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Abstract—High-level synthesis (HLS) tools generate hardware
designs from high-level software languages while sidestepping
intricate low-level hardware details. However, HLS tools struggle
with precise dynamic power estimation and optimization: the
high abstraction level they operate on typically contains no
or limited information on low-level circuit details that power
consumption depends on. Dataflow circuits have recently been
explored in the HLS context; apart from their ability to achieve
performance that is superior to standard HLS-generated circuits,
their well-defined structure and computational model offer en-
tirely new opportunities for reasoning about power at the HLS
level. This paper exploits this insight to present an accurate
switching activity estimator for HLS-produced dataflow circuits.
Our estimator combines the knowledge about the dataflow circuit
structure with software profiling and detailed glitching analysis to
estimate the circuit’s switching activity with an average error rate
of 1.8% and average speedup of 17.8× compared with a cycle-
accurate simulator. Our technology-agnostic solution makes a
critical advancement in HLS power estimation and sets the stage
for integrating power optimization within the HLS process.

Index Terms—Switching Activity, Power Estimation, High-
Level Synthesis, Dataflow Circuits

I. INTRODUCTION

High-level synthesis (HLS) aims to free software devel-
opers from the difficulties of detailed hardware design by
enabling easier and faster hardware generation from high-
level programming languages like C/C++. Yet, despite their
reasonable success in balancing the trade-offs between area
and performance, HLS compilers exhibit fundamental limita-
tions in accurately estimating and optimizing dynamic power
consumption. This stems from the tools’ inability to system-
atically reason about the resultant circuit’s structure [39] and,
consequently, its switching activity—a fundamental metric for
dynamic power estimation. Thus, HLS designers typically
resort to measuring the circuit’s switching activity after the
HLS flow using pre- or post-place-and-route hardware simu-
lation, which can be extremely time-consuming. Furthermore,
classic HLS is notoriously inconsistent in the circuit generation
process and even the smallest code modification can entirely
change the circuit’s structure [10]. This variability makes
iterative HLS design adjustment based on hardware simulation
feedback difficult to converge: while intended to refine the
design, such an approach often fails to achieve the desired re-
duction in power consumption, thus negating the value of this
iterative and cumbersome process. Building HLS circuits from
predefined blocks could alleviate this issue [39], as it would
allow a more predictable and effective power estimation at a
high-level design stage. Yet, HLS compilers typically generate
customized datapaths and circuit-specific control logic that do
not offer such predictability and modularity.

Recent efforts explore the generation of dataflow circuits via
HLS [5], [12], [13], [20], [26], [37]. These circuits are built
out of a small set of predefined and simple dataflow units that
use a handshake mechanism to exchange data during circuit
runtime. Dataflow circuits have primarily been explored for
their performance benefits; yet, their predefined and uniform
structure, coupled with the consistency of their communication
protocol, holds the potential for mitigating the aforementioned
difficulties in HLS switching activity estimation.

Our work seizes this opportunity to build an accurate and
fast switching activity estimator for HLS-produced dataflow
circuits. We exploit the following insights: (1) The dataflow
handshake communication protocol is well-defined and the
handshaking rate can be accurately modeled; in Section III,
we rely on this information to model the switching activity of
the handshake signals. (2) Data exchanges in a dataflow circuit
strictly follow the handshake signal exchanges and particular
data values are easily obtainable via software profiling; in Sec-
tion IV, we combine these notions to accurately model the data
switching activity of all dataflow units while accounting for
possible glitching. The ultimate result, presented in Section V,
is an accurate, fast, and technology-independent switching
activity estimate obtained immediately during the HLS flow,
before producing the final RTL design, which serves as a solid
foundation for high-level power estimation and optimizations
[7], [27], [39]. On a set of diverse benchmarks obtained
from C code, our estimator achieves an average absolute
error rate of less than 1.8%; our strategy is, on average,
17.8× faster than obtaining accurate switching values via
hardware (i.e., ModelSim) simulation. Our work opens doors
for incorporating various power optimizations directly into the
HLS flow, without the need for iterative HLS compilations and
time-consuming hardware simulations.

