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Abstract—Dataflow circuits promise to overcome the scheduling limita-
tions of standard HLS solutions. However, their performance suffers due
to timing overheads caused by their handshake communication protocol.
Current pipelining solutions fail to account for logic optimizations
that occur during FPGA synthesis, thus producing over-conservative
results. In this work, we develop an FPGA mapping-aware timing
regulation technique for dataflow circuits; it relies on FPGA synthesis
information to identify the circuit’s critical path and optimize it through
register placement. Our dataflow circuits Pareto-dominate state-of-the-art
solutions, with up to 29% and 21% execution time and area reduction,
respectively.

I. INTRODUCTION

HLS-produced circuits typically rely on pre-characterized timing
information to control the circuit’s critical path [1]. So far, HLS
tools that produce dynamically scheduled, dataflow circuits from
C/C++ code [2, 3] relied on the same strategy: the delay of each
unit is obtained by synthesising, placing, and routing it in isolation,
and this information is then taken into account when pipelining the
circuit with registers (i.e., buffers) [4, 5]. However, this approach
fails to account for the cross-unit optimisations and simplifications
that occur during FPGA synthesis, placement, and routing, thus
causing several undesired effects: (1) The overestimated dataflow
unit latencies may cause conservative pipelining and unnecessary
resource overheads by placing redundant buffers and preventing logic
optimizations across buffer-separated pipeline stages. (2) The same
conservative pipelining may unnecessarily lower the throughput and,
thus, performance, if a buffer is redundantly placed on a throughput-
critical cycle. (3) Placement and routing may introduce long and
unpredictable combinational paths that cause the frequency to deviate
from the target [6].

In this work, we devise a buffer placement strategy for dataflow
circuits that considers the effects of FPGA synthesis to produce
timing-efficient dataflow designs. Our strategy iteratively explores
how dataflow units synthesize into FPGA constructs (i.e., LUTs); it
identifies circuit portions that form single structural units and guides
the timing optimizer such that particular logic structures remain
intact during buffer placement. On a set of benchmarks obtained
from C code, we show that the resulting dataflow circuits systemat-
ically achieve Pareto-optimal solutions whose timing is significantly
improved with respect to state-of-the-art HLS frequency regulation
approaches.

II. THE NEED FOR MAPPING-AWARE TIMING REGULATION

Figure 1 shows a portion of a dataflow circuit, consisting of
an interconnect of three dataflow units: the forks dispatch data
to multiple successors and the join synchronizes its inputs before
producing a token for the successor. The units communicate with
fine-grain handshake signals to indicate their readiness to accept data
from their predecessors as well as the validity of their data to the
successors. The longest combinational paths through the shown units
(containing logic to compute the ready and valid handshake values)
are the coloured paths through all three units.
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Figure 1: Precharacterized timing information in HLS may be inac-
curate and conservative, thus leading to suboptimal area and perfor-
mance. In this example, a timing model based on pre-characterized
combinational delays would assume a delay of 3 ns through the
coloured paths. The top path that belongs to the left fork, join, and
right fork shown in green, purple, and orange is synthesized into only
2 LUTs (dashed red) with a total delay of 1 ns. Similarly, the bottom
pink path is synthesized into only one LUT, with a delay of 0.5 ns.

When measured in isolation, the portions of these combinational
paths within the forks and join have a delay of 1 ns each. However,
when implemented on an FPGA, these paths are first merged and
simplified using logic synthesis (e.g., the dashed AND gate in the join
is removed), and then mapped onto FPGA Look-Up Tables (shown
in red dashed); the delays of the resulting constructs are completely
different than the ones specified at RTL level (in this example, we
assume a delay of each LUT to be 0.5 ns, thus, the total delay of the
shown paths after implementation is only 1 ns for the top path and
0.5 ns for the bottom one). Clearly, assuming the pre-characterized
operator delays when optimizing the circuit’s timing would result in
conservative assumptions: it may require breaking these paths with
buffers that are not actually needed. These buffers would not only be
an expensive overhead but may also lower the circuit’s throughput
and completely prevent logic optimizations such as the ones in the
figure, without any improvement of the circuit’s frequency.

