
local architecture has very similar results to Arch. A for resources,
but a better relative error of 0.83 for timing. Balor "Information
Has Location" D: Our hierarchical architecture gives strong error
reductions. It has relative errors of 0.68 for resources and 0.65 for
timing. Balor "Locations Have Information" A: "Locations Have
Information" worsens Arch. A by removing the reason for its large
receptive field, giving relative errors of 1.01 for resources and 0.99
for timing. Balor "Locations Have Information" B: The lack of com-
putational power again impedes accuracy, with 0.89 for resource
error and 1.06 for timing. Balor "Locations Have Information" C:
Our directive annotation philosophy and deep local-focused ar-
chitecture combine for increased accuracy at lower cost. It has a
relative resource error of 0.70 and timing error of 0.67. Balor "Lo-
cations Have Information" D: Our best architecture’s hierarchical
nature provides relative errors of 0.59 for resources and 0.59 for
timing. It can be seen that our directive philosophy, "Locations
Have Information" gives more desirable results than "Information
Has Location", especially when combined with the architectural
insights presented in Section 6.

8.2 Graph Size
Table 3 contains statistics on node counts for the different graph
representations. Our graph representation has an average relative
node count of 0.34. This reduces overall computational cost by a
similar factor, which we discuss in Section 8.3. The majority of the
reduction comes from the removal of data type nodes, but removing



ICCAD ’24, October 27–31, 2024, New York, NY, USA Emmet Murphy and Lana Josipović

Table 1: Resource Percentage Estimation Error Statistics (Value Relative to Baseline in Brackets): Our hierarchical architecture
with "Information Has Location" gives strong reductions in estimation error.

Resource Percent Estimation Error Statistics

Graph
Repr. Arch. LUTs FFs DSPs BRAMs

Relative
Error
(All)

Median Mean 98th
Percentile Median Mean 98th

Percentile Median Mean 98th
Percentile Median Mean 98th

Percentile Mean

Baseline A 9.26 (1.00) 17.20 (1.00) 87.99 (1.00) 13.27 (1.00) 26.76 (1.00) 118.85 (1.00) 11.23 (1.00) 22.20 (1.00) 100.20 (1.00) 0.24 (1.00) 0.71 (1.00) 5.27 (1.00) 1.00
Balor with A 7.68 (0.83) 14.19 (0.82) 76.22 (0.87) 12.45 (0.94) 24.46 (0.91) 102.85 (0.87) 9.19 (0.82) 17.84 (0.80) 85.25 (0.85) 0.20 (0.84) 0.59 (0.84) 4.61 (0.88) 0.87
"Information B 11.10 (1.20) 19.86 (1.15) 100.79 (1.15) 16.09 (1.21) 31.30 (1.17) 159.22 (1.34) 12.52 (1.11) 25.89 (1.17) 127.00 (1.27) 0.20 (0.81) 0.65 (0.92) 4.90 (0.93) 1.15
Has Location" C 8.26 (0.89) 14.13 (0.82) 71.19 (0.81) 11.89 (0.90) 24.61 (0.92) 128.85 (1.08) 8.77 (0.78) 18.16 (0.82) 87.76 (0.88) 0.23 (0.94) 0.64 (0.90) 4.71 (0.89) 0.88

D 5.14 (0.56) 10.35 (0.60) 55.88 (0.64) 7.83 (0.59) 17.96 (0.67) 100.00 (0.84) 7.69 (0.68) 15.91 (0.72) 71.30 (0.71) 0.18 (0.74) 0.54 (0.77) 4.40 (0.84) 0.68
Balor with A 8.71 (0.94) 16.03 (0.93) 86.94 (0.99) 13.07 (0.98) 24.67 (0.92) 117.00 (0.98) 11.64 (1.04) 22.66 (1.02) 121.24 (1.21) 0.25 (1.01) 0.77 (1.08) 6.50 (1.23) 1.01