II. BACKGROUND

Recent HLS strategies explore the generation of dataflow
circuits from C/C++ code [13], [18]. These circuits are built
from a small set of fine-grain dataflow units that communicate
via channels using a consistent and distributed handshake
protocol; their runtime scheduling can surpass the performance
of standard HLS solutions [20]. An example of a dataflow
circuit, implementing the functionality of the code below it, is
shown in Figure 1a. Standard operators (i.e., a granularity of a
single adder) are connected with dedicated dataflow units [11]:
a merge receives the initial loop iterator value upon circuit
start and the updated iterator otherwise (some implementations
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Fig. 1. (a) A dataflow circuit and its CFG obtained from the code below,
with an expanded view for the extracted MG (BB2). (b) Dataflow channel.
(c) Join and fork dataflow units. (d) CFG (left) and its cycles (right), forming
two marked graphs (MGs). BBs are standard compiler basic blocks.

extend a merge into a mux with a select input that chooses
the operand [13], [20]). A branch sends the iterator either
to the exit or back to the merge, depending on the loop
condition. A fork replicates data (i.e., tokens) to send them to
multiple successor units. All operators that need multiple input
tokens to execute (e.g., add) contain a join that synchronizes
input tokens. Buffers are token-holding elements; they are
characterized by their capacity, i.e., the number of tokens they
can simultaneously store (Nslots), and transparency, which
indicates whether the buffer has a pass-through combinational
path from input to output. All dataflow units are connected
by dataflow channels as shown in Figure 1b: the valid signal
indicates whether the predecessor’s output on the channel is
valid, and the ready signal indicates whether the successor on
the channel is ready to accept the new token. A token transfer
occurs when both the valid and ready signals are 1.

Several works modeled dataflow circuit execution and op-
timized their performance during HLS [6], [22], [35]. The
idea is to identify dataflow circuit subgraphs that form marked
graphs (MGs): choice-free subcircuits that represent program
loops, i.e., cycles of the program’s control-flow graph (CFG),
organized into basic blocks (BBs). All units and the full-line
edges of Figure 1a form a marked graph; note that only a
single merge input and branch output edge are part of it as, in
the repeating MG execution, they consistently issue data only
from/to the loop [22]. Decoupling the circuit into regularly-
repeating MGs (as in the example of Figure 1d) offers the
opportunity to independently reason about their performance:
each MG is characterized by its initiation interval (II), indicat-
ing the number of cycles between two consecutive loop (i.e.,
MG) executions, and each MG buffer with its occupancy θ̇,
which reflects how long the buffer holds a data token in MG
steady state per II clock cycles. Our switching estimator will
exploit the notion of MGs and occupancy to systematically
analyze steady-state handshake channel switching patterns
(Section III) and data channel value propagation (Section IV).

III. HANDSHAKE CHANNEL SWITCHING ESTIMATION

Handshake logic significantly contributes to dataflow cir-
cuit resources [8], [38]. Thus, accurate handshake switching

estimation is important for power estimation. In this section,
we first discuss how to estimate the switching activity of
handshake signals in the steady state of the MG execution. We
then generalize these insights to complete circuit executions.

A. Understanding Handshake Switching in an MG

We here provide our general insights on reasoning about
switching in the MG steady state and extend them to concrete
unit-specific models in the following sections.

In line with standard pipelined circuits, dataflow circuits
exhibit the following property.

Property. In the steady state of the MG execution, every
dataflow channel of the MG completes exactly one token
transaction every II cycles.

In any pipeline, each register inputs and outputs a value, and
each loop computes a value every II cycles. The same holds
for dataflow circuits: in the steady state of MG execution,
every II cycles, a single token transaction occurs on every
dataflow channel of the MG. Of course, at a specific time,
different channels can perform transactions corresponding to
computations from different loop iterations, which is exactly
the idea and benefit of pipelined dataflow circuits [16].

