
Suppressing Spurious Dynamism of Dataflow Circuits
via Latency and Occupancy Balancing
Jiahui Xu
ETH Zurich

Zurich, Switzerland

Lana Josipović
ETH Zurich

Zurich, Switzerland

ABSTRACT
Dataflow circuits produced via high-level synthesis (HLS) adapt
their schedule at runtime to unpredictable data and control out-
comes, thus promising superior performance to standard HLS so-
lutions. However, their distributed handshake mechanism is ex-
tremely resource-expensive—there is a clear benefit in simplifying
or removing it whenever it is unneeded for correctness and perfor-
mance. Yet, even in such situations, transient and spurious stalls
and irregular data exchanges prevent the systematic removal of
handshake logic, thus resulting in an unnecessary resource over-
head. In this work, we present a scalable strategy based on linear
programming (LP) that eliminates unnecessary and spurious stalls
via latency and occupancy balancing; the data exchange periodicity
and predictability in the resulting circuits uncover new handshake
logic removal opportunities and enable the formation of simple lo-
cal controllers to replace it. We show that, in cases where dynamism
is unneeded, our circuits qualitatively match those produced by
standard HLS tools. Otherwise, our strategy allows us to systemati-
cally trade off area and performance to exploit various degrees of
dynamism depending on the optimization objective.

CCS CONCEPTS
• Hardware → Datapath optimization; Model checking; •
Computer systems organization → Data flow architectures.

KEYWORDS
High-level synthesis, dataflow circuits, model checking

ACM Reference Format:
Jiahui Xu and Lana Josipović. 2024. Suppressing Spurious Dynamism of
Dataflow Circuits via Latency and Occupancy Balancing. In Proceedings of
the 2024 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA ’24), March 3–5, 2024, Monterey, CA, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3626202.3637570

1 INTRODUCTION
Dataflow circuits are an attractive target for C-based high-level
synthesis (HLS): their distributed handshake communication mech-
anism allows them to flexibly adapt their execution at runtime and
achieve high performance when accelerating programs with unpre-
dictable control flow and irregular memory accesses [17, 19]. Yet,
this performance merit is not for free: the handshake logic often

This work is licensed under a Creative Commons Attribution
International 4.0 License.

FPGA ’24, March 3–5, 2024, Monterey, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0418-5/24/03.
https://doi.org/10.1145/3626202.3637570

II = 3

...

k : the slot has a k-cycle latency controller
: the slot is occupied by a token... ...

Fork

1

ST a[i]Mult
(6-cycle)

Stall

Buffer
(pass-through)

Const Const ConstFork

ST a[i]

Fork

ST a[i]

* * *
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

3
3

for(i=0; i<N; i++)
 a[i] = Const * i;

II = 3 II = 3

x6

...

DataValid Ready

(b) Latency-
balanced

(c) Latency- and
occupancy-balanced

(a) Occupancy-
balanced

DataValid Ready DataValid Ready

32

FF
FF

FF

FF

FF
FF

FF
FF

FF
FF

FF

FF

FF
FF

...

66 FFs +
handshake logic 198 FFs 70 FFs

FF

FF

FF

FF

3232

Figure 1: Three different buffer placement schemes that achieve the
same performance but differ in resource utilization. The dataflow
circuit diagrams are shown above, and the corresponding imple-
mentations of the Buffer are depicted below with the removed logic
shown shaded. Figure 1a employs occupancy balancing, Figure 1b
employs latency balancing, and Figure 1c employs both latency and
occupancy balancing. The latter is the most resource-efficient and
what we aim to achieve in this work.

constitutes over 50% of the resource usage [35] and makes dataflow
circuits unacceptably resource-expensive.

A promising way to reduce this expensiveness is to restrict the
generality of the dataflow handshake logic—if a particular signal
is never required due to a predictable and regular data exchange
pattern, it can be simplified or removed without compromising
the circuit’s correctness. Yet, even when implementing perfectly
regular workloads, the opportunities to exploit this insight are
limited: due to the dynamic nature of dataflow circuits, data items
are propagated through the circuit at arbitrary times and may arrive
at data joining points out-of-sync. This causes irregular stalls that
are, in many cases, irrelevant for performance, but hinder circuit
simplification opportunities.

In this work, we present a linear programming–based methodol-
ogy to systematically eliminate unwanted stalls and uncover new
circuit logic optimization opportunities. Our approach strategically
adds latencies to orchestrate data transfer and synchronization

188

https://doi.org/10.1145/3626202.3637570
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626202.3637570
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626202.3637570&domain=pdf&date_stamp=2024-04-02

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Jiahui Xu and Lana Josipović

times. This facilitates the removal of redundant handshake logic
and enables us to reason about the time particular data items occupy
dataflow circuit registers (i.e., buffers); we exploit this information
to reduce register count and complexity. On a set of benchmarks
obtained from C code, we demonstrate the ability of our strategy
to systematically vary the degree of dynamism in the produced
dataflow circuits: our solutions either qualitatively correspond, in
both area and performance, to classic HLS pipelines achieved by
modulo scheduling, or outperform them by maintaining only the
dataflow logic necessary for performance benefits. Our strategy
unifies the design space of classic HLS with that of HLS-produced
dataflow circuits, previously achieved by fundamentally different
HLS algorithms and opposing toolchains. Furthermore, we show
that our optimization strategy is faster and more scalable than prior
dataflow optimization approaches, which makes it more suitable
for the stringent development time requirements of HLS.

2 WHAT IS THE BEST WAY TO REMOVE
SPURIOUS DATAFLOW STALLS?

Figure 1 illustrates an example of a dataflow circuit (we describe
such circuits in detail in Section 3) that computes the value of
Const · 𝑖 (i.e., the datapath of the for-loop above the circuit); the
input value of 𝑖 is replicated by the fork, and sent to a 6-cycle
multiplier and a buffer (we will discuss its implementation next);
the result of the multiplication and the buffered iterator must be
synchronized by the store (𝑆𝑇 𝑎[𝑖]) and deposited to memory as a
data-address pair. In the most general case, all shown units commu-
nicate with handshake signals to guarantee that data is delivered
only if it is valid, and the recipient is ready to receive it; whenever
they are unneeded (e.g., a unit never stalls the incoming data), it
is advantageous to remove them [35]. For the purpose of this ex-
ample, assume that every 3 clock cycles, a new value of 𝑖 becomes
available (i.e., the initiation interval (II) is 3).

There are several ways to place and size buffers while sustaining
the II of 3. In Figure 1a, the buffer has 2 slots (i.e., it can simultane-
ously hold at most 2 data items) to maintain the rate of incoming
data; yet, it needs to keep its handshake logic (see logic gates in
the gate-level diagram below), as data will be stalled in the buffer
while waiting for the long-latency Mult to compute. In Figure 1b,
the latencies of the two paths from fork to store are equalized by
adding extra buffers; as data from both paths always arrives at
the store at the same time, the buffer is never stalled and can be
simplified as shown below (i.e., all logic related to the Ready sig-
nal can be removed, shown shaded). Yet, the implementation of
such a buffer (essentially, a 6-latency shift register) is redundant: as
data enters the buffer every 3 cycles and the buffer always holds at
most 2 data items, its slots (and, thus, resources) are underutilized.
The implementation of Figure 1c combines the best of these two
strategies: like the first approach, it contains the minimal number of
buffer slots that sustain the desired II. It also equips each slot with a
latency of 3 (i.e., data will be stored in the slot for 3 cycles and only
then become accessible to the successor) to match the total latency
of the multiplier, thus allowing the same logic simplification as the
second solution. The resulting buffer implementation is cheaper
and simpler, as shown in the lower portion of Figure 1c.

In the rest of this paper, we present a mathematical formulation
that systematically achieves buffer configurations such as the one
in Figure 1c: it minimizes the buffer requirements while uncovering
new handshake logic removal opportunities, without compromis-
ing the circuit’s performance. The rest of this paper is organized
as follows: Section 3 provides the background on dataflow circuits
and outlines what others have done to optimize their area and per-
formance. Section 4 describes our latency balancing strategy that
qualitatively achieves the circuits of Figure 1b. We then comple-
ment it with a strategy to calculate token occupancy in Section 5.
We combine these two approaches in Section 6 to achieve buffer
configurations such as the one in Figure 1c. In Section 7, we discuss
the ability of our approach to systematically trade off area and
performance. Finally, we evaluate all these aspects in Section 8.

3 BACKGROUND AND RELATEDWORK
In this section, we describe dataflow circuits and existing methods
for their area and performance optimization; we illustrate why
these methods are inadequate for taking full advantage of removing
redundant handshake logic.