"Locations Have B 7.84 (0.85) 14.55 (0.85) 78.80 (0.90) 12.06 (0.91) 24.49 (0.92) 108.28 (0.91) 10.64 (0.95) 19.50 (0.88) 89.29 (0.89) 0.16 (0.67) 0.58 (0.82) 4.25 (0.81) 0.89
Information" C 5.07 (0.55) 9.83 (0.57) 53.06 (0.60) 7.82 (0.59) 16.94 (0.63) 98.45 (0.83) 7.72 (0.69) 16.50 (0.74) 90.62 (0.90) 0.21 (0.86) 0.58 (0.82) 4.01 (0.76) 0.70

D 4.24 (0.46) 8.45 (0.49) 45.65 (0.52) 6.55 (0.49) 14.95 (0.56) 97.43 (0.82) 6.44 (0.57) 13.86 (0.62) 64.76 (0.65) 0.15 (0.62) 0.49 (0.69) 3.93 (0.75) 0.59

Table 2: Timing Percentage Estimation Error Statistics (Value
Relative to Baseline in Brackets). Timing estimation error
shows the same reduction as resources (Table 1).

Timing Percent Estimation Error Statistics

Graph
Repr. Arch. Latency Clock Period

Relative
Error
(All)

Median Mean 98th
Percentile Median Mean 98th

Percentile Mean

Baseline A 3.12 (1.00) 8.24 (1.00) 57.08 (1.00) 0.78 (1.00) 1.42 (1.00) 6.82 (1.00) 1.00
Balor with A 2.80 (0.90) 8.01 (0.97) 59.76 (1.05) 0.66 (0.84) 1.18 (0.83) 5.80 (0.85) 0.91
"Information B 3.93 (1.26) 10.66 (1.29) 76.33 (1.34) 0.89 (1.14) 1.54 (1.08) 7.49 (1.10) 1.20
Has Location" C 2.56 (0.82) 7.36 (0.89) 47.01 (0.82) 0.62 (0.80) 1.14 (0.80) 5.65 (0.83) 0.83

D 1.94 (0.62) 6.37 (0.77) 37.37 (0.65) 0.45 (0.58) 0.88 (0.61) 4.56 (0.67) 0.65
Balor with A 3.13 (1.00) 9.35 (1.14) 54.50 (0.95) 0.75 (0.96) 1.34 (0.94) 6.50 (0.95) 0.99

"Locations Have B 3.60 (1.15) 9.82 (1.19) 64.59 (1.13) 0.75 (0.96) 1.36 (0.95) 6.71 (0.98) 1.06
Information" C 1.98 (0.63) 5.99 (0.73) 35.76 (0.63) 0.48 (0.62) 0.94 (0.66) 5.03 (0.74) 0.67

D 1.83 (0.59) 5.79 (0.70) 32.70 (0.57) 0.35 (0.45) 0.80 (0.56) 4.54 (0.67) 0.59

Table 3: Kernel Node Counts for Different Graph Represen-
tations (Value Relative to Baseline in Brackets): Balor results
in much smaller graphs with no loss of information.

Node Count For Different Graph Representations
Kernel Smallest Node Count Mean Node Count Largest Node Count
Baseline 70 (1.00) 440 (1.00) 2,828 (1.00)

Baseline w/o Datatype Nodes 32 (0.46) 189.7 (0.43) 1,202 (0.43)
Balor 25 (0.36) 149.9 (0.34) 926 (0.33)

irrelevant software-specific nodes does also reduce the graph size,
without any loss of HLS information. This points to the effectiveness
of Balor’s graph construction strategy.

8.3 Computational Cost
Finally, Table 4 has statistics on cost metrics. The number of weights
shows the size of the network, but since computational cost is also
dependent on graph size, we also show the fewest, mean, and most
multiplications required for inference. This table corresponds to
the last 4 rows in Tables 1 and 2, using "Locations Have Infor-
mation". Our smallest architecture requires a relative number of
multiplications of only 0.11, giving a relative inference time of 0.65.
With the expansions of this architecture for increased hierarchi-
cal processing, the relative multiplications are increased to 0.18,
with a corresponding relative inference time of 0.73. We therefore
Pareto-dominate GNN-DSE, reducing error and computational cost.

Table 4: Computational Cost Comparison for "Locations
Have Information" (Value Relative to Baseline in Brackets):
Balor’s smaller graphs and local architectures result in sub-
stantial cost savings.