This property constrains the number and type of feasible
switching patterns. For example, it is impossible that a valid
switches 0 → 1 → 0 → 1 within an II, as it would imply two
data transfers per II and thus violate the property.

B. How Long Does a Buffer Hold a Token?

Buffers are the elementary storage elements of dataflow
circuits; they hold tokens and set the valid/ready signals
that accompany them. Thus, buffers regulate the switching
of all other nodes by providing the stored signal values to
other dataflow units. We therefore use the information on
the buffer switching patterns in the MG’s steady state to
determine the switching of all other units. These patterns are
directly determined by how long a buffer holds a token in the
steady state: the buffer’s valid will be 1 whenever a buffer
holds a token, and its ready will be 1 whenever the buffer
has sufficient capacity to accept a new token. We can thus
use the buffer occupancy θ̇ and capacity Nslots, described in
Section II, to reason about the valid and ready duration.

The number of clock cycles a buffer holds a data token
directly maps to the number of clock cycles the buffer’s valid
signal stays at 1 (Dbuf

v ):

Dbuf
v = θ̇ × II. (1)

The buffer occupancy θ̇ indicates the fraction of the II that
the buffer holds a token; multiplying this value with II gives
the corresponding cycle count. For example, in Figure 2, Buf1
has the occupancy of 1/2 in a loop with II = 2; thus, it holds a
token and is valid for 1 clock cycle per II. This equation holds
for a nontransparent buffer—the most intuitive buffer form that
corresponds to a classic register. In the rest of the paper, for
simplicity, we assume that all buffers are nontransparent; yet,
our strategy supports other buffer types [35] as well.

119



,

II = 2
Start1

Buf4

Start2

Buf1

Add2 Fork1 Buf2

Dataflow Graph
Unit Latency (L)

back edge
Global Order

S(valid)

 L = 0
0 % II = 0

1 % II = 1
1 % II = 1

2 % II = 0

2 % II = 0

3 % II = 1

2 % II = 0

 L = 1

 L = 0

 L = 0

 L = 1

 L = 0  L = 1
Buf3
 L = 1

2 % II = 0

, ,

Fig. 2. A dataflow graph annotated with node’s unit latency, global order,
valid start time, and buffer occupancy. We use these metrics to determine the
switching of the handshake signals in the steady-state loop execution.

The status of the buffer’s ready signal is determined by how
long it is stalled in the steady state, i.e., how long a token
resides in its last slot (i.e., the buffer cannot accept a new
token and is thus not ready). We can first calculate how many
clock cycles the buffer is not ready within the II period:

Dbuf
nr = max((θ̇ − (Nslots − 1))× II− 1, 0). (2)

The term θ̇ − (Nslots − 1) indicates how long a token is
occupying the last slot of the buffer. By multiplying this value
with II, we get the number of clock cycles in steady state that
the buffer is not ready. Then we can get the number of clock
cycles when the buffer is ready with Dbuf

r = II−Dbuf
nr .

Dbuf
nr for the single-slot Buf1 in Figure 2 is equal to 0, which

means the buffer is ready for 2 cycles (Dbuf
r = 2).

C. When Does a Buffer Hold a Token?

In the previous section, we obtained the durations of the
buffer’s validity and readiness; we also need to know when
(i.e., in which clock cycles) these signals are set. Others have
shown that one can reason about timing relations of memory
accesses in dataflow circuits [29]; in this section, we build
upon this strategy to determine the start times of the buffer’s
handshake signals in the MG’s steady state.

We define the start time of a signal s of unit n, Sn
s as the

clock cycle when s is (re)set to 1, relative to the start time of
the loop iteration. It represents the time when n becomes valid
with a new token (Sn

v ) or the time it becomes ready to accept
a new token (Sn

r ). We use the following steps to calculate the
valid and ready start times for every buffer in the MG.