3.1 Dataflow Circuits
Dataflow circuits are built from units that communicate with their
predecessors and successors via latency-insensitive channels, com-
posed of data and handshake signals [10, 17]. Once the control and
memory dependencies have been resolved, units exchange data en-
capsulated in tokens; the exchange time is determined dynamically
during circuit execution. Many works study the generation process
of dataflow circuits from high-level code [3, 6, 11, 12, 17]. We here
focus on an approach that targets C code [17]; the generated cir-
cuits implement single-threaded programs, which is in line with
the standard, statically-scheduled, HLS tools [5, 17, 21, 32].

The circuits we consider organize units into basic blocks (BBs),
i.e., straight pieces of code without internal control flow decisions.
They are built from the following units: A fork distributes a copy
of the incoming token to each of the successors as soon as they
are ready to receive it. A join synchronizes multiple tokens before
sending a token to its successor; it is typically used in arithmetic
units to ensure the presence of all inputs prior to computing. A
merge propagates a token to its single output from one of its two
data inputs. A branch propagates the received data token to one
of its successors, depending on the value of the received condition
token. A buffer is used to store tokens, break combinational paths,
and increase throughput. In general, buffers can be arbitrarily placed
inside the circuit without impacting its functionality [4, 17, 20].

3.2 Performance Optimization of Dataflow or
Latency-Insensitive Systems

Performance optimization of synchronous and asynchronous
dataflow circuits has been extensively studied.Occupancy balancing,
also referred to as slack matching and bubble insertion, aims to avoid
computation-bottlenecking pipeline stalls [1, 4, 20, 23, 25, 29]. The
goal is to identify the number of tokens that can occupy a channel
and instantiate the appropriate number of buffer slots to accom-
modate them, without stalling the preceding computation. In the
context of HLS, a recent work [20] relies on occupancy balancing

189

Suppressing Spurious Dynamism of Dataflow Circuits via Latency and Occupancy Balancing FPGA ’24, March 3–5, 2024, Monterey, CA, USA

to optimize the performance of HLS-produced dataflow circuits
implementing program loops; it is based on mixed-integer linear
programming (MILP). The goal is to maximize throughput (i.e., the
inverse of the loop II) of circuit subgraphs corresponding to the
program’s control flow graph cycles; these subgraphs are referred
to as choice-free circuits (CFCs), as they internally contain no con-
trol flow choices. As we target HLS circuits as well, our strategy
will rely on the same concepts.

The works above qualitatively achieve the solution of Figure 1a:
although they can achieve the best throughput with the minimal
buffering required to support it, the resulting circuits are not well-
suited for handshake logic optimization. Thus, occupancy balancing
on its own is not sufficient to achieve our goal of simultaneously
tackling performance and logic optimization.

Latency balancing is an alternative way to address pipeline stalls:
the idea is to equalize the delays of joining paths, thus ensuring that
data arrives at the joining point at the same time. This strategy is
usually employed in feed-forward dataflow pipelines [13, 22] or in
systemswhere the simultaneous arrival time of data is a prerequisite
for correctness [15]. As suggested in Figure 1b, this approach is
more effective in stall removal than occupancy balancing; yet, it
may come at a notable buffering overhead. Our work aims to exploit
the former benefit and avoid the latter cost.

3.3 Eliminating Redundant Handshake Logic
Prior studies [34, 35] have suggested that the absence of stalls
implies opportunities for removing redundant handshake logic.
They apply formal methods, e.g., model checking, to guarantee the
correctness of the underlying circuit transformation and obtain
cheaper circuits without performance degradation (i.e., no sequen-
tial behavior is altered). However, the success of these approaches
significantly depends on the construction and performance opti-
mization strategy of the input circuit—any irregular data exchange
and stall will dramatically reduce their advantage. For instance,
as discussed earlier, the circuit of Figure 1a exhibits a stall on the
buffer—attempting to remove the buffer logic of the circuit in this
form will be fruitless. The purpose of our work is to overcome this
limitation and systematically produce high-performance circuits
that are also amenable to handshake logic removal.

Several approaches noted the benefits of combining static and
dynamic scheduling [8, 9]—they aim to benefit from the area ef-
ficiency of the prior and the performance advantage of the latter
approach. While Cheng et al. [8] introduce static circuit regions
into dataflow circuits and Szafarczyk et al. [28] opt for the oppo-
site approach, both efforts ultimately contain general handshake
logic that suffers from the overheads illustrated in Figure 1a; thus,
they could both benefit from our stall and logic removal strategy.
Furthermore, in contrast to these works, our strategy effectively
combines the benefits of static and dynamic circuits without re-
quiring sophisticated code restructuring [28] or stitching together
solutions produced by different HLS toolchains [8].

4 MINIMIZING STALLS VIA LATENCY
BALANCING

In this section, we describe our linear programming (LP) formula-
tion for minimizing the presence of stalls in dataflow circuits via

cbj

Fork1

...

Join1

1

Join2

(a) Two fork-join patterns

...

1
1

1
1

1

1
: the slot has a 1-cycle
latency controller1

Merge1 Merge2

+

Branch1 Branch2

Fork1

+

......
Add1 Add2

(join)

(b) A pair of synchronizing cycles

Buffer1 Buffer2

Buffer3

...

...

...

...

Buffer1 Buffer2

Buffer3

Buffer4

1 1

1

: the slot is occupied
by a token

Figure 2: Synchronization patterns that we aim to balance. Figure 2a:
Two fork-join patterns Fork1-Join1 and Fork1-Join2; the two pairs of
reconvergent paths of pattern Fork1-Join2 are highlighted in blue
and yellow. Figure 2b: A pair of synchronizing cycles that join at
Add2; all channels related to the pattern are highlighted in green.

latency balancing. Our formulation reasons about synchronization
patterns of the circuit, i.e., circuit subgraphs in which multiple to-
kens need to synchronize; our goal is to latency-balance such paths
to avoid token stalls. For instance, in the example of Figure 1, our
formulation will identify the need to incorporate 6 cycles of latency
on the right path, so that tokens arrive at the store simultaneously
and stalls never occur. The rest of this section formalizes the notion
of synchronization patterns and details our LP model.

The main source of stalls in dataflow circuits is the difference
in token arrival time at the inputs of a join. We classify the circuit
subgraphs where this occurs into noncyclic fork-join patterns and
cyclic synchronizing cycles. We model the dataflow circuit as a
graph, where the vertices and edges are units and channels. A path
is a sequence of channels joining a sequence of distinct units; a
cycle is a path whose first and last units are identical.
Definition 1. A pair of reconvergent paths inside a dataflow circuit
are two paths with the same nodes only at the beginning (i.e., a
fork) and the end of the paths (i.e., a join); the channels and units
on these two paths must belong to the same BB sequence.
The circuit in Figure 2a shows a circuit of a single BB. There is one
pair of reconvergent paths between Fork1 and Join1 (the pair of
paths is shaded in green).
Definition 2. A fork-join pattern is the set of all reconvergent
paths between a pair of a fork and a join that follow the same BB
sequence.
Figure 2a has two fork-join patterns: (1) Fork1-Join1, which has
one pair of reconvergent paths, shaded in green, (2) Fork1-Join2,
which has two pairs of reconvergent paths, shaded in yellow and
blue (the left two paths between Fork1 and Join2 are not a pair of
reconvergent paths, since they share Join1 and Buffer4).
Definition 3. Two cycles are a pair of synchronizing cycles in a
dataflow circuit if the following properties hold: (1) The two cycles
are disjoint (i.e. they do not have any common units) and belong to
the same CFC (defined in Section 3.2). (2) There exists at least one
join that is reachable from both cycles without crossing any edge
on the cycle in the CFC they belong to.
Figure 2b describes a sub-circuit that (1) contains two disjoint cycles
of a single CFC, (2) there is a join (Add2) that synchronizes the
execution of the cycles: the left cycle can reachAdd2 via the channel

190

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Jiahui Xu and Lana Josipović

between Fork1 and Add2, and the right cycle contains Add2. It
satisfies the definition, thus, it is a pair of synchronizing cycles.

When paths in synchronization patterns differ in latency, they
cause stalls that prevent circuit optimization. Thus, our goal is to
identify and balance the latency of such patterns. Both examples in
Figure 2 exhibit latency imbalance. For instance, the reconvergent
path between Fork1 and Join1 in Figure 2a is imbalanced; since the
left path has a smaller latency, its token has to wait (i.e., Buffer1 is
stalled). Similarly, in Figure 2b, the left cycle can issue data from
Fork1 to Add2 only every second cycle and its data is stalled in the
meantime. The solution to both problems is to insert an additional
cycle of latency on the fast path, thus slowing down the data and
removing the stall, without degrading circuit performance.

In the rest of this section, we discuss our latency balancing LP
model. Its constants and variables are summarized in Table 1.

