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Abstract—Buffer placement (i.e., pipelining) for frequency
regulation is a fundamental step of high-level synthesis (HLS).
Typical HLS approaches place buffers before technology map-
ping; as the circuit implementation details are unknown, the
HLS tool must resort to precharacterized and conservative
delay estimates when deciding on the buffer placement. An
alternative is to place buffers after technology mapping when the
circuit details are known. However, the buffers themselves may
invalidate prior mapping assumptions and irreversibly impact
the ultimate circuit frequency. In this work, we propose a
methodology that simultaneously tackles technology mapping
and buffer insertion in HLS-produced dataflow circuits. The
source code of our approach is open-source and integrated into
a complete HLS framework; it achieves a 13.32% and 11.14%
average improvement in execution time and area compared to
state-of-the-art approaches that handle buffering and technology
mapping separately.

I. INTRODUCTION

Pipelining is usually performed during high-level synthe-
sis (HLS), prior to technology mapping: the delay of each
computational block is characterized in isolation (e.g., by
synthesizing, placing, and routing the standalone component)
and registers (also called buffers) are placed accordingly [1]–
[4]. Unfortunately, this approach fails to recognize the com-
ponent simplifications and gate-level interactions that will
occur during technology mapping: the observed delays are
overblown and cause redundant buffer insertion that later
optimizations (e.g., retiming [5]) can no longer remove. A
dual approach is also possible: technology mapping could
be performed first and its result used to determine a less
conservative buffer placement [6]. Of course, the circuit needs
to be re-mapped afterwards and there is no guarantee that
the previous mapping assumptions hold; the ultimate circuit
structure can still deviate from the assumed one and its buffer
placement may be inadequate.

To overcome these limitations, we present MapBuf, a strat-
egy for simultaneous buffer placement and technology map-
ping based on mixed-integer linear programming. It accounts
for the circuit’s current mapping as well as possible mapping
modifications caused by buffers; it can thus accurately control
the circuit’s critical path without degrading its implementation.
Although our insights apply to any HLS approach, we here
focus on optimizing synchronous dataflow circuits obtained
from C code, as they are known to suffer from poor frequency
regulation [2] and can thus significantly benefit from our
strategy. On a set of benchmarks obtained from C code,
we show that our proposed strategy outperforms a state-of-
the-art method [6], achieving on average a 13.32% speedup

on benchmark workloads while using 11.14% fewer flip-
flops (FFs).

In the rest of the paper, we show an example in Section II to
motivate our work. Then, we present background and related
work in Section III, and we illustrate our methodology in
Section IV and Section V. In Section VI, we depict our entire
open-sourced workflow and evaluate our method.

II. SIMULTANEOUS IS THE WAY!

Figure 1a shows a portion of a dataflow circuit with three
dataflow units, A, B, and C. The units exchange data via
handshake channels, ready and valid; for simplicity, the data
signals are omitted from the figure. To regulate the circuit’s
critical path, an HLS tool can place buffers on the channels
between the units; we here contrast three possible methods to
minimize the number of buffers using different timing models.
In these models, a look-up table (LUT) represents a unitary
delay; the gates forming a single LUT are shown in the same
color and annotated with the same LUT ID. In all these cases,
the target clock period (CP) corresponds to a combinational
delay of two LUTs.

Figure 1b shows an example of performing buffering prior
to technology mapping (we refer to this strategy as B-M).
Since the delay of each unit is characterized in isolation, the
strategy cannot consider any cross-unit optimizations; each
unit is assumed to consist of independent LUTs, as shown in
the timing model in the figure. To honor the target CP, the HLS
tool must place two buffers, ensuring that each combinational
path has the length of at most two LUTs.

Figure 1c shows the result of performing technology map-
ping prior to buffering (we refer to this strategy as M-B).
Notice that, in this case, a single LUT contains logic from
multiple units (e.g., LUT1 contains gates of units A, B, and
C). Since buffers can be placed only between the dataflow
units, to honor the CP constraint of two LUTs, the HLS tool
must place a buffer between A and B (i.e., path LUT1 - LUT2
- LUT3 must be broken into two stages). However, since the
HLS tool has no knowledge about the impact of this buffer on
the final circuit structure, it must conservatively assume that
LUT2 is replicated into two LUTs. For this reason, the lower
path of LUT2 - LUT3 - LUT4 will remain in the timing model;
this calls for an additional buffer between units B and C.

Figure 1d shows a circuit obtained via simultaneous buffer
placement and technology mapping. Unlike the previous case,
the HLS tool can now account for the mapping change caused
by the placement of a buffer between A and B; concretely, it is
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(1d) Simultaneous mapping and
buffering (ours, i.e., MapBuf)

Fig. 1: Comparison of different buffer placement techniques for
dataflow circuits. In all figures, gates forming a single LUT are
shown in the same color and annotated with the same LUT ID. Both
Figure 1b and Figure 1c separate technology mapping and buffer
insertion: the former executes buffer placement before technology
mapping, and the latter applies them in the reversed order. On
the other hand, our strategy (Figure 1d) considers both problems
simultaneously to find the solution with the best performance and
lowest number of buffers.

aware that the gates of unit B now map to a new LUT3 and the
gates of unit C to a new LUT4. A single buffer is sufficient
to honor the CP target; the resulting circuit is smaller (i.e.,
fewer buffers) and, possibly, achieves better throughput (if a
buffer is omitted from a throughput-determining path) than the
solutions of Figure 1b and Figure 1c.