We consider a graph of dataflow nodes organized into an
MG; each node is characterized by its latency (i.e., sequential
delay). We define path P(u, v) as the longest weighted path of
non-repeating nodes from u to v where the weights correspond
to the node latency. A cycle C(u) is the longest weighted path
from u to u itself, where all other nodes are non-repeating.

(1) Identify the base node of the MG. To relate nodes
in time, we need a common starting point—a clock cycle
to consider as the beginning of the II interval. We first
determine the throughput-critical cycle of the MG, i.e., the
longest weighted MG cycle whose latency is equal to II (in
case multiple such cycles exist, we choose any one among
them). We define the base node as the node that the back
edge of the throughput-critical cycle is pointing to. This is the

first executed node of this cycle in every loop iteration; its
validity indicates the start of the II and it thus serves as the
origin point to define the timing of all other nodes.

The throughput-critical cycle in Figure 2 is C(Start2 ) =
{Start2 ,Buf1 ,Fork1 ,Buf2 ,Start2}, with a weighted latency
of 2. Thus, Start2 is the base node.

(2) Calculate the global order of nodes in the MG. We
define the global order of node ni as the latency of the longest
weighted path starting from the base node nb to node ni:

GO(ni) = LP(nb, ni). (3)

Here, LP(u, v) is the sum of the weights of all nodes in the
path. Thus, the global order reflects the latency between the
start time of the base node and the node ni. In Figure 2, global
order is the blue underlined number beside each node.

(3) Calculate valid signal start time. The global order
specifies the latency between the start of the loop iteration
and the validity of a node; yet, our goal is to position the
node’s validity with respect to the repeating II:

Sn
v = GO(n) mod II. (4)

For example, when calculating S(Buf1 ) in Figure 2, the
path used to calculate GO(Buf1 ) is: P(Start2 ,Buf1 ) =
{Start2 ,Buf1}. Thus, we calculate S(Buf1 ) as S(Buf1 ) =
1 mod 2 = 1. Equations marked in purple in Figure 2 illustrate
the same calculation for the other nodes in the figure.

(4) Calculate the ready signal start time. A buffer’s ready
is set to 0 only if and when the buffer becomes full (i.e., it can
no longer accept new tokens). This can occur only at the time
a new token is written into a buffer and the buffer capacity
filled, i.e., at the start time of valid. The buffer will become
ready again Dbuf

nr (see Equation 2) cycles later:

Sn
r = (Sn

v +Dbuf
nr ) mod II. (5)

If the buffer is never full and its ready is never reset (i.e.,
Dbuf

nr = 0), the buffer is always ready; a new iteration of
ready starts at the same time the buffer becomes valid, as
the equation above suggests.

(5) Calculate active ranges. We define a node n’s active
range, Ln

II,s, as a list of II elements representing the value of s
in each clock cycle in steady state. For example, Lbuf

II,v = [1, 0]
means the buffer’s valid signal is 1 in the clock cycle 0 and
0 in clock cycle 1 in the MG steady state.

We define the set of clock cycles when the value of a signal
s of node n is 1 according to a specific signal’s start time (Sn

j )
and the duration (Dn

s ) of signal s as follows:

A(Sn
s , D

n
s ) = {Sn

s , ...,Sn
s +Dn

s − 1} mod II. (6)

We express the active range of signal s of node n as:

Ln
II,s[i] =

{
1, if i ∈ A(Sn

s , D
n
s )

0, else
,∀i ∈ [0 , II). (7)

Then a buffer’s valid active range (Lbuf
II,v) can be calculated

based on A(Sbuf
v , Dbuf

v ). Similarly, the buffer’s ready active
range (Lbuf

II,r) can be calculated based on A(Sbuf
r , Dbuf

r ).
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In Figure 2, both active ranges for all buffers are shown in
the middle of the figure and are calculated based on the buffer
occupancy information shown at the bottom.