Synchronization patterns constraints. We compute
Latency(p), the total latency on a path 𝑝 as

Latency(p) := (
∑︁
𝑢∈𝑝

D𝑢 +
∑︁
𝑐∈𝑝

𝐿𝑐), (1)

where c and u are channels and units on 𝑝; 𝐿c and Du denote the
latency of c and u. For example, in Figure 1, the path Fork1, Mult,
ST has a latency of 6.

From a given synchronization pattern pattern, we enumerate
all pairs of constructs (i.e., reconvergent paths or synchronizing
cycles); for each pair 𝑝1, 𝑝2 ∈ pattern, we formulate the following
constraint to define the presence of imbalance (indicated by a binary
variable Xpattern):

M · Xpattern ≥ (Latency(p1) − Latency(p2)),
M · Xpattern ≥ (Latency(p2) − Latency(p1)),

(2)

where M is a very large constant (larger than any two constructs’
latency difference). Whenever a pair of constructs has a non-zero la-
tency difference, the right-hand side of one of the constraints must
be greater than 1 and its division with M is a positive fractional
number; the only binary solution that satisfies this constraint is
Xpattern = 1. By balancing pattern latencies, we aim to reduce the
number of patterns where this occurs (i.e., equalizing the latencies
allows Xpattern = 0). For example, the Fork1-Join1 pattern in Fig-
ure 2a has two imbalanced paths (i.e., the left path has a latency
of 1 and the right path has a latency of 2). The difference between
the latencies will set Xpattern = 1. Adding a 1-cycle latency to the
left path (e.g., setting 𝐿cbj = 1 for channel cbj colored in red) would
balance the structure and relax this constraint.

Dataflow units can have variable latency [16]. In such cases,
there is no opportunity to balance the pattern that contains it. For
instance, if the multiplier in Figure 1 took either 4 or 6 cycles to
compute, one could not find any latency assignment for the right
path that balances both computational scenarios—neither a latency
of 4 nor of 6 would be useful and the registers implied by the
additional latency would only increase the resource consumption.
Thus, whenever a pattern contains a unit of variable latency, we fix
the value of Xpattern as follows

Xpattern = 1, (3)

which indicates that a pattern cannot be balanced and prevents the
insertion of redundant latencies.

Input parameters (constants):
Du N The maximum execution latency of unit u.
IICFC𝑖

N The user-required II of CFC𝑖 .
Bc N The bitwidth of channel c.
Output variables:
𝐿c N The number of extra latencies on channel c.
Internal variables:
Xpattern B If the synchronization pattern pattern is not balanced.
Sc B If channel c is stalled.
Rc B If channel c has 𝐿 > 1, i.e., channel cut.

Table 1: The variables and constants used in the LPmodel for latency
balancing (described in Section 4).

Stall identification constraints.When a pattern is imbalanced,
channels that are related to it will be stalled. A channel c is related
to a fork-join pattern if it belongs to it; similarly, it is related to
a pair of synchronizing cycles if it satisfies one of the following
properties: (1) c belongs to one of the synchronizing cycles. (2) c be-
longs to a path from any unit on the synchronizing cycles to any
join (reachable from both synchronizing cycles, see Definition 3-(2))
and c is not on any cyclic path l ∈ CFC𝑖 ,∀𝑖 . For example, in Fig-
ure 2b, all channels highlighted in green are related to the pattern.
We formulate the following constraint for each c ∈ pattern to define
the presence of stalls in terms of imbalanced patterns:

Sc ≥ Xpattern . (4)

If all pattern that contain c are balanced, then the binary variable
Sc becomes a free variable. Otherwise, Sc is set to 1, indicating the
presence of a stall on 𝑐 .

Note that Equation 4 sets all pattern channels to stalled when
the pattern is imbalanced; in practice, this is not necessarily the
case (i.e., some channels could be stalled and others not). Yet, this
simplified consideration has no impact on the balancing quality (i.e.,
the position and number of inserted latencies depends exclusively
on pattern latencies, as specified by Equation 2); furthermore, it
allows us to prioritize the optimization of larger patterns (i.e., those
with more channels), as our objective function will illustrate.

Cycle time constraints. Adding extra latencies may reduce the
number of stalls and, consequently, resources; yet, adding latencies
on cyclic paths may compromise the circuit’s cycle time—the best
possible value for the II of a CFC CFC𝑖 , defined as the maximum of
the sum of latencies on all cycles [1]. For instance, the circuit in
Figure 2b has two buffers (i.e., two clock cycles of latency) on the
right cycle; thus, cycle time is 2. Adding a third buffer to increase
the cycle latency to 3 would increase the best possible II to 3. We
formulate the following constraints for each cycle l to ensure that
the cycle time does not exceed the desired II:

1 ≤ Latency(l) ≤ IICFC𝑖
. (5)

This prevents the insertion of latencies beyond the predefined II on
throughput-critical cycles.

For instance, in Figure 2b, this constraint would allow adding
at most a single cycle of latency on the left cycle, but prevent the
addition of any latency onto the right cycle. In line with standard
performance optimizations for dataflow circuits [20], we apply the
cycle time constraints to the CFC that correspond to performance-
critical program loops (e.g., the innermost loops of a loop nest) and

191

Suppressing Spurious Dynamism of Dataflow Circuits via Latency and Occupancy Balancing FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Input parameters (constants):
Du N The maximum execution latency of unit u.
IICFC𝑖

N The best possible II of CFC𝑖 .
Bc N The bitwidth of channel c.
Lc N The number of extra latencies on channel c.
Output variables:
𝑁 c
max N Maximal token occupancy on channel c.

Internal variables:
Sc B If channel c has 𝑁 c

max > Lc .
𝑁 c
CFC𝑖

R+0 The token occupancy on channel c required by CFC CFC𝑖 .
𝑁 u
CFC𝑖

R+0 The token occupancy in unit u required by CFC CFC𝑖 .

Table 2: The variables and constants used in the LP model for occu-
pancy balancing (described in Section 5).

omit them otherwise, so that we increase the benefits of latency
balancing without notable performance degradation.

Latency cost constraints. Adding latency eliminates stalls and
saves resources, but implies additional registers; regardless of the
controller type (see the gate-level description in Figure 1), the cost
increases with the number of bits to store. Thus, it is desirable to
place latencies on channels carrying the fewest bits.We characterize
each channel c with a decision variable Rc , and define it as

M · Rc ≥ 𝐿c ≥ Rc, (6)

that is, if latency 𝐿c ≥ 1, Rc = 1; otherwise, Rc = 0, indicating that
no latency will be placed here. Rc is minimized in the objective
function and weighted by the bitwidth, as we will see next.

Critical path constraints. We borrow standard techniques [4,
20, 27] to control the critical path in the circuit: we sum up com-
binational delays across units and channels and break paths with
registers to honor a clock period target (i.e., whenever a delay is
longer than the target, we set Rc = 1 to indicate the presence of a
non-zero sequential delay).

Objective function. Our goal is to minimize (1) the stalled
channels c (S𝑐) due to an imbalanced synchronizing pattern and
(2) the cost of extra latencies needed to suppress the imbalance. We
formulate the cost function as

minimize 𝛼 ·
∑︁
c
𝑆c︸ ︷︷ ︸

stalled channels

+ 𝛽 ·
∑︁
c
(Bc · Rc + 𝐿c)︸ ︷︷ ︸

extra latency cost

. (7)

We prioritize the minimization of the number of channels that are
stalled (i.e.,

∑
c S𝑐); thus, the objective function will aim to balance

any imbalanced patterns via latency insertion. To add latencies only
where necessary, we minimize their cost as a secondary objective.
Thus, we set 𝛼 ≫ 𝛽 ; these parameters could be tuned for other
objectives and tradeoffs.

The output values 𝐿c from solving the LP problem indicate the
positions and values of latencies to add; we will rely on this notion
in the next section when reasoning about token occupancies and
in Section 6 when deciding the final buffer configuration.

5 BALANCING TOKEN OCCUPANCY
The LP formulation of the previous section informs us how to
balance latencies in a dataflow circuit; yet, as Figure 1b suggests, this
information is insufficient to obtain the best buffer configuration:
naively inserting pipeline buffers to achieve the desired latency

may result in underutilized buffers and wasted resources. In this
section, we complement the previous LP with an additional LP that
determines the largest token occupancy, i.e., the number of tokens
that reside in each channel; we will later exploit this information
to ensure that our circuits have no redundant and unused buffers.

All variables of our LP model are listed in Table 2; two of its
inputs, Lc and IICFC𝑖

, are provided by the previous LP, whereas the
other two inputs are intrinsic circuit properties. We describe our
constraints and objective function in the rest of this section.