Computational Cost For Different Graph Representations and Architectures
Graph
Repr.
/ Arch.

Weights Fewest
Multiplications

Mean
Multiplications

Most
Multiplications

Inference
Time (ms)

Epoch
Training
Time (s)

Baseline A 121,863 (1.00) 442,138,376 (1.00) 2,779,141,256 (1.00) 17,862,284,168 (1.00) 1.43 (1.00) 56.5 (1.00)
Balor A 132,103 (1.00) 157,908,296 (0.36) 946,930,998 (0.34) 5,848,826,120 (0.33) 1.08 (0.75) 41.4 (0.73)
Balor B 54,279 (0.45) 52,436,296 (0.12) 314,436,508 (0.11) 1,942,143,240 (0.11) 0.92 (0.64) 32.0 (0.57)
Balor C 79,747 (0.65) 78,045,846 (0.18) 468,011,857 (0.17) 2,890,720,972 (0.16) 0.96 (0.67) 33.8 (0.60)
Balor D 109,188 (0.90) 84,361,878 (0.19) 508,813,42 (0.18) 3,203,364,556 (0.18) 1.05 (0.73) 40.13 (0.71)

Cost Comparison to Gao et al. [8]: The computational cost of their
approach is too challenging to quantify concisely: each kernel has
both a different size and a different distribution of parallelization
factors, leading to strongly varying costs for each inference. How-
ever, even if replication was applied only for their sub-models, the
computational cost of some data points can reach up to 100× the
baseline cost. Additionally, the cost of generating their auxiliary
datasets cannot be overlooked: dataset generation cost is the largest
barrier to GNN implementation.

9 CONCLUSION
This work presents Balor, an HLS source code evaluator, which
increases estimation accuracy while strongly reducing the compu-
tational cost. The key insights that enable this are: (1) The shift
away from traditional graph representations, containing software-
specific details irrelevant to HLS, and towards HLS-tailored graph
representations. (2) Our philosophy "Locations Have Information"
enables efficient processing of compiler directive information, with-
out the over-squashing or redundant processing issues of other
approaches. (3) Local, deep, hierarchical GNNs strongly mitigate
against the inherent weakness of GNNs, while being cheaper than
previous architectures. Our final reduction in resource estimation
error, timing estimation error and computational cost is 41%, 41%
and 82% respectively, and come from foundational insights which
transfer to all GNN approaches. With the proven success of these
approaches on large databases of regular kernels, further work
is now needed on annotation for transfer learning: both to new
kernels, and to new operating conditions.



Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs ICCAD ’24, October 27–31, 2024, New York, NY, USA

REFERENCES
[1] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and Relieving the Over-Smoothing Problem for Graph Neural Networks from
the Topological View. In Proceedings of The 34th AAAI Conference on Artificial
Intelligence, Vol. 34. New York, NY, 3438–3445.

[2] Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng Zhang. 2016.
Source-to-Source Optimization for HLS. FPGAs for Software Programmers (2016),
137–163.

[3] Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F P
O’Boyle, and Hugh Leather. 2021. ProGraML: A Graph-based Program Repre-
sentation for Data Flow Analysis and Compiler Optimizations. In Proceedings of
the 38th International Conference on Machine Learning, Vol. 139. PMLR, Virtual,
2244–2253.

[4] Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline FY Young, and
Zhiru Zhang. 2018. Fast and Accurate Estimation of Quality of Results in High-
Level Synthesis with Machine Learning. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines. Boulder, CO,
129–132.

[5] Lorenzo Ferretti, Andrea Cini, Georgios Zacharopoulos, Cesare Alippi, and Laura
Pozzi. 2022. Graph Neural Networks for High-Level Synthesis Design Space
Exploration. ACM Transactions on Design Automation of Electronic Systems 28, 2
(2022), 1–20.

[6] Lorenzo Ferretti, Jihye Kwon, Giovanni Ansaloni, Giuseppe Di Guglielmo, Luca
Carloni, and Laura Pozzi. 2021. DB4HLS: A Database of High-Level Synthesis
Design Space Explorations. IEEE Embedded Systems Letters 13, 4 (2021), 194–197.