This example points to the need to perform buffer placement
and technology mapping simultaneously to obtain smaller
and faster circuits. The rest of this paper illustrates our
methodology to perform this task to achieve high-throughput
and low-area dataflow circuits obtained from C code, targeting
a field-programmable gate array (FPGA) implementation.

III. BACKGROUND AND RELATED WORK

The following section provides a background on dataflow
circuits. It explains the concepts of buffer insertion and tech-
nology mapping and discusses the relationship between these
circuit design aspects.

A. Dataflow Circuits and Buffer Insertion

A dataflow circuit (also called elastic circuit) is a digital
circuit that uses a handshake communication protocol [7], [8].
Researchers have recently studied the application of dataflow
circuits in HLS [9] since they can adjust their scheduling
dynamically. In contrast, traditional HLS tools generate a
finite-state machine (FSM) to determine the scheduling of
the circuits statically at compilation time [10]. Due to their
scheduling paradigm, dataflow circuits outperform state-of-
the-art static HLS circuits when the input circuit contains
irregular memory accesses or unpredictable control flow.

Dataflow circuits are composed of dataflow units, which
communicate through channels. A buffer is the equivalent of
a standard synchronous register: it can be inserted between
dataflow units and is used to break combinational paths (and,
thus, controls the operating frequency). It uses the same
communication protocol to interact with adjacent units and
thus can be placed on any channel without affecting circuit
functionality. This is fundamentally different from traditional
pipelines, where it is necessary to balance register insertion
on reconvergent datapaths [10].

Buffer insertion is one of the key optimization steps in
the synthesis flow of dataflow circuits, as it defines the
circuit’s operating frequency and throughput, thus determining
its overall execution time. Previous works have extensively
studied this problem and formulated timing models through
mixed-integer linear programming (MILP) [1], [2]. These
formulations describe buffer insertion to regulate frequency
while simultaneously selecting the minimal number of buffer
slots (i.e., the number of data items that a buffer can hold)
to maximize throughput. Yet, as shown in Figure 1b, they
precharacterize the delays of each dataflow unit and integrate
this information into the timing model. The inability to account
for the output circuit generated by technology mapping leads
to suboptimal results, as we will demonstrate in Section IV-E.

B. Subject Graph and Technology Mapping

A subject graph is a directed acyclic graph composed of
abstract logic operations (not actual gates) [11]. The nodes
of the subject graph with no incoming and no outgoing edge
are called primary inputs (PIs) and primary outputs (POs), re-
spectively. Combinational inputs (CIs) are the union of PIs and
register outputs; combinational outputs (COs) are the union of
POs and register inputs. Commonly used subject graphs in the
literature include AND-Inverter Graphs (AIG) [12] and XOR-
AND-Inverter Graphs (XAG) [13].

Technology mapping is an essential step of any CAD flow
that maps the subject graph to a technology-dependent network
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composed of macro-cells. Macro-cells in FPGAs include look-
up tables (LUTs), carry chains, and digital signal proces-
sors (DSPs). Most technology mapping algorithms utilize cuts
to map subject graph nodes to macro-cells [11], [14], [15]. A
cut 𝐶 of node 𝑛 is a set of nodes (called leaves) such that every
path from any combinational input to 𝑛 traverses at least one
leaf of 𝐶. A cut is 𝐾–feasible if the number of leaves does
not exceed 𝐾 . In FPGA mapping, a 𝐾–feasible cut implies a
𝐾–input LUT.

C. Relationship between Technology Mapping and Frequency
Regulation

Previous works have analyzed the relationship between
technology mapping and frequency regulation [6], [16], [17].
Rizzi et al. [6] proposed an iterative approach for mapping-
aware buffer insertion in dataflow circuits. To account for
the effect of buffering on technology mapping, demonstrated
in Figure 1c, this methodology iterates between mapping
and buffering; yet, the incremental buffer insertion does not
guarantee a minimal and optimal buffer placement, as we will
show in Section IV-E. Pan et al. [16] introduce a retiming
strategy that accounts for technology mapping. Our problem is
fundamentally different: while retiming changes the positions
of existing registers to optimize frequency, it has no throughput
optimization capabilities. We here insert registers (a problem
typically referred to as recycling in dataflow systems [8]) to
optimize frequency and throughput simultaneously. The work
closest to ours is that of Tan et al. [17], which simultaneously
executes technology mapping and frequency regulation. Yet,
this work only considers latency minimization and ignores
throughput optimization, which is a common HLS objec-
tive [3]. Moreover, neither of the latter two works can be
directly applied to our scenario as, in our case, buffers can
be placed only between dataflow units [2] and not on any
edge of the subject graph.

IV. MILP FORMULATION FOR PERFORMANCE
OPTIMIZATION

We demonstrated in Section II the necessity of concurrently
tackling technology mapping and buffer insertion. This section
illustrates how MapBuf defines these problems in the same
linear programming system for critical path regulation and
throughput optimization.