Channel and unit occupancy constraints. In dataflow cir-
cuits, whenever a CFC is active (e.g., a program loop is repeating),
each unit and channel receives a token every II cycles. Since every
accepted token has to be kept by the channel or unit for Lc orDu cy-
cles, a lower bound for token occupancy in units and channels must
be set to support this behavior; otherwise, the pipeline stalls, which
will be harmful to both performance and area. For each CFC CFC𝑖 ,
for each channel c ∈ CFC𝑖 , we formulate the following constraint:

Lc

IICFC𝑖

≤ Nc
CFC𝑖

. (8)

For example, in Figure 1, the right channel between Fork1 and
ST (where we should place Buffer) has 𝐿 = 6 and 𝐼 𝐼 = 3, therefore,
the occupancy is at least 2. The occupancy bound is set analogously
for each unit u ∈ CFC𝑖 :

Du

IICFC𝑖

≤ Nu
CFC𝑖

≤ Capacityu . (9)

The only difference is the upper bound Capacityu , which is the
capacity of the unit and it must be fixed and finite. The capacity
Capacityu for pipelined units is simply Du .

Occupancy balancing constraints. For brevity, we denote the
total occupancy on a path or cycle 𝑝 in a CFC CFC𝑖 as

OccupancyCFC𝑖
(𝑝) := (

∑︁
𝑢∈𝑝

𝑁 u
CFC𝑖

+
∑︁
𝑐∈𝑝

𝑁𝑐
CFC𝑖

) . (10)

The token occupancy on reconvergent paths must be identical to
sustain the throughput goal (anything else would imply that the
two paths process a different number of tokens, which is impossible
due to their common origin and joining point). For each CFC CFC𝑖

and each pair of reconvergent paths 𝑝1, 𝑝2 ∈ CFC𝑖 , we enforce

OccupancyCFC𝑖
(𝑝1) = OccupancyCFC𝑖

(𝑝2) . (11)

Dataflow circuits limit the number of tokens on a cyclic path to
ensure functional correctness [10, 17, 34]. For each CFC CFC𝑖 and
each cycle l ∈ CFC𝑖 , we formulate the following constraint:

OccupancyCFC𝑖
(l) ≤ 𝐵. (12)

For dataflow circuits generated from sequential programs, 𝐵 = 1,
i.e., there must be no more than one token per cyclic path during
the steady state of the choice-free circuit [17, 20].

When two CFCs, CFC𝑖 and CFC 𝑗 with different IIs share a chan-
nel c (e.g., a channel that belongs to both an inner and an outer
program loop), they might require c to have different occupan-
cies values (i.e., 𝑁 c

CFC𝑖
≠ 𝑁 c

CFC 𝑗
). To fulfill the requirements of

both CFCs, the final channel occupancy 𝑁 c
max must be greater than

any per-CFC channel occupancies value (i.e., 𝑁 c
CFC𝑖

,∀𝑖). For each
channel c, each CFC CFC𝑖 such that c ∈ CFC𝑖 , we formulate the

192

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Jiahui Xu and Lana Josipović

following constraint; it defines the required token occupancy on c
for sustaining the throughput of all CFC𝑖 :

𝑁 c
max ≥ 𝑁 c

CFC𝑖
. (13)

Note the duality in how conflicts (i.e., situations when dynamism
is required) are handled in occupancy balancing and latency balanc-
ing. If multiple synchronization patterns (see Section 4) share any
channel or unit and demand conflicting latency values, our objec-
tive function from Section 4 will be able to balance at most one of
them (i.e., it will either identify a pattern whose stalls significantly
contribute to the cost function or prioritize the second objective
function term to favor latency savings). On the other hand, if mul-
tiple CFCs demand conflicting occupancy values for a channel or
unit, the maximal occupancy obtained by Equation 13 will satisfy
the requirement of all of them, as it specifies the maximum number
of tokens that will reside in the channel or unit at any execution
point. We will discuss our buffer implementations that consider
these two aspects jointly in Section 6.

Objective function. We aim to minimize the sum of 𝑁 c
max over

all channels, weighted by the channel bitwidth Bc , i.e.,

minimize
∑︁
c

Bc · 𝑁 c
max . (14)

The output values 𝑁 c
max from solving the LP problem of this

section indicate the maximum token occupancy of each channel.
We use this information in the next section to configure the buffers.

Combining the two LP formulations. A natural question to
ask is whether the two LPs that we employ consecutively could be
combined into a single LP problem. Although, in principle, possible,
a combined strategy is not naturally linear due to the occupancy
calculation 𝐿c

IICFC in Equation 8, as both the dividend and divisor
are variables (e.g., an increase of latency 𝐿c may simultaneously
change the II, as discussed in Section 4). Such an equation could be
linearized (e.g., by discretizing and constraining the values of IICFC
and 𝐿c

IICFC [2]) at an additional problem complexity. The same consid-
erations hold for unit occupancy (i.e., Equation 9) as well. Instead,
we opt to solve the two simpler problems separately; our second
LP takes 𝐿c and II as input constants (see Table 2) thus simplify-
ing the occupancy calculation. Although a separate formulation
may lead to a globally suboptimal solution (e.g., in terms of buffer
count or critical path), our evaluation shows that our circuits are
systematically smaller and faster than their counterparts produced
via alternative dataflow optimization techniques. Furthermore, our
strategy to separate the two concerns is significantly simpler and,
thus, faster than strategies that consider them simultaneously, as
we will demonstrate in Section 8.

6 PLACING BUFFERS
In this section, we will use Figure 3 as an example to discuss which
buffer should be placed on a channel, and how its handshake con-
troller should be implemented based on the combination of the
values of the channel latency (𝐿c) and token occupancy (𝑁 c

max),
obtained from the LPs in the previous sections.

Case 1: Nc
max = 0. If 𝐿c = 0, no buffer is needed. If 𝐿c > 0, the

channel needs latency balancing, which only occurs on channels
that do not contribute to any loop (otherwise, circulating tokens
would occupy the channel and 𝑁 c

max > 0); thus, they transfer

Case 1: Nc = 0 Case 2: 0 < Nc ≤ Lc Case 3: Nc > Lc
max max max

P

S

5

(b)(a) (d)

: the slot has a k-cycle latency controller

P

S

1
2
2

P

S

1
1
1

(c)

1
1

P

S

Bypass

Lc = 5
Nc = 0

IImin = any

Lc = 5
Nc = 3

IImin = 2

Lc = 5
Nc = 5

IImin = 1

Lc = 3
Nc = 5

IImin = any

(e) P

S

Lc = 0
Nc = 5

IImin = any

1
1
1

Bypass

: the predecessor and successor of the channel;SP ,

max max max max max

k

Figure 3: Examples of our buffer configuration scheme based on
the relation between channel latency 𝐿c and token occupancy 𝑁 c

max .

exactly one token [17, 20]. To accommodate this token for 𝐿c cycles,
we place a 1-slot buffer with 𝐿c-cycle latency, as shown in Figure 3a.

Case 2: 0 < Nc
max ≤ Lc . We split an 𝐿c-cycle latency into 𝑁 c

max
buffers; each buffer must have latency 𝐿 ≤ IImin, where IImin is
the minimum II among the CFCs that c is in. To achieve this, we
(1) instantiate 𝑁 c

max buffer slots and (2) distribute latencies among
them as equally as possible by increasing the latency of each buffer
by 1 in a round-robin fashion until we run out of latency to distrib-
ute, such that none of them is greater than II. In step (2), a solution
always exists because Equation 8 guarantees that there are enough
slots to distribute the latency. Figure 3b and 3c illustrate how we
split a 5-cycle latency into 3 and 5 buffers, respectively.

Case 3: Nc
max > Lc . This scenario occurs when the channel be-

longs to multiple constructs and has conflicting latency and occu-
pancy values; the objective function of the first LP (Equation 7)
opts for the smaller latency of one construct and Equation 13 of the
second LP for the larger occupancy of another construct (in line
with the discussion of Section 5). To preserve the latency chosen
by the former LP, we place 𝐿c slots, each with a latency of 1. To
accommodate the occupancy chosen by the latter, we append to
it a buffer of 𝑁 c

max − 𝐿c slots with no latency (i.e., a FIFO with a
combinational bypass, also referred to as a transparent buffer [10]).
Two such implementations are illustrated in Figures 3d and 3e.

Handshake controller. Dataflow buffers, regardless of their
exact implementation, communicate with their predecessor and
successor units using the same handshake protocol as the rest
of the dataflow circuit. After a token enters a buffer, the buffer’s
validity is set; it remains visible to the successor from the next
clock cycle (as the buffer is, typically, a sequential element) until
the successor consumes the token [10, 27]. When the token transfer
time is unknown, this handshake flexibility is exactly what we
desire; yet, as discussed in Section 2, it is also resource-expensive.