[7] Lorenzo Ferretti, Jihye Kwon, Giovanni Ansaloni, Giuseppe Di Guglielmo, Luca P
Carloni, and Laura Pozzi. 2020. Leveraging Prior Knowledge for Effective Design-
Space Exploration in High-Level Synthesis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 11 (2020), 3736–3747.

[8] Mingzhe Gao, Jieru Zhao, Zhe Lin, and Minyi Guo. 2023. Hierarchical Source-to-
Post-Route QoR Prediction in High-Level Synthesis with GNNs. In 2024 Design,
Automation & Test in Europe Conference & Exhibition. IEEE, Valencia, 1–6.

[9] Pingakshya Goswami, Benjamin Carrion Schaefer, and Dinesh Bhatia. 2023.
Machine Learning Based Fast and Accurate High Level Synthesis Design Space
Exploration: From Graph to Synthesis. Integration 88 (2023), 116–124.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. Las Vegas, NV, 770–778.

[11] Huizhen Kuang, Xianfeng Cao, Jingyuan Li, and Lingli Wang. 2023. HGBO-
DSE: Hierarchical GNN and Bayesian Optimization based HLS Design Space
Exploration. In 2023 International Conference on Field Programmable Technology.
IEEE, Yokohama, 106–114.

[12] Jihye Kwon and Luca P Carloni. 2020. Transfer learning for Design-Space Explo-
ration with High-Level Synthesis. In Proceedings of the 2020 ACM/IEEE Workshop
on Machine Learning for CAD. Virtual, 163–168.

[13] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In 2004 International Symposium on
Code Generation and Optimization. IEEE, Palo Alto, CA, 75–86.

[14] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization. Virtual, 2–14.

[15] Zhe Lin, Zike Yuan, Jieru Zhao, Wei Zhang, Hui Wang, and Yonghong Tian.
2022. Powergear: Early-Stage Power Estimation in FPGA HLS via Heterogeneous
Edge-Centric GNNs. In 2022 Design, Automation & Test in Europe Conference &
Exhibition. IEEE, Virtual, 1341–1346.

[16] Zhe Lin, Jieru Zhao, Sharad Sinha, and Wei Zhang. 2020. HL-Pow: A Learning-
Based Power Modeling Framework for High-Level Synthesis. In 2020 25th Asia
and South Pacific Design Automation Conference. IEEE, Beijing, 574–580.

[17] Hosein Mohammadi Makrani, Hossein Sayadi, Tinoosh Mohsenin, Setareh Rafati-
rad, Avesta Sasan, and Houman Homayoun. 2019. XPPE: Cross-Platform Per-
formance Estimation of Hardware Accelerators using Machine Learning. In
Proceedings of the 24th Asia and South Pacific Design Automation Conference.
ACM, Tokyo, 727–732.

[18] Kenneth O’Neal, Mitch Liu, Hans Tang, Amin Kalantar, Kennen DeRenard, and
Philip Brisk. 2018. HLSPredict: Cross Platform Performance Prediction for FPGA

High-Level Synthesis. In 2018 IEEE/ACM International Conference on Computer-
Aided Design. San Diego, 1–8.

[19] Dan Quinlan. 2000. ROSE: Compiler support for object-oriented frameworks.
Parallel Processing Letters 10 (2000), 215–226.

[20] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for Accelerator Design and Customized
Architectures. In 2014 IEEE International Symposium onWorkload Characterization.
Raleigh, NC, 110–119.

[21] Benjamin Carrion Schafer and ZiWang. 2019. High-Level Synthesis Design Space
Exploration: Past, Present, and Future. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 10 (2019), 2628–2639.

[22] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and
Yu Sun. 2020. Masked Label Prediction: Unified Message Passing Model for
Semi-Supervised Classification. arXiv preprint arXiv:2009.03509 (2020).

[23] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2022. Auto-
mated Accelerator Optimization Aided by Graph Neural Networks. In Proceedings
of the 59th ACM/IEEE Design Automation Conference. San Francisco, 55–60.