Let 𝐺 = (𝑉𝐺 , 𝐸𝐺) be the initial dataflow graph before
buffer insertion, where 𝑉𝐺 is the set of dataflow units and
𝐸𝐺 is the set of channels. Let 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) be the subject
graph corresponding to 𝐺 for technology mapping, where 𝑉𝐻
is the set of technology-independent nodes and 𝐸𝐻 is the set of
edges. Given 𝐺 and 𝐻, MapBuf utilizes the variables shown in
Table I to formulate the problem—we will detail them in the
remainder of this section. The domains of our variables include
integer, real, and binary numbers, which make the problem a
mixed integer linear programming problem.

An example of a dataflow graph is shown in Figure 2a, and
its corresponding subject graph is shown in Figure 2b. The
dataflow graph 𝐺 has two dataflow units: 𝑉𝐺 = {𝐴, 𝐵}, and

Input parameters
𝐷𝑙𝑢𝑡 R+ Delay of a LUT
CP R+ Target clock period
Output variables
𝑅𝑐 {0, 1} Indicates if channel 𝑐, 𝑐 ∈ 𝐸𝐺 , is buffered
𝑁𝑐 Z≥0 Number of slots of the buffer on channel 𝑐
Internal variables
𝑅𝑒 {0, 1} Indicates if edge 𝑒, 𝑒 ∈ 𝐸𝐻 , is buffered
𝑇 𝑖𝑛
𝑒 R≥0 Timing var. for edge 𝑒 input, 𝑒 ∈ 𝐸𝐻

𝑇𝑜𝑢𝑡
𝑒 R≥0 Timing var. for edge 𝑒 output, 𝑒 ∈ 𝐸𝐻

𝑆
𝛾
𝑛 {0, 1} Indicates if cut 𝛾 of node 𝑛 is selected

TABLE I: Variable declaration for the MILP formulation in Sec-
tion IV.

two channels: 𝐸𝐺 = {Ready,Valid}. In this example, we use
XAG as the subject graph and map gates 𝑎, 𝑏, 𝑐, and 𝑑 directly
to nodes in the subject graph. The square boxes are registers,
the outputs of 𝑛1 to 𝑛5 are the CIs, and inputs of 𝑛6 and 𝑛7
are the COs, as defined in Section III.

We allocate timing variables to the endpoints of edges in
the subject graph to depict the delay at these points. An edge
𝑒 in the subject graph has two timing variables, denoted by
𝑇 𝑖𝑛
𝑒 and 𝑇𝑜𝑢𝑡

𝑒 . They represent the propagation delay entering
and exiting the edge. For example, 𝑇 𝑖𝑛

𝑒6
in Figure 2b is the

propagation delay entering edge 𝑒6, which is equal to the
departure delay at 𝑎’s output. 𝑇𝑜𝑢𝑡

𝑒6
is equal to the delay at

the input of node 𝑐.
We use timing constraints to express the relationship be-

tween timing variables and their interaction between technol-
ogy mapping and buffer insertion. They examine the feasibility
and ensure the solution honors the target clock period. In the
remaining part of this section, we explain the different timing
constraints that we employ in our MILP.

A. Clock Period Constraints

The clock period constraints, as shown in Equation (1) and
Equation (2), are timing constraints that enforce the clock
period target as the upper bound of all timing variables:

𝑇 𝑖𝑛
𝑒 ≤ CP,∀𝑒 ∈ 𝐸𝐻 , (1)

𝑇𝑜𝑢𝑡
𝑒 ≤ CP,∀𝑒 ∈ 𝐸𝐻 , (2)

where CP is the user-specified clock period target (see Table I).

B. Buffer Insertion Variables and Channel Constraints

We use binary buffer insertion variables, denoted by 𝑅𝑒, to
represent whether edge 𝑒 is buffered. Buffer insertion variable
𝑅𝑒 interacts with the two timing variables on 𝑒, as shown in
Equation (3):

𝑇𝑜𝑢𝑡
𝑒 − 𝑇 𝑖𝑛

𝑒 + CP · 𝑅𝑒 ≥ 0,∀𝑒 ∈ 𝐸𝐻 . (3)

If 𝑅𝑒 = 0, i.e., no buffer is inserted, the delay propagates
from edge input to edge output with no increase. Otherwise,
if 𝑅𝑒 = 1, the equation becomes 𝑇𝑜𝑢𝑡

𝑒 ≥ 𝑇 𝑖𝑛
𝑒 − CP, where 𝑇 𝑖𝑛

𝑒

can be at most equal to CP due to Equation (1). As the largest
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Fig. 2: Example of simultaneous buffer insertion and 3-LUT
mapping. Figure 2b shows the subject graph obtained from the
dataflow graph in Figure 2a. Figure 2c presents an example of a buffer
and selection variable conflict; we use it to illustrate Equation (6) in
Section IV-D.

value of the right-hand side is 0, this becomes a redundant
constraint since 𝑇𝑜𝑢𝑡

𝑒 is a non-negative value.
Besides channels, edges in the subject graph can correspond

to internal edges inside dataflow units. This is the case for
edges 𝑒1 and 𝑒2 in Figure 2b, which connect the register 𝑛1
and 𝑛2 to gate 𝑎, all within the dataflow unit B. Thus, no buffer
can be inserted on these edges; therefore, we assign 𝑅𝑒 = 0
if 𝑒 is internal. In contrast, edges 𝑒6 and 𝑒8 correspond to the
two channels Ready and Valid, respectively. Thus, 𝑅𝑒6 and 𝑅𝑒8
are free binary variables and could be either 1 or 0.