Our buffer placement scheme of this section specifies, for each
buffer slot, the exact latency 𝐿 that the token will reside in the
buffer. This offers an opportunity for a simpler and customized
buffer implementation. We equip our buffer with a controller that
dictates when the buffer should accept a token, how long it should
store it, and when it should issue it to the successor. After accepting
a token, the controller keeps the buffer invalid for 𝐿 cycles; in cycle
𝐿 +1, the buffer becomes valid, and the token is, thus, observable by
the successor. As soon as the successor is ready to accept the token,
it is transferred, and a new token can enter the buffer; otherwise,
the buffer stalls any token that may be arriving at its input.

193

Suppressing Spurious Dynamism of Dataflow Circuits via Latency and Occupancy Balancing FPGA ’24, March 3–5, 2024, Monterey, CA, USA

The two pairs of synchronizing cycles are highlighted in andfloat sum, d = 0.0;
for (int i = 0; i < N; i++) {

d = A[i] - B[i];
if (d > 0)

sum += d;
}

(a) A kernel with irregular control flow

Mg1

Br1

Fork1

< N

+ 1

LD A[] LD B[]

Fork2

Fork3

sel

Fork4

> 0

Mg2

Br2

Fork5

(d) A circuit that supports the dynamic schedule (e) A circuit that supports the static schedule

: the slot has a k-cycle latency controller

7-slot buffer
(no latency)

1

1

k

1
2
3
4

1
2
3

start, i = 0 start, sum = 0

done done

1
1
1
1
1
1

1
1
1
1
1
1

Mg1

Br1

Fork1

< N

+ 1

LD A[] LD B[]

Fork2

Fork3

sel

Fork4

> 0

Mg2

Br2

Fork5

start, i = 0 start, sum = 0

done done

1
1
1
1
1
1

1
1
1
1
1
1

3 4

5

6

6

7

−

+ +

−

(b) A dynamic schedule: II = 1 (best case)

(c) A static schedule: II = 6

clock cycles

Iterations

clock cycles

Iterations

LD

d = A[i] - B[i]LD d > 0
LD d = A[i] - B[i] d > 0

LD d = A[i] - B[i] d > 0 sum += d

LD d = A[i] - B[i] d > 0

LD d = A[i] - B[i] d > 0 sum += d

d = A[i] - B[i]LD

1 1

1

1 1

1

Figure 4: Pivoting from a dynamically-scheduled to a statically-scheduled circuit. Figure 4a: A kernel that contains irregular control flow.
Figure 4b: A dynamic schedule that takes advantage of conditional operation skipping. Figure 4c: A schedule produced by a static scheduler.
Figure 4d: Dataflow circuit optimized to support the dynamic schedule. Figure 4e: Corresponding dataflow circuit optimized for resources.

The implementation of a buffer with a fixed-latency controller is
trivial and exactly as shown in the motivating example of Figure 1c:
there is a single register for the data and an L-stage shift register
for the forward-going valid signal, enabled by the ready signal of
the successor. If the successor is ready to accept the token as soon
as the valid signal is set, the corresponding logic can be omitted
(shaded in the figure). Such logic simplification opportunities are
enabled by balancing the latencies of joining paths and configuring
our buffers to control the arrival time of the data accordingly.

7 TRADING DYNAMISM FOR SMALLER
RESOURCE UTILIZATION

So far, our strategy has introduced new handshake logic removal
opportunities while always prioritizing the circuit performance.
Thus, whenever dynamic scheduling is beneficial, our approach
maintains the necessary dynamism and the associated resource
cost; as we will show in Section 8, in such cases, our circuits are
faster but larger than their statically scheduled counterparts. One
might prefer to trade off area and performance differently; we here
describe how our strategy can be employed to achieve this.

Figure 4a shows a code with unpredictable control flow [17]: the
decision if (𝑑 > 0) depends on the value of 𝑑 that is only available
during runtime. A dynamically scheduled circuit can proceed with
the execution if there is no dependency between the following and
the current iteration to produce a high-performance schedule as in
Figure 4b. In contrast, a statically scheduled circuit has to assume
the loop-carried dependency of the long-latency operation 𝑠𝑢𝑚+=𝑑
always exists, thereby producing a schedule like Figure 4c.

The two schedules represent two design extremes: a fast and
expensive circuit, and a slow and cheap circuit. They are typically
produced by fundamentally different HLS strategies (i.e., dynamic
HLS, relying on handshake logic to achieve high performance in
unpredictable situations, and static HLS, based on modulo schedul-
ing algorithms that pipeline circuits with a fixed and conservative
II), which makes it challenging to switch between them or explore
different intermediate points. Our approach offers an entirely new

opportunity for such explorations: our LP formulations are suited
to tune the target performance, uncover handshake removal oppor-
tunities, and generate circuits with different degrees of dynamism.

The idea is similar to a standard modulo scheduler [36]: instead
of optimizing the circuit for a fixed II goal, we iteratively solve the
LP problem described in Section 4 to determine the minimum II
such that all synchronization patterns are balanced. The search
starts with a minimal IICFC𝑖

(see Table 1) of 1, which is then incre-
mented after each iteration. In addition to the cycle time constraint
described in Equations 5, we constrain the latency of each cycle
l ∈ CFC𝑖 using the IICFC𝑖

value of the current iteration as

Latency(l) ≥ IICFC𝑖
, (15)

which sets the loop II to be exactly IICFC𝑖
; no other input constants,

constraints, or objective function has to be changed. Whenever
the solver returns a solution with all synchronization patterns bal-
anced (i.e., Xpattern = 0 for each pattern), the optimizer terminates;
after balancing the token occupancy and placing the buffers, we
obtain the most performant solution that does not require expen-
sive handshake logic. If any construct contains units with variable
latency, removing all stalls is impossible, as the stalls and the hand-
shake signals that implement them are fundamentally required to
support the unit’s latency variability. In such cases, Equation 3 en-
forces Xpattern = 1 and we can terminate the algorithm immediately,
without performing this exploration.

Consider the circuit in Figure 4d, which has two pairs of synchro-
nizing cycles: (1) the iterator computation on the left, with a latency
of 1, and the 6-latency sum update on the right (both shaded in
blue), and (2) the iterator computation on the left and the 1-latency
cyclic propagation of the sum (both shaded in orange). Only one of
the two pairs will be executed in a given iteration, depending on the
value of 𝑑 . Assume that we optimize the circuit for the best-case II
of 1. To maintain this II, no latencies should be added on the second
pair of cycles (to honor Equation 5). This prevents the balancing
of the first pair of cycles (i.e., their latencies remain 1 and 6), thus
causing stalls in the corresponding imbalanced pattern (the blue
cycles and the red paths that connect them). These stalls imply

194

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Jiahui Xu and Lana Josipović

S4. Latency balancing

S5. Occupancy balancing

S6. Buffer placement

Input: C-code, initiation interval (II), clock period (CP),
optimization goal (area/performance)

+++ channel latency

+++ buffers placed

Circuit simplification

+++ token occupancy

−−− redundant logic

−−− spurious dynamism

SMV-based model checking
Handshake simplification

Output: a simplified dataflow circuit with no futile dynamism

S7: Iteratively increase II to meet
the area goal

Dynamatic HLS Compiler Converting C to dataflow circuit

Configuring buffer controllers

Achieving performance goal
Determining efficient buffer sizes

Balancing sync. patterns
Respecting performance goal

+++ naive dataflow circuit
(no buffers)

Figure 5: Our dataflow circuit optimization flow. Our contributions
are highlighted with a colored background (S4, S5, S6, S7).

that all handshake logic must remain intact to allow the circuit to
dynamically switch between the IIs of the slow and the fast cycles,
as the schedule in Figure 4b suggests. However, if we relax the II
goal from 1 to 6, we can balance both pairs of synchronizing cycles
by setting the latencies of all cycles to 5. The entire circuit, shown in
Figure 4e, is balanced and exhibits no stalls; thus, all its handshake
logic can be removed. Ultimately, the circuit in Figure 4e will quali-
tatively correspond to a statically scheduled circuit and achieve the
same schedule of Figure 4c. Interestingly, while static HLS obtains
this schedule via modulo scheduling, we reach this point in an en-
tirely different manner (i.e., by removing dynamism from dataflow
circuits using the techniques of the previous sections).

8 EVALUATION
In this section, we describe the effectiveness of our strategy in re-
moving spurious transient behaviors of the circuit, thus uncovering
new opportunities for removing redundant logic.

8.1 Methodology
The flow of our circuit generation framework is summarized in
Figure 5. The research artifact is publicly available [33].