Although intuitively clear, understanding the delay effects of logic
synthesis in dataflow networks is not straightforward due to the
complex interactions between the datapath operators and bidirectional
handshake signals [5]. What is more, systematic buffer insertion that
considers this information is challenging, as the placement of a buffer
may affect possible synthesis optimizations and invalidate the prior
topological assumptions. We tackle this problem in this paper: we
propose an iterative buffer placement that considers the mapping of
a dataflow circuit to FPGA constructs and gradually adds buffers
to strategic positions in the circuit, such that their effect on logic
optimizations is accounted for and minimized. In Section III, we
outline what others have done before us to regulate the timing of
HLS-produced circuits. In Section IV, we discuss our methodology
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to understand the synthesis and mapping of the dataflow circuit to the
underlying FPGA constructs. In Section V, we present our algorithm
for step-wise buffer insertion that accounts for the circuit’s mapping.
We show the superiority of the circuits optimized with our strategy
over state-of-the-art solutions in Section VI.

III. BACKGROUND AND RELATED WORK

Classic HLS scheduling assigns operations to particular time steps;
it uses techniques such as modulo scheduling to pipeline and retime
the circuit [7, 8]. Many scheduling approaches can be solved itera-
tively by rescheduling operations to improve the target cost function
(e.g., throughput, latency) under particular constraints [9]. More
recent HLS works include synthesis information into the scheduling
problem to improve timing estimation and accuracy [1, 10]. None of
these algorithms is applicable to dataflow circuits, where no static
schedule is devised and the exact time in which each operation
executes is determined at runtime.

The works closest to ours are those of Tan et al. [1] and Zheng et
al. [11]. Tan et al. propose a scheduling approach that accounts for the
mapping of original operations onto LUTs; in contrast, we consider
the operation mapping after logic synthesis and optimization for more
accurate frequency regulation. Zheng et al. account for placement
and routing; their strategy is iterative, just like ours, but its starting
point is a conservative register placement based on pre-characterized
delays which we entirely omit. The same work discusses mapping
ambiguities in the presence of shared registers; we tackle this problem
in a more general way in Section IV-A. Neither of these approaches
directly applies to dynamic scheduling, which is our primary target.

Complementary works focus on the problem of estimating routing
congestion and interconnect delays [12, 13]; although this aspect
is orthogonal to our contribution, our approach could be enhanced
by these techniques to reduce the effect of routing on the achieved
critical path, as we will discuss in Section VI.

Several works explore mathematical models based on Petri nets
to optimize the performance of synchronous [4, 5, 14] and asyn-
chronous [15, 16] dataflow circuits. The main idea is to strategically
place and size buffers to achieve the desired area/performance target.
Buffers can be placed on any dataflow channel between the prede-
fined dataflow units without compromising correctness [4]; internally,
they must remain intact to honor the latency-insensitive handshake
protocol. The most recent of these works [5] represents the dataflow
circuit with a fine-grain timing model that captures the combinational
delays on different timing domains (i.e., the datapath, the bidirectional
handshake signal delays, and their occasional interactions). The idea
is to employ mixed-integer linear programming to maximize the
throughput of the system, ϕ, while minimizing the total number of
inserted buffers,

∑N
i Ri:

max (α · ϕ− β ·
N∑
i

Ri), (1)

under a specified clock period (CP) constraint and tuning constants
α and β. However, none of these strategies accounts for synthesis
information when regulating the circuit’s critical path; thus, the
resulting buffering is often over-conservative or imprecise. In this
work, we include synthesis information into our timing optimization
and iteratively refine the buffering to precisely regulate the circuit’s
frequency. To fairly compare our mapping-aware timing model with
state-of-the-art work [5], our evaluation in Section VI employs the
same MILP formulation as described above. Yet, our iterative refine-
ment strategy is perfectly general—it could be employed to improve

the accuracy of any dataflow-oriented buffer insertion strategy and
adapted to any optimization objective.