Moreover, one channel can correspond to multiple subject
graph edges. For instance, channel Ready in Figure 2a cor-
responds to edges 𝑒3 and 𝑒6. The 𝑅𝑒 variables of these two
edges are equivalent (i.e., 𝑅𝑒3 = 𝑅𝑒6 ). Therefore, we add these
equality constraints to ensure that the edges corresponding to
the same channel are either all buffered or none of them are
buffered.

C. Cut Selection Variables and Delay Propagation Con-
straints

Before formulating the constraints, we run cut enumeration
and prepare a set of cuts for each node 𝑛 in the subject graph,

denoted by Γ𝑛. Each cut 𝛾, 𝛾 ∈ Γ𝑛, is a set of leaf nodes in the
subject graph. We define cut selection variables, 𝑆𝛾𝑛 , as a set
of binary variables indicating if the cut 𝛾 is selected by node
𝑛. We use cut selection constraints, as shown in Equation (4),
to enforce the selection of one cut per node:∑︁

𝛾∈Γ𝑛
𝑆
𝛾
𝑛 = 1,∀𝑛 ∈ 𝑉𝐻 . (4)

This equation will allow us to propagate delays across
nodes, as we will illustrate in the remainder of this section.

The delay propagation per node differs with the cut selected
for the node because the set of input leaves (and, consequently,
input delays) changes depending on the chosen cut. For this
reason, delay propagation equations are replicated per leaf for
each cut of all the nodes in the subject graph. Equation (5)
shows the delay propagation constraints considering the leaf
𝑙 of the cut 𝛾 of node 𝑛 of the subject graph, where 𝑛𝑒 is the
output edge of node 𝑛 and 𝑙𝑒 is the output edge of leaf 𝑙:

CP · (1−
∑︁
𝛿∈Δ𝑙

𝑆𝛿𝑛 )+𝑇 𝑖𝑛
𝑛𝑒 ≥ 𝑇𝑜𝑢𝑡

𝑙𝑒 +𝐷lut,∀𝑙 ∈ 𝛾,∀𝛾 ∈ Γ𝑛,∀𝑛 ∈ 𝑉𝐻 ,

(5)
where 𝐷lut is the delay that we assume for one LUT level,
and Δ𝑙 is the subset of cuts of node 𝑛 which contain as leaf
𝑙 (i.e., Δ𝑙 ⊆ Γ𝑛 ∧ ∀𝛿 ∈ Δ𝑙 | 𝑙 ∈ 𝛿). In the rest of this section,
we use examples to illustrate Equation (5).

Consider node 𝑑 in Figure 2b. It has two possible candidate
cuts {𝑐, 𝑛5} and {𝑎, 𝑛4, 𝑛5} whose selection variables are 𝑆1

𝑑

and 𝑆2
𝑑

, respectively. In all the equations of node 𝑑, 𝑛𝑒 is
edge 𝑒10. Considering leaf 𝑎, 𝑙𝑒 is edge 𝑒6, and the set Δ𝑎 is
composed only by the second cut since the first one does not
include 𝑎 as a leaf. Equation (5) would become:

CP · (1 − 𝑆2
𝑑) + 𝑇

𝑖𝑛
𝑒10 ≥ 𝑇𝑜𝑢𝑡

𝑒6
+ 𝐷lut.

If the second cut is selected, 𝑆2
𝑑
= 1, the delay of edge

𝑒6 is propagated until edge 𝑒10 with a delay increase of 𝐷lut.
This means that nodes covered by this cut are substituted by a
LUT during technology mapping, and the delay of the output
of this LUT is equal to the delay of one of its leaves (in
this case, 𝑎) increased by the delay of a LUT. If the second
cut is not selected, the equation could be approximated to
𝑇 𝑖𝑛
𝑒10 ≥ 0, which becomes a redundant constraint ignoring the

delay propagation from edge 𝑒6 to 𝑒10.
If we consider the leaf 𝑛5, 𝑙𝑒 is edge 𝑒9, and the set Δ𝑛5 is

composed by both cuts since they contain 𝑛5 as a leaf. In this
case, the previous equation would be:

CP ·
(
1 − (𝑆1

𝑑 + 𝑆2
𝑑)
)
+ 𝑇 𝑖𝑛

𝑒10 ≥ 𝑇𝑜𝑢𝑡
𝑒9 + 𝐷lut.

If any of the two cuts are selected, the output delay of edge
𝑒9 is propagated to the input of edge 𝑒10 increased by 𝐷lut.
Since these are the only cuts of node 𝑑, one of them must be
selected, and Equation (5) will enforce this delay propagation.