The inputs to our framework are the HLS C code, the desired
IIs of all performance-relevant program loops, and the target clock
period (CP). We use Dynamatic [18], an open-source HLS compiler,
to generate the unbuffered dataflow circuit from C code. For the
circuit produced by Dynamatic, we solve the latency balancing
problem (Section 4); it assigns channel latencies to balance synchro-
nization patterns, maintain the target IIs, and control the critical
path to achieve the target CP. We incorporate the latency values
in the occupancy balancing problem (Section 5) to determine the
channel occupancies. We determine the buffer size and controller
type from the assigned latency and occupancy (Section 6). The re-
sulting circuit, with its customized buffering and stall-eliminating
latencies, is amenable to handshake logic simplification.

Removing handshake logic reduces the generality and flexibility
of the handshake protocol; thus, we have to rely on formal verifica-
tion to guarantee that our optimization does not penalize circuit
correctness in any way. We follow Xu et al. [35] for generating

Benchmark Units Channels Loop nests CFCs Property
fir 43 59 1 1 regular
iir 58 83 1 1 loop-carried dep.

matvec 77 108 1 2 regular
if loop 46 64 1 1 conditional exec.
gsum 80 108 1 2 conditional exec.
gsumif 130 175 1 3 conditional exec.
2mm 303 429 2 6 regular
3mm 376 525 3 9 regular

Table 3: Benchmark characteristics: total numbers of units and
channels (prior to buffer placement), number of loop nests, choice-
free circuits, and the main property of the loops they contain.

verification models from the circuit descriptions. The verification
is carried out by a model checker, and each verification goal (i.e.,
absence of stall) is formatted as a formal property; the checker
either produces a proof if the property holds, or a counter-example
if it fails. If the verifier concludes that a stall never occurs, the
ready signal can be detached from the sender and replaced with a
constant-1 signal; otherwise, the channel remains intact.

We use ModelSim [24] to measure the execution time and to
verify functional correctness. We report the post-place-and-route
area and frequency results using Vivado (v2019.1) [31]; we target
a Xilinx Kintex-7 FPGA with a target clock period of 6 ns. We use
Gurobi (v10.0.3) [14] to solve the LP problems from Sections 4 and
5. We use the nuXmv model checker [7] to perform the verification
tasks. Each verification run is timed out after 16 hours; the con-
cluded properties before timeout are used to simplify the circuit. We
performed all experiments on AMD Ryzen 7 CPUs at 1.90 GHz and
measured the optimization and verification runtime. We use the
same LP solver configuration for comparison with prior strategies,
i.e., only occupancy balancing [20].

For comparison with statically scheduled circuits, we generate
pipelined circuits using Vivado HLS (v2019.1) [30]. For fairness, we
employ the same arithmetic units (e.g., floating point arithmetic)
used in the circuits produced from Vivado HLS. Since our technique
does not address resource sharing of these units, we direct Vivado
HLS in the same way by indicating that it should not prioritize
this optimization. We note that, despite our efforts to make a fair
comparison, the differences in the critical path optimization of the
two HLS flows may cause discrepancies in register insertion and,
consequently, II; this effect is entirely accidental and not caused by
any fundamental difference between static and dynamic HLS. We
later will observe and discuss this effect.

8.2 Benchmark
Table 3 reports the properties and sizes of our benchmarks; they are
a collection of HLS kernels for evaluating dynamic scheduling in
HLS [8, 17]: (1) if loop (the example in Figure 4), gsum, and gsumif
contain irregular and unpredictable conditional execution that pre-
vents standard HLS from achieving high throughput; they have
been used to showcase the benefit of dynamic scheduling. (2) fir,
iir, matvec, 2mm, and 3mm are from standard HLS test suites [26].

8.3 Comparison of Dataflow Circuit
Optimization Strategies

Table 4 details our main results. The column Technique indicates
whether latency, occupancy, or both are used to determine buffer
placement: (1) Occupancy indicates that the circuit is optimized

195

Suppressing Spurious Dynamism of Dataflow Circuits via Latency and Occupancy Balancing FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Simplification FPGA Resources Performance Optimization Runtime
Bench-
mark Technique Simpli-

fied
#Stall-
ed Ch.

Slices
(red.)

LUTs
(red.)

FFs
(red.) DSPs CP

(ns) Cycles Exec.
time (us)

Check
time (s)

MILP
time (s)

LP1
time (s)

LP2
time (s)

Occupancy ✗ - 162 453 413 3 4.8 1011 4.9 - 0.04 - -
Occupancy ✓ 3 47 (-71%) 167 (-63%) 111 (-73%) 3 4.9 1011 5.0 2 0.03 - -
Latency ✓ 0 40 (-75%) 118 (-74%) 73 (-82%) 3 4.8 1010 4.8 2 - 0.05 -fir

All ✓ 0 38 (-77%) 105 (-77%) 73 (-82%) 3 4.8 1010 4.8 2 - 0.05 0.01
Occupancy ✗ - 251 626 643 6 5.0 3007 15.0 - 0.12 - -
Occupancy ✓ 34 195 (-22%) 505 (-19%) 427 (-34%) 6 4.8 3007 14.4 5 0.13 - -
Latency ✓ 0 81 (-68%) 198 (-68%) 249 (-61%) 6 4.8 2009 9.6 11 - 0.2 -iir

All ✓ 0 93 (-63%) 227 (-64%) 235 (-63%) 6 4.8 2009 9.6 11 - 0.19 0.02
Occupancy ✗ - 212 611 444 3 5.2 1092 5.7 - 0.4 - -
Occupancy ✓ 26 132 (-38%) 378 (-38%) 241 (-46%) 3 4.8 1092 5.2 40 0.42 - -
Latency ✓ 0 59 (-72%) 167 (-73%) 120 (-73%) 3 4.8 1029 4.9 12 - 0.2 -matvec

All ✓ 0 62 (-71%) 177 (-71%) 107 (-76%) 3 4.8 1029 4.9 10 - 0.19 0.09
Occupancy ✗ - 335 946 1125 4 5.5 1405 7.7 - 0.06 - -
Occupancy ✓ 23 297 (-11%) 799 (-16%) 967 (-14%) 4 5.1 1405 7.2 11 0.05 - -
Latency ✓ 17 230 (-31%) 622 (-34%) 752 (-33%) 4 5.0 4558 22.8 4 - 0.08 -if loop

All ✓ 18 281 (-16%) 774 (-18%) 922 (-18%) 4 5.7 1065 6.1 7 - 0.07 0.01
Occupancy ✗ - 780 2278 2575 22 6.0 3232 19.4 - 0.31 - -
Occupancy ✓ 60 705 (-10%) 1965 (-14%) 2267 (-12%) 22 5.6 3232 18.1 47155 0.32 - -
Latency ✓ 0 1125 (+44%) 1352 (-41%) 4526 (+76%) 22 4.9 3459 16.9 169 - 0.16 -gsum

All ✓ 0 693 (-11%) 1419 (-38%) 1972 (-23%) 22 5.0 3459 17.3 98 - 0.16 0.23
Occupancy ✗ - 1056 2955 3404 26 6.2 3181 19.7 - 3.79 - -
Occupancy ✓ - 1056 (+0%) 2955 (+0%) 3404 (+0%) 26 6.2 3181 19.7 Timeout 3.77 - -
Latency ✓ 0 1099 (+4%) 1774 (-40%) 4408 (+28%) 26 5.0 3327 16.6 645 - 0.68 -gsumif

All ✓ 0 841 (-20%) 1812 (-39%) 2402 (-28%) 26 5.3 3327 17.6 284 - 0.65 3.9
Occupancy ✗ - 1052 2743 2588 12 5.5 2451 13.5 - 206.19 - -
Occupancy ✓ 44 531 (-50%) 1308 (-52%) 1094 (-57%) 12 4.8 2451 11.8 1546 199.85 - -
Latency ✓ 0 351 (-67%) 679 (-75%) 776 (-70%) 12 4.8 2410 11.6 1560 - 11.65 -2mm

All ✓ 0 315 (-70%) 736 (-73%) 645 (-75%) 12 4.9 2410 11.8 1292 - 13.29 10.75
Occupancy ✗ - 931 2390 1920 9 5.4 3372 18.2 - 108.16 - -
Occupancy ✓ 28 459 (-51%) 1061 (-56%) 748 (-61%) 9 4.8 3372 16.2 827 106.58 - -
Latency ✓ 0 305 (-67%) 645 (-73%) 509 (-73%) 9 4.8 3938 18.9 1242 - 1.77 -3mm

All ✓ 0 315 (-66%) 690 (-71%) 445 (-77%) 9 4.8 3938 18.9 1021 - 1.9 7.01

Table 4: Resource utilization and performance of dataflow circuits using our optimization strategy (All (✓)), compared to circuits with no
resource optimization (Occupancy (✗)), as well as circuits optimized exclusively by occupancy balancing (Occupancy (✓)) and latency balancing
(Latency (✓)). In all benchmarks, our strategy significantly reduces resource utilization compared with Occupancy (✗). Since our technique also
reduces the reachable state-space by regularizing the behavior of the circuit, the model checking runtime of All (✓) is significantly reduced in
larger benchmarks (the timeout benchmarks did not return a single proven property). Similarly, the runtime of the two LPs we employ scales
better than the MILP approach of Occupancy (✓).

using the methodology of Josipović et al. [20] to generate occupan-
cy-balanced circuits (see Section 3.2). (2) Latency indicates that
latency balancing is applied, but channel occupancy is not exploited
for optimization (i.e., only Section 4). (3) All indicates the usage
our complete workflow, summarized in Section 8.1, that exploits
both latency and occupancy balancing. Column Simplified indicates
whether model checking is used to simplify the circuit.