Our analysis assumes fixed operator latencies; in a dataflow
system, this is not always the case (e.g., memory accesses
can have variable latencies [17]). In line with prior dataflow
circuit modeling strategies [21], [29], we assume latencies
that provide the best circuit performance; yet, our strategy is
general and supports any latency-determining scheme.
D. Handshake Properties of Other Dataflow Units

Buffers hold data tokens and regulate the handshake channel
switching activity by dictating the rates with which tokens are
exchanged. All units between buffers simply propagate the
valid and ready signals following unit-specific rules (i.e., their
logic functions). We here detail these rules for the join and
fork. As an MG has no conditional execution (see Section II),
the rules for its other units directly derive from these units.

Join Node: A join is valid in the clock cycles when all
of its predecessors are valid (see Section II and Figure 1b).
Therefore, the join’s valid active range can be calculated as:

Ljoin
II,v = Lpred1

II,v & ... & Lpredn
II,v ,∀predn ∈ U. (8)

Here, U is the set of all join’s predecessors, Lpredn
II,v is the valid

signal active range for the corresponding predecessors, and &
is a logic and that operates on pairs of individual elements
of the lists. For example, the valid active range of Add2 in
Figure 2 can be calculated as LAdd2

II,v = LBuf4
II,v & LBuf3

II,v = [1, 1].
For a join’s input channel to be ready, its successor needs

to be ready and all other inputs must be valid [15]. Thus, we
model the ready active range of join’s input channel i as:

Ljoin
II,ri

= Lpred1
II,v & ... & L

predj
II,v & Lsucc

II,r , (9)

where L
predj
II,v is the valid active range of the input channel other

than input channel i.
Fork Node: A fork is ready when all of its successors are

ready (see Section II and Figure 1b). Thus, we calculate its
ready active range as:

Lfork
II,r = Lsucc1

II,r & ... & Lsuccn
II,r ,∀succn ∈ E, (10)

where E is the set of all fork’s successors, and Lsuccn
II,r is the

ready active range for the corresponding successor.
The fork’s valid is set from the clock cycle its predecessor’s

valid is set (i.e., the predecessor is sending a token) until the
end of the clock cycle in which the corresponding successor’s
ready is set (i.e., the successor has accepted the token) [11].
This pattern repeats every II cycles and determines whether
the fork’s valid switches. We first calculate the number of
clock cycles between the start time of the fork’s predecessor’s
valid and the j-th successor’s ready as follows:

Dfork
vj = Spred

v − Ssucc,j
r + II− 1. (11)

Here, Sn
s is the start time of signal s of node n. Based on

Equation 6 and 7, the valid active range (Lfork
II,vj

) of channel j can
be calculated based on A(S fork

vj
, Dfork

vj ), where S fork
vj

= Spred
v .

Consider the channel between Fork1 and Buf 3 in Figure 2;
DFork1

v1 = SBuf1
v − SBuf3

r + 2− 1 = 1, thus, LFork1
II,vBuf3

= [0, 1].

E. Handshake Signal Switching Estimation

We developed an event-driven algorithm that calculates all
steady-state timing and switching properties for the buffers
in the MG, as discussed in Section III-C. It then iteratively
updates all other nodes based on the models of Section III-D,
until all active ranges and signal start times have been deter-
mined. During dataflow circuit construction, at least one buffer
is inserted into every combinational cycle to ensure functional
correctness [22]; thus, there are no combinational cycles
between any of the valid and ready handshake signals, and
no cyclic dependencies between their active ranges. Therefore,
the algorithm is guaranteed to terminate with the handshake
signal active ranges for all nodes in the MG determined.

The result for Figure 2 is: LFork1
II,vBuf3

= [0, 1], LFork1
II,vBuf2

= [1, 1],
LFork1

II,rBuf1
= [0, 1], LAdd2

II,rBuf3
= [1, 1] and LAdd2

II,rBuf4
= [1, 1].