D. Cut Selection Conflicts

As mentioned in Section II, buffer insertion also affects
technology mapping. A cut (and its corresponding LUT)
covers an edge in the subject graph if this edge belongs to
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at least one path from the root to any leaf of the cut. After
placing a buffer on an edge, a LUT can no longer cover it
since LUTs cannot implement the logic of multiple sequential
stages, as shown in Figure 1c. Subsequently, it is not possible
to select the cut that represents this LUT. For this reason,
buffer insertion excludes the possibility of choosing particular
cuts. We account for this effect using the conflict constraints
in Equation (6). This equation is replicated for all the edges
and cuts where the cut 𝛾 covers edge 𝑒:

𝑅𝑒 + 𝑆𝛾𝑛 ≤ 1, (6)

where 𝑅𝑒 is the buffer insertion variable for edge 𝑒 and 𝑆𝛾𝑛 is
the cut selection variable for node 𝑛 and cut 𝛾.

Figure 2c shows an example of cut selection conflict. If
𝑅𝑒6 = 1, then 𝑆2

𝑐 = 1 is invalid. A buffer insertion variable can
affect multiple cuts. For instance, if 𝑅𝑒6 = 1, 𝑆1

𝑏
cannot be

selected since edges 𝑒6 and 𝑒3 represent the same channel in
the dataflow graph and, consequently, 𝑅𝑒6 = 𝑅𝑒3 as discussed
in Section IV-B. Also, a cut can be affected by more than one
buffer insertion variable if the cut covers multiple channels. We
precompute these interactions and encode the corresponding
equalities into the MILP.

E. Objective Function

Our objective function, shown in Equation (7), is similar to
the one used in previous work [1]:

max. throughput − 𝛼 ·
∑︁
𝑐

(𝑁𝑐), 𝑐 ∈ 𝐸𝐺 , (7)

where 𝑁𝑐 is the number of buffer slots on channel 𝑐 of the
dataflow graph and 𝛼 is a user-defined parameter where 𝛼 ≪ 1.
𝑁𝑐 depends on 𝑅𝑐 which represents the presence of a buffer
on channel 𝑐. In particular, 𝑅𝑐 variables are a subset of the 𝑅𝑒

variables where 𝑒 is the edge of a channel 𝑐. If 𝑅𝑒 is set to 1
on a channel, then 𝑅𝑐 is equal to 1 which means that there is
at least one buffer slot on channel 𝑐 (e.g., 𝑁𝑐 ≥ 1).

Note that our MILP formulation is specialized for dataflow
circuits, as it allows buffers to be placed on any dataflow
channel (see Sections III-A, IV-A, and IV-B). Yet, the insights
that combine buffer placement with technology mapping (i.e.,
Sections IV-C and IV-D) are general; they could be com-
bined with more rigid buffer placement constraints for other
pipelined systems as well.

V. SPECIALIZED CUT ENUMERATION

The complexity of our MILP depends on the number of
cuts included in the formulation. A higher number of cuts
per node would determine a larger design space exploration
and our MILP solver would, potentially, not be able to find
the optimal solution within the predefined timeout. Therefore,
we apply a state-of-the-art cut enumeration method with
priority cuts to restrict the number of cuts [18]. Contrary
to previous cut ranking and pruning which mainly focus on
area recovery [19]–[21], we specialize our cut enumeration for
buffer placement. We rank cuts using the following criteria and
prune those with a lower ranking.

Criteria 1. MapBuf selects the cuts for delay propagation
and places buffers to satisfy the clock period constraints as
indicated in Equations (3) and (5). A lower propagation delay
corresponds to a lower number of buffers; for this reason,
it selects cuts to minimize the number of logic levels. We
implement a heuristic based on cutless FPGA mapping to
achieve this goal [20]: the main difference is that we select
multiple top-ranking cuts per node instead of a single one.

Criteria 2. MapBuf must be able to break every channel
with a buffer; that way, it can explore a wide variety of
buffering solutions in the search for high-quality ones. If all
the cuts of a node cover a channel 𝑐, it would be impossible
to place a buffer on 𝑐 due to Equation (6). To this end, for
each node, we preserve all cuts with at least one leaf on any
channel. For instance, in Figure 2b, we keep the cuts 𝑆1

𝑑
and

𝑆2
𝑑

for node 𝑑 since leaves 𝑐 and 𝑎 have outputs on channels
Valid and Ready, respectively. In this way, it would be possible
to break channel Ready and set cut 𝑆2

𝑑
= 1.

VI. EVALUATION

In this section, we present our entire workflow and illustrate
the effectiveness of MapBuf by comparing it with two recent
optimization strategies that run technology mapping and buffer
insertion separately: B-M that runs buffer insertion before
mapping [2], as shown in Figure 1b, and M-B that executes
mapping before buffering [6], as illustrated in Figure 1c. Map-
Buf lies in the middle of the design space and tackles mapping
and buffering simultaneously, as depicted in Figure 1d. Our
workflow and benchmarks are publicly available [22], [23].