Effectiveness in eliminating spurious dynamism. Column
#Stalled Ch. details the number of channels for which the model
checker encounters a stall when exploring all possible circuit exe-
cutions; those channels must maintain general handshake logic for
correctness. Even for kernels with perfectly regular computation
patterns (i.e., fir, iir, matvec, 2mm, and 3mm), such stalls still exist
and prevent the optimization. Our latency balancing strategy is
effective in ruling out such situations and consistently removes all
stalls, as seen from the entries with Latency (✓) or All (✓). The
only exception is if loop: as discussed in Section 7, where latency
balancing cannot be achieved without an II penalty; our strategy
successfully identified this and the All (✓) solution maintained
the necessary stalls and logic to respect this II goal. We will later
investigate different area-performance tradeoffs on this benchmark.

Improvement in resources. The columns Slices (red.), LUTs
(red.), FFs (red.), and DSPs detail the FPGA resources; the improve-
ment compared with a fully dynamic, performance-optimized so-
lution (i.e., Occupancy (✗)) is recorded in parenthesis. One can
notice consistent resource-saving trends of our approach across the
table, for benchmarks of different sizes. Stall reduction consistently
enables more logic optimization, as evident from the Latency (✓)

and All (✓) designs, which require fewer LUTs compared with
Latency (✓). When the circuit cannot be ideally pipelined (i.e.,
the II is limited by loop-carried dependencies or is variable due to
irregular control flow), properly sizing the buffers results in signifi-
cant FF savings; this is evident from the fact that iir, gsum, gsumif,
optimized using Latency (✓), demand more FF than All (✓). This
points to the need for balancing both latency and occupancy, as we
propose in this paper.

Effect on performance. The Performance columns in Table 4
detail the clock period (CP), the execution time in cycles (Cycles),
and the wall-clock time (Exec. time), which is calculated as CP ×
Cycles. As expected, the clock cycle count does not notably change
across the design points since they all aim to sustain the same
II and, thus, performance. In some situations, latency balancing
slightly increases the cycle count despite maintaining the same II
as the other solutions; this is because of the additional sequential
delays that postpone the execution of some operations. The outlier
is if loop, where Latency (✓) suffers in performance due to the
execution variability of this benchmark; other solutions tackle it
via occupancy balancing and bypass FIFO insertion (see Section 6),
again pointing to the benefits of combining latency and occupancy
in circuit optimization.

Runtime of LP solving and logic simplification. The follow-
ing columns detail the optimization runtimes: Check time describes
the model checking runtime. MILP time reports the MILP runtime
of Occupancy [20]. LP1 time and LP2 time correspond to the LP
runtime of our latency balancing problem (in Section 4) and oc-
cupancy balancing problem (in Section 5), respectively. By having

196

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Jiahui Xu and Lana Josipović

1✕
2✕
3✕
4✕
5✕
6✕
7✕
8✕

Sl
ic

es

Static (no sharing) Occupancy (✗) Occupancy (✔) Latency (✔) All (✔)

fir iir matvec if loop gsum gsumif 2mm 3mm

1✕

Ex
ec

. t
im

e

Figure 6: Resources (slices) and execution time (CP × cycles) of
dataflow circuits optimized with different techniques, normalized
to the corresponding static HLS designs. Compared with static HLS
designs, our solutions are systematically Pareto-optimal or negligi-
bly different from static HLS solutions.

two simpler LP formulations, the calculations of channel latency
and occupancy of all benchmarks are completed within 30 seconds;
this is in strong contrast with the MILP runtime of Occupancy,
which rapidly increases for larger circuits (e.g., 2mm and 3mm).
Additionally, the model checker can better handle circuits after
removing unnecessary transient behaviors. This is clear from the
Check time improvements of All (✓), which are especially drastic
for larger benchmarks with more variability (gsum, gsumif). Thus,
our strategy not only makes circuit optimization more effective but
also more scalable than prior optimization strategies.

8.4 Comparison with Standard HLS
In this section, we compare our solutions with the standard-HLS-
produced circuits.

Where do we stand? Figure 6 illustrates the total resources (in
FPGA slices) and the execution time of the produced circuits; each
metric is normalized with respect to the corresponding Vivado-
HLS-produced designs, shown in red-dashed lines.

While unoptimized and partially optimized solutions exhibit
significant resource overheads with respect to static HLS, our final
solutions (All (✓)) typically have a negligible resource difference,
thus pointing to the successfulness of our strategy.

The execution time of our circuits is similar to or lower than that
of static HLS. The only increase is in matvec due to a difference
in the circuit’s critical path. The reductions in the other bench-
marks are due to different reasons: (1) iir is, conceptually, equally
pipelineable by static and dynamic HLS, but Vivado HLS’s timing
model introduces extra registers and, thus, increases II (this effect
is orthogonal to our strategy, as mentioned in Section 8.1). (2) if
loop, gsum, and gsumif are cases with irregular behaviors where dy-
namic scheduling fundamentally outperforms static (see Section 7);
we now reap this gain at negligible resource cost. Interestingly,
in gsum and gsumif, the benefits of dynamism remain even after
removing all stalls. These benchmarks contain a conditional long-
latency loop-carried dependency that prevents static pipelining;
our circuits take either the short or the long path depending on

10 20 30 40 50
Exec. time (us)

600

700

800

900

1000

FF
s

8

1 2 3 4 5

6 7 8 9 10 11 12

Static, no sharing
Dynamic, no sharing,
with increasing II

Figure 7: Exploring the design space by relaxing the II bound. Our
method successfully produced two Pareto-optimal points that were
previously achieved only by fundamentally different HLS strategies.

the condition value. Since we can balance each of these paths indi-
vidually, tokens are always propagated stall-free. (3) Our 2mm and
3mm solutions overlap inner and outer loops more effectively than
static HLS, which reduces execution time; they are larger than the
static HLS solution due to a conservative IR generation strategy—an
aspect orthogonal to our work and tackled by others [12]. We note
that our solutions are systematically Pareto optimal.

Area-performance trade-off. So far, we have always aimed for
maximal performance; we now evaluate the ability of our approach
to explore the design space, as discussed in Section 7. We perform
this experiment on the if loop of Figure 4 and iteratively solve the
latency balancing LP for IIs of 1 to 12. Our results are plotted as the
green curve in Figure 7, labeled with the target II; a red cross denotes
the best II point generated by static HLS. For II=1, our circuit is
the fastest but needs handshake logic due to imbalanced patterns.
Increasing the II, initially, does not yield significant changes, as
patterns remain imbalanced; it is at II=6 that the two patterns finally
match in latencies and all handshake logic is removed, causing a
drop in area. Naturally, increasing the II beyond this point is futile:
the patterns remain balanced but at no benefit. This demonstrates
that our method not only produces a Pareto-optimal solution with
the best performance, but also the one with the best area which is
the same as that of static scheduling.

9 CONCLUSION
Dataflow circuits have often been criticized for their area expen-
siveness, as well as the complexity of the underlying area and
performance optimization algorithms; due to the former, the results
are subpar to standard HLS solutions, whereas the latter makes
the HLS process unacceptably slow. To tackle these challenges,
we exploit the benefits of two well-known performance optimiza-
tion strategies—latency and occupancy balancing. We equip the
circuit with additional latencies that synchronize data transfers and
identify opportunities to remove redundant handshake logic. By
analyzing the time particular data items reside in buffers, we reduce
the buffer count and simplify their implementation. The resulting
circuits are simpler and the time to realize them is shorter than what
previous optimization approaches could achieve. Furthermore, by
simply tuning the performance goal, our strategy can easily explore
a variety of Pareto-optimal HLS solutions. All these benefits make
HLS of dataflow circuits more attractive and practical.

ACKNOWLEDGEMENTS
This work has been supported by the Swiss National Science Foun-
dation (grant number 215747) and the ETH Future Computing Lab-
oratory (donation from Huawei Technologies).