To determine the number of switches for each signal s per
II, N n

II,s, we count the number of bit changes across its active
range LII,s by performing a bitwise xor of all neighboring
list elements as well as the first and the last one (to account
for the switching on the iteration transitions). For example,
in Figure 2, NFork1

II,vBuf3
= 2. We thus obtained the steady-state

switching patterns for all nodes in an MG of a dataflow circuit.

F. From MG to Complete Program Execution

We now generalize our switching estimation from a single
MG (i.e. a single program loop) to an entire program.

We leverage the fact that our dataflow circuits are produced
by HLS from sequential C code, which contains straight pieces
of code (i.e., nonrepeating elements) and repeating loops
(i.e., MGs); if we can determine the sequence of these code
sections, we can compose their switching profiles accordingly
to obtain the switching profile of the entire program. We obtain
this information via IR-level software profiling: (1) We collect
the BB execution trace and use it to construct a sequence
of straight code segments and repeating MGs. (2) In every
straight (i.e., nonrepeating) code segment, each handshake sig-
nal switches twice (e.g., a unit becomes valid once and is never
valid again); for all MGs in the sequence, we use the procedure
of the previous section to determine the steady state node
switching and multiply it by the number of MG executions.
(3) A single node can belong to several MGs; we thus sum up
the switching of each node across the different MG executions.
This provides us with the complete switching activity profile
of all nodes during the entire program execution.

IV. DATA CHANNEL SWITCHING ESTIMATION

In this section, we combine the information from IR-level
software profiling and the timing relations discussed above to
estimate the switching activity of data channels.

(1) Obtain buffer values via software profiling. Identify
the value producer for each buffer b (i.e., the operator whose
value is written into b). Use software profiling to obtain a list
of values computed by the producer and written into b, Lb

profile.
(2) Determine buffer outputs over time. In the loop

steady state, each value of Lb
profile will be held by buffer b

and observable at its output for II cycles. Create list Lb
time
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which replicates each element of Lb
profile II times and, thus,

reflects the time interval in which each value is held in b:

Lb
time[II× i, II× (i+ 1)− 1] = Lb

profile[i],∀i ∈ N, (12)

where N is the number of loop iterations (and, thus the number
of elements in Lb

profile).
(3) Align buffer lists to account for sequential delays.

Different buffers produce and consume values at different
times, based on the sequential delays between them. Determine
list Lb

final where Lb
final[c] represents the buffer’s output value in

clock cycle c by shifting Lb
time of each buffer b for Sb

v :

Lb
final = Lb

time ≫ Sb
v , (13)

where Sb
v is the start time of b. The buffer’s output value is 0

during the first Sb
v clock cycles: Lb

final[0,Sb
v − 1] = 0.

(4) Determine combinational node values. Buffers set the
values that are, on every clock cycle, combinationally propa-
gated through other (i.e., combinational) operations. Starting
from the input buffers, traverse all combinational subgraphs
of the loop (i.e., combinational regions delimited by input and
output buffers) and assign output values to each node based
on the node’s function Fop and its predecessor values:

Lop
final[c] = Fop(L

p1

final[c], ..., L
pn

final[c]),∀c ∈ Cycles. (14)

(5) Calculate switching of each node. Iterate through Lop
final

of each node and calculate the switching between consecutive
list values (i.e., the Hamming distance of the binary value
representations). Sum up the switching to obtain the total
switch count of op during a loop execution.

(6) Extend to entire program execution. A program
execution is a sequence of executions of consecutive loops
and straight datapaths. Repeat steps 1-5 above for each loop.
Straight datapaths are treated analogously; the node values are
determined by the preceding buffers and operators.