A. Workflow

Our open-sourced workflow is shown in Figure 3. The in-
puts are a dataflow graph generated by an open-source dynam-
ically scheduled HLS tool [9], the target FPGA architecture,
and the target clock period. The output is a buffered dataflow
graph. Given the dataflow circuit, we run logic synthesis and
retrieve the subject graph. We then perform cut enumeration to
prepare a set of cuts for each node in the subject graph using
the strategy of Section V. We employ our MILP formulation
from Section IV and solve it using the Gurobi solver [24] with
a 40-minute timeout. We extract the buffer placement from
the MILP solution to obtain the buffered dataflow circuit. We
run logic synthesis and technology mapping on this circuit
using ODIN-II 8.1.0 with Yosis [25] and ABC 1.01 (applying
the command “if -K 6”) [26]. We evaluate the number of
clock cycles and verify the functional correctness of the circuit
by running behavioral simulations in ModelSim 2021.2 [27].
We evaluate the maximum achievable clock period by parsing
the post-layout setup timing report of VPR 8.1.0 [28] using
a modified VTR version of the Stratix-IV architecture [28].
Finally, we read the FPGA utilization report from VPR and get
the number of LUTs and FFs required in the implementation.

Notice that we do not use the LUT mapping solution (i.e.,
the cut selection variables) to implement the LUTs directly
but run ODIN-II and ABC on the buffered dataflow graph
instead. While MapBuf models only the depth of the logic
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Fig. 3: MapBuf workflow. All three approaches that we consider (i.e., M-B, B-M, and MapBuf) input a dataflow circuit description, the
target clock period, and FPGA architecture information, with the goal of producing a buffered dataflow circuit by solving an MILP. B-M [2]
relies on precharacterized delays and entirely omits LUT mapping details (red dashed line). M-B [6] iterates between circuit mapping and
the MILP (dashed blue lines). The novelty of MapBuf is in describing both buffer insertion and technology mapping simultaneously inside
a single MILP formulation (highlighted with bold black lines).

network to regulate frequency, ABC executes area recovery
heuristics which improve the number of LUTs and, thereby,
the implementation area. This aspect is orthogonal to our
contribution and only an additional optimization that our
baseline strategies benefit from as well.

We use a consistent evaluation flow on the buffered dataflow
graph of all three buffering methods we compare. We analyze
the same HLS kernels evaluated from a recent work that ex-
plores buffer placement in dataflow circuits [6]. Additionally,
we introduce a benchmark implementing a single forward path
of a Convolutional Neural Network (CNN) [29] to illustrate
the effectiveness of our approach on large workloads. We set
our target clock period to CP = 4.2 ns consistently with our
baselines [2], [6].

B. Delay Characterization

Our model needs delays of different macro-cells; we here
describe how we obtain them.

We determine the LUT level delay (𝐷lut) and carry chain
delay (𝐷arith) by evaluating all benchmarks using the workflow
from Section VI-A; our results are plotted in Figure 4. We
incorporate the average of the measured delay values into our
timing model. Other special nodes like DSPs are pipelined,
and there is no combinational delay from input to output.
𝐷arith is the precharacterized delay for carry chains. The

edges leaving and entering the carry chain unit still respect the
Equations (1), (2) and (3). However, as the carry chain units
are not implemented using LUTs, we replace Equation (5)
with the following equation for delay propagation:

𝑇 𝑖𝑛
𝑒2 ≥ 𝑇𝑜𝑢𝑡

𝑒1 + 𝐷arith,

where 𝑒1 and 𝑒2 are the arithmetic unit’s input and output
edges.

C. Results: Performance Evaluation

Table II shows the number of clock cycles, clock period,
logic levels, the execution time (i.e., the product of clock
period and cycles) achieved by the three approaches we con-
sider (i.e., B-M, M-B, and our MapBuf). Our results show that

Fig. 4: Delay characterization. We show the delay value distribution
measured in our flow for the following constructs: (i) inside a single
LUT, (ii) on the wire between two LUTs, (iii) the effective LUT level
delay (i.e., the sum of the single LUT delay and the surrounding
wiring), and (iv) an arithmetic unit (including the wire delays to and
from the arithmetic units). The average delay of a LUT level (𝐷lut)
is 0.70 ns, consisting of an average logic delay of 0.24 ns and a wire
delay of 0.46 ns; we include this average value in our timing model.
For a 4.2 ns clock period target, the longest combinational path should
contain at most 6 LUT levels. We also employ the average arithmetic
unit delay, 𝐷arith = 2.22 ns.

MapBuf’s buffered circuits require fewer clock cycles than B-
M on all benchmarks since precharacterization overestimates
the propagation delay. As a result of reducing the clock cycles
and shortening the clock period, we reduce the execution time
by up to 43%, as depicted in the “Speedup” column.