IV. MAPPING-AWARE ALGORITHM

Section II illustrated the need to consider synthesis information
when estimating the critical path of a dataflow circuit. To this end,
we propose a mapping-aware algorithm that extracts this information
from a standard technology mapper and devises an accurate timing
model accordingly. The model represents each dataflow unit with
delay nodes and explicitly specifies dataflow channels that connect
them. In this way, it enables buffer placement between units such that
the functionality of the communication protocol is always respected
(see Section III).

Figure 2 illustrates the stages of this algorithm applied to a data-
flow graph (DFG), composed of a fork (F), shifter (<<), adder (+)
and branch (B). Although, for simplicity, we here consider an acyclic
DFG, our methodology is general and supports cyclic graphs as well.
We describe the main steps of our mapping-aware timing model
creation in the remainder of this section.

A. LUT to DFG Mapping

Any technology mapper targetting FPGAs inputs a circuit (in
our case, in the form of a DFG) and generates the corresponding
graph of LUTs. Our timing model needs to understand how this
mapping occurs and identify which physical constructs are used
to implement each DFG path—this information can then be used
to accurately model the delay of each path and to appropriately
break it with buffers. The intermediate representation of the mapper
labels each LUT output with the information on which operation
of the DFG it originates from (in case of logic restructuring, it
labels it with the operation that contributes most to computing the
LUT output value); we can therefore trivially map each LUT to the
corresponding DFG operator, as shown in Figure 2. However, it is not
always straightforward to determine which DFG path their connection
belongs to, as we will see next.

In the rest of this section, we refer to a LUT edge as an edge
connecting two LUTs, Lsrc and Ldst, in the LUT graph. We refer
to dataflow operators as DFG units, connected by DFG channels; a
sequence of units and channels forms a DFG path. Our task is to
identify a unique DFG path for each LUT edge of the LUT graph,
so that we can appropriately include it into our timing model, which
we will discuss in Section IV-B.

One LUT edge to one DFG path. When Lsrc and Ldst of a LUT
edge belong to DFG nodes connected through a single DFG path,
the LUT edge trivially maps to this path. This is the case for the
LUT edge connecting L6 and L7: L6 belongs to the adder, L7 to the
branch, and they are connected through a single path (i.e., path adder-
branch)—thus, LUT edge L6-L7 maps to this path. The same holds
for LUT edge L2-L6, which maps to path fork-shift-add (i.e., red and
blue edges of the DFG in Figure 2). Similarly, L1-L3 maps to path
fork-fork, thus implying that this LUT edge is internal to the fork
node. The fact that there is no LUT computing the shifter output
implies that the shifter logic is included in the logic of another LUT
on the path—in this case, L6 shares the logic to compute the shift
and the addition. We will include this phenomenon into our timing
model in Section IV-B.

One LUT edge to many DFG paths. In this case, a single LUT
edge could correspond to multiple candidate paths. For instance, in
Figure 2, L5 computes the output of the fork and connects to L7
that calculates the branch output—however, there are two DFG paths
connecting the fork and the branch (i.e., the left path through shift
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Figure 2: Our main steps to create a mapping-aware timing model
from a DFG of a dataflow circuit. The resulting timing model
accounts for the LUT mapping of DFG constructs and it is compatible
with any performance optimization strategy for dataflow circuits.

and add, and the right path that connects them directly). Since the
technology mapper does not provide us with a unique mapping of
this edge, our algorithm simply chooses the DFG path with fewer
dataflow units (in the example of Figure 2.a, this corresponds to the
right path, with only two units). Naturally, there is no guarantee that
this choice is correct—as we will show in Section V, our strategy
can correct an optimistically chosen mapping by iteratively refining
the synthesis information and improving the mapping accordingly.

One LUT edge to no DFG path. Due to logic synthesis restructur-
ing, it might occur that a LUT edge cannot be associated with any
DFG path (i.e., Lsrc and Ldst belong to two DFG nodes that are not
at all connected in the DFG). In this case, we create an artificial edge
that connects the corresponding DFG nodes in our timing model and
introduce a combinational delay between them. Although this edge
cannot be physically broken with a buffer, it contributes to the delay
calculation and enables accurate frequency regulation (e.g., if the
artificial edge is on the critical path, the path will be broken with a
buffer either before or after it).