This strategy reflects the shifts in operator production and
consumption and, thus, captures situations where operand
values misalign and operator results glitch. For example,
in Figure 2, Add2 receives inputs from Buf4 and Buf3 .
Based on the discussion above, L

Buf4
final = L

Buf4
time ≫ 1, and

LBuf3
final = LBuf3

time ≫ 0, which means that Buf3 produces an
operand for the adder one clock cycle before Buf4 produces
the corresponding operand. During this cycle, the adder will
glitch as it will calculate the addition of operands from
different loop iterations. Similarly, our strategy accounts for
data glitches at places where control flow points meet (i.e.,
glitching of multiplexers at BB inputs [20], see Section II).

V. EVALUATION

In this section, we evaluate the effectiveness of our switch-
ing activity estimator.

A. Methodology and Benchmarks

We implement our open-source switching estimator (github.
com/EPFL-LAP/dynamatic) in Dynamatic [19], an open-
source HLS compiler based on MLIR [24], that gener-
ates dataflow circuits from C/C++ code. We implement the

software profiler (Section IV) in MLIR’s structured control
flow (SCF) IR to extract operation values and BB execution
traces. We use the dataflow graph generated by Dynamatic,
already annotated with unit latencies and buffer occupancies,
to calculate steady-state handshake switching (Section III), and
the data switching and glitches (Section IV).

We evaluate benchmarks from standard HLS suites [34] and
recent works [8], [18], with different execution patterns and
control flow structures. They contain up to 373 dataflow units
and up to 7 MGs; the largest is gemver with 7589 LUTs. In
all benchmarks, the total number of loop iterations is above
10,000; thus, the loop steady state executions represent the
majority of the circuit’s runtime. We synthesize all benchmarks
targeting a clock period of 4 ns. All test inputs are randomly
generated. We compare our estimation with switching values
obtained from VCD files produced by ModelSim SE 10.7b
simulations, together with an in-house switching analyzer; if
a signal has multiple toggles within one clock cycle caused by
delta cycles in ModelSim simulation, we only take the final
status in the analyzer. We run all experiments on a computer
with AMD Ryzen 7 Pro 7840U CPU and 32 GB RAM.

B. Results: Accuracy of Total Switching Count Estimation

In Figure 3a, we evaluate the accuracy of our estimator
in determining the total switching count (i.e., throughout
the entire circuit execution) of dataflow channels (i.e., data
and handshake signals exchanged between dataflow units) by
comparing the results of our estimator with those obtained
from ModelSim simulation. We use activity ratio error [23]
as our metric. It divides the sum of the estimated switching
by the sum of the simulated number of switches:

a.r.e. =

∑
n∈circuit Nest(n)∑
n∈circuit Nsim(n)

− 1. (15)

Data channels. We compare two data channel switching
estimation strategies with the ModelSim reference: a naive
software profiling approach (indicated as w/o glitches in
the table) and the approach of Section IV (w glitches) that
accounts for timing relations between nodes and, thus, captures
data glitching. The former exhibits a notable error with respect
to the ModelSim baseline (i.e., up to 33.1%) due to its inability
to account for data glitching. In contrast, our strategy of
Section IV successfully captures both actual data exchanges
and data glitches, resulting in an average absolute error of only
1.83%. These outcomes point to the significant contribution of
glitches to the circuit’s switching and the effectiveness of our
data switching estimation in accounting for this effect.

Handshake channels. We evaluate the accuracy of our
handshake switching estimation from Section III. Note that
software profiling is inapplicable here as it has no information
on the circuit’s topology and its handshake logic. As shown
in Figure 3a, our estimator exhibits average absolute errors of
1.13% and 4.28% for the valid and ready signal, respectively.
Interestingly, the errors are higher in benchmarks with irreg-
ular control flow (e.g., gcd, gsum) than those with regular
control flow (e.g., simple and fir), where our estimation is
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Fig. 3. (a) Activity ratio error for data and handshake signals. The data channel a.r.e. (w glitches) represents our solution. (b) Per-node estimation switches
versus simulated switched for benchmark gemver. Our per-node switching error is consistently low for all signals. (c) Runtime comparisons between our
estimator and ModelSim. Our approach is significantly faster across all benchmarks.

error-free). This is due to the reduced accuracy of Dynamatic’s
occupancy calculator in such benchmarks and orthogonal to
our contribution—an accurate switching activity estimator. The
systematically low error rates across different signals and their
combined low error in the final column of the table (Overall)
show that we successfully achieved this goal.