Compared with M-B, MapBuf’s mapping and LUT-level
prediction are more flexible. During one iteration, the M-B
method assumes a fixed mapped LUT network when running
buffer insertion and a static buffer configuration when running
another technology mapping. Therefore, the iterative method
selects a locally optimal solution. Meanwhile, MapBuf ex-
plores both buffer insertion variables and cut selection vari-
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Cycles Clock period (ns) LUT level Execution time (ns) Speedup
B-M M-B ours B-M M-B ours B-M M-B ours B-M M-B ours B-M M-B

gaussian 5050 4481 3354 5.35 4.75 4.58 4 5 5 27018 21285 15371 43% 28%
covariance 179494 179465 176862 4.68 4.49 4.29 5 4 5 840032 805798 758561 10% 6%
insertion sort 232 219 199 5.11 5.02 5.13 6 6 6 1186 1099 1021 14% 7%
gemver 9622 8632 6652 5.92 5.31 6.02 5 4 6 56962 45836 40052 30% 13%
gsumif 5271 4342 4227 5.02 4.79 4.18 5 5 5 26460 20798 18350 31% 12%
gsum 5368 4450 4326 4.69 4.02 4.27 6 4 5 25176 19002 18684 26% 2%
matrix 101515 70828 67662 4.64 4.77 4.40 5 6 6 471030 337850 297577 37% 12%
mvt 20115 20072 20048 3.83 4.53 3.72 4 5 4 77040 90926 74599 3% 18%
stencil 2d 30674 28300 23592 4.97 4.65 4.98 5 5 5 152450 131595 117441 23% 11%
CNN 657990 626092 440552 5.98 5.2 5.11 7 5 5 3934780 3255678 2251221 43% 31%
Avg. impr. % B-M - 10.49% 20.92% - 4.46% 6.53% - 14.36% 25.92%
Avg. impr. % M-B - - 11.50% - - 1.57% - - 13.32%

TABLE II: Performance comparison of B-M (buffering before mapping, see Figure 1b), M-B (mapping before buffering, see Figure 1c),
and MapBuf (indicated as ours). We measure the clock cycles, clock period, and LUT levels, and calculate the execution time as the product
of the clock period and cycles. For each parameter, we present the arithmetic mean of improvements compared to B-M (“Avg. impr. %
B-M”) and M-B (“Avg. impr. % M-B”). MapBuf systematically honors the LUT level target, always reduces the number of clock cycles
with respect to both baselines, and typically achieves a lower clock period. Consequently, MapBuf achieves execution time speedups with
respect to both methods on all benchmarks (see rightmost column “Speedup”), with an average speedup of 25.92% compared to B-M and
13.32% compared to M-B.

#FFs #LUTs
B-M M-B ours B-M M-B ours

gaussian 808 801 648 1302 1241 1083
covariance 1616 1306 1381 2653 2285 2373
insertion sort 2230 1867 1828 3528 2903 2799
gemver 5129 5177 3109 7207 7281 4786
gsumif 917 820 813 1513 1284 1373
gsum 649 514 567 1084 858 971
matrix 966 891 714 1455 1397 1145
mvt 1607 1317 1178 2420 2117 1902
stencil 2d 1567 1599 1192 2396 2386 1917
CNN 2355 2462 2226 3996 4122 3848
Avg. impr. % B-M - 8.60% 19.79% - 8.50% 16.77%
Avg. impr. % M-B - - 11.14% - - 8.11%

TABLE III: FPGA utilization comparison. We show the LUT and
FF usage in the FPGA implementation; “Avg. impr. % B-M” and
“Avg. impr. % M-B” represent the arithmetic mean of area reduction
compared to B-M and M-B, respectively. In addition to the significant
performance improvements shown in Table II, MapBuf generally uses
fewer FFs and LUTs than prior approaches.

ables simultaneously. As a result, MapBuf’s throughput and,
thus, execution time, is higher than M-B on all benchmarks,
resulting in the average speedup of 13.32%.

We currently assume a fixed LUT delay plus average wire
delay and ignore the wire delay variability. As shown in
Figure 4, the longest wire delay is around 2.0 ns, which is
larger than MapBuf’s wire delay assumption of 0.35 ns. This
explains why, despite the fact that we accurately honor the
LUT level target, the clock period results on some bench-
marks, e.g., “insertion sort”, are higher than the target. In
the future, we intend to include the wire delay variability
in the timing model to further improve the accuracy of our
model and, consequently, circuit performance. Yet, even with
this discrepancy, MapBuf systematically outperforms both M-
B and B-M, which points to the relevance of considering buffer
insertion and technology mapping simultaneously.

D. Results: FPGA Utilization Evaluation

All three methods minimize the total number of buffer
slots as part of their objective function to reduce the area

consumption of the final circuit. The results in Table III
demonstrate the effectiveness of MapBuf regarding area op-
timization. With the help of cut selection variables, MapBuf
satisfies the target logic level while using, on average, 19.79%
fewer FFs compared to the B-M method and 11.14% compared
to the M-B method. Since MapBuf inserts fewer FFs, it breaks
fewer combinational logic paths and, consequently, reduces
the number of LUTs. In contrast, the other two methods
place unnecessary buffers, as shown in Section II. For this
reason, MapBuf generates circuits with 16.77% fewer LUTs
compared to the B-M method and 8.11% compared to the
M-B method. Together with the results in Section VI-C, we
conclude that MapBuf inserts buffers less aggressively than
the other two methods, but in more appropriate locations: our
circuits are typically faster and cheaper than prior solutions.
Hence, MapBuf achieves Pareto-optimal design points that
were not possible with prior techniques.