To create a complete LUT to DFG mapping, we iterate through
all LUT edges and assign them to DFG paths according to the
rules above. A presence of one or multiple LUT edges on a DFG
path implies the presence of one or multiple combinational paths
(with, possibly, different delays) along it; if there is no LUT edge on
the DFG path, this implies that it has been optimized out by logic
synthesis and can thus be ignored in the timing model.

B. Timing Model Generation

The result of the previous step is the list of all edges of the LUT
graph mapped to DFG paths. In this step, we employ this mapping
to generate the timing model of the circuit.

For each LUT in the LUT graph, we place a delay node in the
dataflow unit that the LUT maps to; this node will be characterized
with a predefined LUT delay. For each LUT edge in the LUT graph,
we traverse the corresponding DFG path (as determined in the step
above); in every dataflow node on the path from Lsrc to Ldst, we
place a “fake” delay node with combinational delay of 0.

An example of a complete timing model is depicted in Figure 2.d.
The full black circles represent the combinational delay nodes,
obtained from the LUTs in the left figure. Each node has a unitary
delay equivalent to 1 LUT. For example, the node inside the adder
corresponds to L6 in the LUT graph. The fork has multiple delay
nodes, corresponding to LUTs L1 to L5. The empty (dashed) node in
the shifter corresponds to a fake delay node of delay zero, inserted
into this unit as it has no internal LUT.

The resulting timing graph of Figure 2.d is compatible with buffer
placement algorithms for dataflow circuits: edges connecting delay
nodes among different units strictly follow the dataflow edges and
can thus be broken with a buffer, whereas the edges internal to
the units remain intact [5]. We can therefore provide this timing
model to any dataflow performance optimizer. The key difference
from prior solutions is that the delays of our timing representation
accurately reflect the circuit’s post-synthesis LUT implementation;
thus, the buffering can be performed with greater accuracy, as we
will demonstrate in Section VI.

C. Penalty Computation

The timing model of the previous section can be directly plugged
into any existing dataflow circuit pipelining strategy [4, 5] to place
buffers on channels between dataflow units and control the critical
path. However, placing buffers between two units might prevent logic
optimizations between them and increase area (e.g., the shifter and
adder of Figure 2 can share a LUT only if there is no buffer between
them). We thus aim to avoid the placement of buffers between units
that share a significant portion of their logic.

To this end, we introduce the notion of penalty, which serves as
an indicator of the amount of logic shared among neighboring units:

Penalty(ci) =
|Xfake(ci)|
|X(ci)|

, (2)

where ci is the channel for which we compute the penalty, X(ci)
represents the sets of all delay nodes in the source unit of channel
ci, and Xfake(ci) is the set of “fake” delay nodes of the same unit
connected to channel ci. The penalty represents the fraction of nodes
of the source unit that are shared with its successor over its total
number of LUTs; its highest value is 1, indicating that the unit shares
all of its logic with its neighboring unit.

In our performance optimizer, we associate each channel with a
penalty computed as above and attribute it as a weight to any buffer
placed on this channel. Our objective function aims to minimize the
penalty-weighted sum of inserted buffers and will therefore break
channels with lower penalty whenever possible:

max
(
α · ϕ− β ·

N∑
i

Ri ·
(
1 + Penalty(ci)

))
. (3)

The only difference with respect to Equation 1 is the term Penalty(ci),
representing the penalty of placing a buffer Ri on channel i.

Consider the example in Figure 2.d. If the path fork-shift-add-
branch must be broken to honor a CP constraint, there would be
three candidate channels, a, b, and c, for placing a buffer. For the
computation of the penalty of a, the source node is the fork (|X| = 5
and |Xfake(a)| = 0). The penalty of this channel is 0. This means
that no logic of the fork is shared with the shifter. For channel b,
|X| = 1 and |Xfake(b)| = 1, the penalty is 1, which means that
all the logic of the shifter is shared with the adder. For channel c,
|X| = 1 and |Xfake(c)| = 0, the penalty is 0, which means that there
is no logic shared is between adder and branch. Hence, channels a
and c are preferred over channel b when placing a buffer.