In Figure 3b, we plot the per-node estimation error for
our largest benchmark, gemver. The blue points represent the
relation between the estimated (Nest(n), y axis) and simulated
(Nsim(n), x axis) switches for each signal of the circuit; the
distance of each point from the red line is proportional to its
estimation error. The proximity of the blue points to the red
line indicates that we successfully achieved a low per-node
estimation error. Other benchmarks follow the same trends.

C. Results: Runtime Comparisons with ModelSim
In this section, we evaluate the runtime benefits of our

simulator over ModelSim simulation. We only record dataflow
unit ports in the first-level design hierarchy in ModelSim
simulations and omit internal unit structures; this aligns with
the information obtained by our estimator. Figure 3c shows
our runtime comparison. The main takeaways are: (1) The
runtime of ModelSim significantly differs across benchmarks,
as it is primarily dictated by the circuit’s execution runtime
(i.e., the number of cycles to simulate) and complexity (i.e., the
number of waveforms to generate). Our simulator’s runtime
is significantly less variable. The only notable exception is
matrix, where the dominant component to our code’s runtime
is the cycle enumeration algorithm for back edge identification
(see Section IV); improving our relatively unoptimized code
implementation could further reduce this variability. (2) Our
estimator is significantly faster than ModelSim simulation and
achieves speedups of up to 32.5×. This, coupled with the
accuracy of our approach, points to its effectiveness in high-
level switching activity estimation and the feasibility of using
our strategy for early-stage power estimation in HLS.

VI. RELATED WORK

Previous works use machine-learning-based [25], [27], [28]
and model-based approaches [14], [31], [40] to estimate dy-
namic power at a high abstraction level. They primarily rely on

unit switching activities derived from timing-agnostic, IR-level
simulations; they do not consider glitches and cannot model
dataflow handshake signal switching. Many are application-
specific, whereas our strategy is general. Several studies [4],
[32], [33] used stochastic models to approximate switching
activities, typically assuming a zero-delay model [2]; this is
in line with the subpar w/o glitches results of Figure 3a.
Several works [3], [23] introduced simulation-centric methods
for glitch prediction; they start from a post-synthesis netlist,
whereas our estimator works at a higher abstraction level,
runs faster, and provides opportunities for high-level power
optimization [39]. Fast cycle-accurate simulators [1], [9], [30],
[36] can capture the behavior of the circuits generated by HLS
tools. Yet, just like standard hardware simulation, these ap-
proaches are highly dependent on the number of clock cycles
to simulate; in contrast to our estimator, their high abstraction
level does not contain sufficient structural information about
the circuit to capture all switching and glitches.

VII. CONCLUSION

Although effective in exploring various area and perfor-
mance metrics, HLS significantly lags in power estimation
and optimization. This is due to the inability of classic HLS
compilers to systematically reason about the circuit’s structure
and switching activity, a prerequisite for dynamic power esti-
mation. HLS of dataflow circuits offers a unique opportunity
to reason about power at HLS level: As these circuits are
built out of a small set of well-defined blocks systematically
composed by the HLS compiler, the circuit’s switching activity
can be accurately and quickly computed. This paper validates
this insight: we present a fast and accurate switching activity
estimator for dataflow circuits obtained from C code that
produces almost identical switching results as those obtained
via hardware simulation, while speeding up the process for up
to 32.5×. The effectiveness of our estimator opens doors to
fast and power-aware HLS design and optimization.
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[15] L. Josipović. High-level Synthesis of Dynamically Scheduled Circuits.
PhD thesis, EPFL, 2021.
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