[24] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2023. Robust
GNN-based Representation Learning for HLS. In 2023 IEEE/ACM International
Conference on Computer Aided Design. San Francsico, 1–9.

[25] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022. AutoDSE:
Enabling Software Programmers to Design Efficient FPGA Accelerators. ACM
Transactions on Design Automation of Electronic Systems 27, 4 (2022), 1–27.

[26] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen
Dong, and Michael M Bronstein. 2021. Understanding Over-squashing and
Bottlenecks on Graphs via Curvature. In Proceedings of the 9th International
Conference on Learning Representations. Virtual.

[27] Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, and Zhiru Zhang. 2020. Ac-
curate Operation Delay Prediction for FPGA HLS using Graph Neural Networks.
In 2020 IEEE/ACM International Conference on Computer-Aided Design. San Diego,
1–9.

[28] ShuoWang, Yun Liang, andWei Zhang. 2017. FlexCL: An Analytical Performance
Model for OpenCLWorkloads on Flexible FPGAs. In Proceedings of the 54th Annual
Design Automation Conference 2017. ACM, Austin, TX, 1–6.

[29] Zi Wang and Benjamin Carrion Schafer. 2022. Learning From the Past: Efficient
High-Level Synthesis Design Space Exploration for FPGAs. ACM Transactions
on Design Automation of Electronic Systems 27, 4 (2022), 1–23.

[30] Nan Wu, Yuan Xie, and Cong Hao. 2022. IRONMAN-PRO: Multiobjective Design
Space Exploration inHLS via Reinforcement Learning andGraphNeural Network-
Based Modeling. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 42, 3 (2022), 900–913.

[31] NanWu, Hang Yang, Yuan Xie, Pan Li, and Cong Hao. 2022. High-Level Synthesis
Performance Prediction using GNNs: Benchmarking, Modeling, and Advancing.
In Proceedings of the 59th ACM/IEEE Design Automation Conference. San Francisco,
49–54.

[32] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In Proceedings of the 35th International
Conference on Machine Learning. PMLR, Stockholm, 5453–5462.

[33] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design Space for Graph
Neural Networks. Advances in Neural Information Processing Systems 33 (2020),
17009–17021.

[34] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He.
2017. COMBA: A Comprehensive Model-Based Analysis Framework for High-
Level Synthesis of Real Applications. In 2017 IEEE/ACM International Conference
on Computer-Aided Design. Irvine,CA, 430–437.

[35] Guanwen Zhong, Alok Prakash, Yun Liang, Tulika Mitra, and Smail Niar. 2016.
Lin-Analyzer: A High-Level Performance Analysis Tool for FPGA-Based Accel-
erators. In Proceedings of the 53rd Annual Design Automation Conference. ACM,
Austin, TX, 1–6.

[36] Guanwen Zhong, Alok Prakash, Siqi Wang, Yun Liang, Tulika Mitra, and Smail
Niar. 2017. Design Space Exploration of FPGA-Based Accelerators with Multi-
Level Parallelism. In Design, Automation & Test in Europe Conference & Exhibition.
IEEE, Lausanne, 1141–1146.

[37] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph Neural Networks:
A Review of Methods and Applications. AI Open 1 (2020), 57–81.


	Abstract
	1 Introduction
	2 Background
	2.1 Graph Neural Network Theory
	2.2 GNN QoR Estimators for HLS

	3 Related Works
	3.1 Analytical HLS QoR Estimators
	3.2 Data-Driven Methods for HLS

	4 Graph Representations:From High-Level Code to an HLS-Tailored Graph
	4.1 Graph Construction
	4.2 Comparison to Recent Works

	5 Compiler Directives
	5.1 Philosophies

	6 GNN Architectures: From graph to vector
	6.1 Local Architectures
	6.2 Deeper Architectures
	6.3 Hierarchical Architectures

	7 Experimental Setup
	7.1 Graph Compiler
	7.2 Database
	7.3 GNN Implementation
	7.4 Architectures
	7.5 Comparison

	8 Results and Discussion
	8.1 Estimation Error
	8.2 Graph Size
	8.3 Computational Cost

	9 Conclusion
	References