197

Suppressing Spurious Dynamism of Dataflow Circuits via Latency and Occupancy Balancing FPGA ’24, March 3–5, 2024, Monterey, CA, USA

REFERENCES
[1] Peter A Beerel, Andrew Lines, Mike Davies, and Nam-Hoon Kim. 2006. Slack

matching asynchronous designs. In 12th IEEE International Symposium on Asyn-
chronous Circuits and Systems. Grenoble, 184–94.

[2] Stephen P. Bradley, Arnoldo C. Hax, and Thomas L. Magnanti. 1977. Applied
Mathematical Programming. Addison-Wesley Publishing Company.

[3] Mihai Budiu, Pedro V. Artigas, and Seth Copen Goldstein. 2005. Dataflow: A
Complement to Superscalar. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software. Austin, TX, 177–86.

[4] Dmitry Bufistov, Jordi Cortadella, Mike Kishinevsky, and Sachin Sapatnekar.
2007. A general model for performance optimization of sequential systems. In
Proceedings of the International Conference on Computer-Aided Design. San Jose,
CA, 362–69.

[5] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. 2013. LegUp:
An open-source high-level synthesis tool for FPGA-based processor/accelerator
systems. ACM Transactions on Embedded Computing Systems 13, 2 (Sept. 2013),
1–27.

[6] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli.
2001. Theory of Latency-Insensitive Design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 20, 9 (Sept. 2001), 1059–76.

[7] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-
dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta.
2014. The nuXmv SymbolicModel Checker. In Proceedings of the 26th International
Conference on Computer Aided Verification. Vienna, Austria, 334–42.

[8] Jianyi Cheng, Lana Josipović, George A. Constantinides, Paolo Ienne, and John
Wickerson. 2020. Combining dynamic & static scheduling in high-level syn-
thesis. In Proceedings of the 28th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. Seaside, CA, 288–98.

[9] Jianyi Cheng, Join Wickerson, and George A. Constantinides. 2022. Finding and
Finessing Static Islands in Dynamically Scheduled Circuits. In Proceedings of the
30th ACM/SIGDA International Symposium on Field Programmable Gate Arrays.
Virtual Event, CA, 89–100.

[10] Jordi Cortadella, Mike Kishinevsky, and Bill Grundmann. 2006. Synthesis of
Synchronous Elastic Architectures. In Proceedings of the 43rd Design Automation
Conference. San Francisco, CA, 657–62.

[11] Stephen A. Edwards, Richard Townsend, andMartha A. Kim. 2017. Compositional
Dataflow Circuits. In Proceedings of the 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design. Vienna, 175–84.

[12] Ayatallah Elakhras, Andrea Guerrieri, Lana Josipović, and Paolo Ienne. 2022. Un-
leashing Parallelism in Elastic Circuits with Faster Token Delivery. In Proceedings
of the 32nd International Conference on Field-Programmable Logic and Applications.
Belfast, UK, 253–61.

[13] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,
Zhiru Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained
Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die
FPGAs. In Proceedings of the 29th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. Virtual Event, 81–92.

[14] Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

[15] Abhishek Kumar Jain, Douglas L. Maskell, and Suhaib A. Fahmy. 2016. Through-
put oriented FPGA overlays using DSP blocks. In Proceedings of the 2016 Design,
Automation and Test in Europe Conference and Exhibition. Dresden, Germany,
1628–33.

[16] Lana Josipović, Philip Brisk, and Paolo Ienne. 2017. An Out-of-Order Load-Store
Queue for Spatial Computing. ACMTransactions on Embedded Computing Systems
16, 5s (Sept. 2017), 1–19.

[17] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically Sched-
uled High-level Synthesis. In Proceedings of the 26th ACM/SIGDA International

Symposium on Field Programmable Gate Arrays. Monterey, CA, 127–36.
[18] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2020. Dynamatic: From

C/C++ to dynamically scheduled circuits. In Proceedings of the 28th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. Seaside, CA, 1–10.

[19] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2021. Synthesizing General-
Purpose Code Into Dynamically Scheduled Circuits. IEEE Circuits and Systems
Magazine 21, 1 (May 2021), 97–118.

[20] Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and Jordi
Cortadella. 2020. Buffer Placement and Sizing for High-Performance Dataflow
Circuits. In Proceedings of the 28th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. Seaside, CA, 186–96.

[21] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2022. From C/C++ Code
to High-Performance Dataflow Circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41, 7 (July 2022), 2142–55.

[22] Xinheng Liu, Dae Hee Kim, Chang Wu, and Deming Chen. 2018. Resource
and Data Optimization for Hardware Implementation of Deep Neural Networks
Targeting FPGA-based Edge Devices. In Proceedings of the 20th International
Workshop on System Level Interconnect Prediction. San Francisco, CA, 1–8.

[23] Rajit Manohar and Alain J. Martin. 1998. Slack Elasticity in Concurrent Com-
puting. In Proceedings of the 4th International Conference on the Mathematics of
Program Construction. London, 272–85.

[24] Mentor Graphics. 2016. ModelSim. https://www.mentor.com/products/fv/
modelsim/

[25] Mehrdad Najibi and Peter A Beerel. 2013. Slack matching mode-based asynchro-
nous circuits for average-case performance. In Proceedings of the 32nd Interna-
tional Conference on Computer-Aided Design. San Jose, CA, 219–25.

[26] Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark suite. https:
//web.cs.ucla.edu/~pouchet/software/polybench/

[27] Carmine Rizzi, Andrea Guerrieri, Paolo Ienne, and Lana Josipović. 2022. A Com-
prehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits.
In Proceedings of the 32nd International Conference on Field-Programmable Logic
and Applications. Belfast, UK, 375–83.

[28] Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede. 2023. Compiler
Discovered Dynamic Scheduling of Irregular Code in High-Level Synthesis. In
Proceedings of the 33rd International Conference on Field-Programmable Logic and
Applications. Gothenburg, Sweden, 1–9.

[29] Girish Venkataramani and Seth C. Goldstein. 2006. Leveraging protocol knowl-
edge in slack matching. In Proceedings of the 25th International Conference on
Computer-Aided Design. San Jose, CA, 724–29.

[30] Xilinx Inc. 2018. Vivado High-Level Synthesis. Xilinx Inc. http://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html

[31] Xilinx Inc. 2020. Vivado Design Suite. Xilinx Inc. https://docs.xilinx.com/v/u/
2019.2-English/ug901-vivado-synthesis

[32] Xilinx Inc. 2023. Vitis HLS. Xilinx Inc. https://docs.xilinx.com/r/en-US/ug1399-
vitis-hls

[33] Jiahui Xu. 2023. Research Artifact for FPGA ’24: Suppressing Spurious Dynamism
of Dataflow Circuits via Latency and Occupancy Balancing. https://doi.org/10.
5281/zenodo.10307409

[34] Jiahui Xu and Lana Josipović. 2023. Automatic Inductive Invariant Generation
for Scalable Dataflow Circuit Verification. In Proceedings of the 42nd International
Conference on Computer-Aided Design. San Francisco, CA, 1–9.

[35] Jiahui Xu, Emmet Murphy, Jordi Cortadella, and Lana Josipović. 2023. Eliminating
Excessive Dynamism of Dataflow Circuits Using Model Checking. In Proceedings
of the 31st ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. Monterey, CA, 27–37.

[36] Zhiru Zhang and Bin Liu. 2013. SDC-based modulo scheduling for pipeline
synthesis. In Proceedings of the 32nd International Conference on Computer-Aided
Design. San Jose, CA, 211–18.

198

https://www.gurobi.com
https://www.gurobi.com
https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://web.cs.ucla.edu/~pouchet/software/polybench/
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://docs.xilinx.com/v/u/2019.2-English/ug901-vivado-synthesis
https://docs.xilinx.com/v/u/2019.2-English/ug901-vivado-synthesis
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://doi.org/10.5281/zenodo.10307409
https://doi.org/10.5281/zenodo.10307409

	Abstract
	1 Introduction
	2 What Is the Best Way to Remove Spurious Dataflow Stalls?
	3 Background and Related Work
	3.1 Dataflow Circuits
	3.2 Performance Optimization of Dataflow or Latency-Insensitive Systems
	3.3 Eliminating Redundant Handshake Logic

	4 Minimizing Stalls via Latency Balancing
	5 Balancing Token Occupancy
	6 Placing Buffers
	7 Trading Dynamism for Smaller Resource Utilization
	8 Evaluation
	8.1 Methodology
	8.2 Benchmark
	8.3 Comparison of Dataflow Circuit Optimization Strategies
	8.4 Comparison with Standard HLS

	9 Conclusion
	References