E. Results: LUT Level Estimation Accuracy

As mentioned in Section VI-A, after MapBuf outputs the
buffered dataflow circuit, we use ABC to run technology
mapping and proceed with clock period evaluation based on
ABC’s mapping result. The LUT level derived by MapBuf’s
MILP constraints may deviate from the ultimate value after
ABC. We are here interested in evaluating these effects and
analyzing possible discrepancies. Therefore, we use a bench-
mark suite of combinational logic networks with different
sizes [30] to evaluate MapBuf’s performance. We change (only
in this evaluation) the objective function to minimize the LUT
level and read the objective function value after optimization.
Figure 5 shows the results. MapBuf achieves almost the same
results as ABC, indicating the high quality of LUT level
calculation in MapBuf.

F. Results: MILP Runtime

MapBuf combines buffer insertion and technology mapping
into a MILP formulation which is, naturally, more complex
than approaches that handle these optimizations separately
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Fig. 5: Accuracy of MapBuf’s LUT level estimation. 𝑥-axis is the
solution of our MILP solver with 200 seconds timeout, and 𝑦-axis
is the LUT level after running ABC’s script “if -K 6”. Both axes
are of log scale, and the dashed line 𝑦 = 𝑥 indicates that MapBuf
achieves the same LUT level as ABC. Points above and below the
diagonal line indicate an underestimation and an overestimation of
LUT levels by MapBuf, respectively. MapBuf precisely achieves the
same depth-optimal LUT level as ABC and slightly overestimates
networks deeper than 128 LUT levels.

(such as the two approaches we discussed in this section).
We here investigate the runtime of MapBuf and its ability to
achieve near-optimal results within an acceptable time frame.

Our runtime experiment considers “CNN”, as it contains the
most complex loop nest (i.e., a single loop encapsulating three
loops with up to six levels of nesting) among our benchmarks.
We consider four optimization techniques: B-M, M-B (in
particular, the last round of the iterative method), MapBuf
with an exhaustive cut enumeration that allows up to 100
cuts per node (MapBuf-Exhaustive), and MapBuf with one
cut per node in addition to the cuts preserved by criteria 2
from Section V (MapBuf-Lite). All four techniques target the
optimization function from Equation (7); we can, thus, directly
compare the objective function value that each technique is
able to achieve within a given CPU runtime.

Figure 6 plots the evolution of the objective function value
of the four techniques with CPU runtime of the MILP solver.
A higher value indicates a circuit with better performance.
We can identify which term is updated by the slope of the line
since throughput improvements increase the objective function
more significantly than buffer reduction (due to the value of
𝛼, described in Section IV-E). We use dashed lines to indicate
the last throughput update (without accounting for possible
improvements in the area). We observe the following: (1) M-
B and B-M quickly converge to the same objective function
value, which does not further improve with time. (2) MapBuf-
Exhaustive takes 21% longer to converge than the B-M
method, but then achieves a higher objective function value
than M-B and B-M; this is in line with our observations from
Section VI-C, which demonstrates the superior performance
of MapBuf. (3) MapBuf-Lite converges faster than MapBuf-
Exhaustive and even 49% faster than B-M, with only a minor
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Fig. 6: MILP objective function value with respect to CPU time of
benchmark “CNN”. The squares represent updates of the objective
value. We plot two runs of MapBuf with different numbers of
precomputed cuts (MapBuf-Exhaustive and MapBuf-Lite) and two
runs of the baselines, B-M and M-B. We normalize the 𝑦-axis using
B-M’s final objective value. The objective function values in all four
runs gradually converge but at different speeds. Our results show
that MapBuf’s CPU time is comparable to the other two methods
and achieves better objective function values, which points to its
scalability and ability to achieve high-quality results.

decrease in objective function value; this indicates the ability
of our heuristic from Section V to effectively reduce MILP
runtime without significant performance degradation. All of
this points to MapBuf’s ability to achieve high-performance
design points that prior techniques were not able to discover,
as well as its scalability and broad applicability.

VII. CONCLUSION

Buffer insertion for performance optimization is a critical
design step of high-level synthesis (HLS); however, its effec-
tiveness is hindered by the inability of HLS to account for
the effects of technology mapping on the circuit’s combina-
tional delays. This paper proposes MapBuf, an open-sourced
optimization strategy for HLS-produced dataflow circuits that
formulates technology mapping and buffer insertion into a
joint mixed-integer linear programming (MILP) problem. By
simultaneously exploring mapping solutions and buffer con-
figurations, MapBuf can accurately insert buffers to maximize
circuit throughput and regulate its frequency. In addition to the
exact MILP formulation, we propose a heuristic cut ranking
algorithm to specialize cut enumeration—it enables MapBuf
to efficiently and scalably explore cuts during mapping. We
demonstrate that our method places buffers less aggressively
and more accurately: it outperforms two recent optimization
methods by achieving 25.92% and 13.32% average speedup
while employing 19.79% and 11.14% fewer FFs, respectively.
The fact that MapBuf systematically achieves Pareto-optimal
design points that were unattainable by prior methods points
to its relevance in making HLS-produced circuits efficient and
suitable for various FPGA architectures.
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