D. Timing Domains

State-of-the-art performance optimization strategies for dataflow
circuits diversify dataflow circuit signals into timing domains [5]
which model delays of the datapath, handshake signals, and their
interactions explicitly, as mentioned in Section III. Our mapping-
aware timing modeling so far considered only a single domain—we
here generalize our approach.
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Figure 3: The mapping algorithm applied to a LUT edge connecting
two different timing domains (shown in red and green). We rely on
an existing dataflow modeling strategy [5] to identify places where
timing domains meet and construct our timing model accordingly.

For each individual domain, we can apply the strategy of this
section in isolation: the data, valid, and ready domain signals strictly
follow the directed paths of the DFG; as they are immediately visible
in the DFG structure, we can easily match them with LUT edges,
as described in Section IV-A. However, this is not the case when
domains interact, as the interacting paths might not correspond to
directed DFG paths and, thus, might not be visible in the DFG. In
other words, the DFG does not contain the information on domain
interaction and the DFG path corresponding to a LUT edge capturing
this interaction might not be immediately determinable. To this end,
we rely on the model of Rizzi et al. [5] to obtain a list of all DFG
nodes where domains interact—we can then reconstruct all paths
between LUTs of different domains and map the LUT edges to these
paths following the same strategy as in Section IV-A.

Consider the example in Figure 3. The LUTs highlighted in green
and red correspond to two distinct timing domains; they interact in
L9. The timing model of each domain can be constructed as discussed
above; however, the LUT edge from L6 to L9 does not correspond
to any DFG path (i.e., there is no path from the adder to the fork).
The modeling strategy of Rizzi et al. [5] identifies the branch as the
connecting point of the green and the red domain; this allows us to
identify the path add-branch-fork, with the delay of L6 in the adder,
L9 in the fork, and an artificial node that connects them in the branch.
This delay path can now be treated as any other timing model path.

V. AN ITERATIVE APPROACH

The approach from the previous section provides us with an accu-
rate post-synthesis circuit description; we can use the timing model
and penalties to place buffers following any dataflow pipelining
approach. Despite the delay accuracy of this methodology, placing a
buffer into the circuit impacts its synthesis (e.g., logic optimizations)
and changes its LUT mapping; the more buffers we place, the
more distorted the circuit mapping becomes from what we originally
assume. To maintain high accuracy of our delay estimation and, thus,
frequency control, it is imperative that we account for the synthesis
and mapping changes due to buffering.

To this end, we develop an iterative pipelining approach: the idea is
to gradually insert buffers into the circuit, while keeping track of the
mapping changes that occur in the process. We can then account for
these changes in the following iterations, while adding more buffers
in a step-wise manner. In addition, the assumptions made during the
mapping stage in Section IV-A (due to the ambiguity in mapping LUT
edges to DFG paths) can be corrected in subsequent iterations. For
instance, in the example of Figure 2, if the output edge of LUT5 has

been mapped to the wrong path in the DFG and a buffer incorrectly
placed, we will identify it in the following iteration and remap the
edge to the correct path.

Our iterative approach is illustrated in Figure 4. Initially, we
provide the synthesizer with the dataflow graph of the circuit with
buffers placed on the loop back edges of all combinational cycles.
The output of the synthesizer is analysed by our LUT-to-DFG mapper,
as explained in the previous section. We use its outputs to generate
the timing model of our dataflow circuit and employ it to compute
the penalties of each channel. We integrate the penalties into the
optimization function of our timing model and provide it to a
solver, which generates the optimal buffer placement for the given
optimization function, thus completing an iteration.

We then provide the optimized circuit as input to the logic
synthesizer and check if the desired number of logic levels (i.e.,
the CP target) has been achieved. If this is not the case (e.g., the
buffer placement has negatively impacted the logic optimizations),
we perform another buffering iteration. We select a subset of the
previously found buffers, such that they are evenly distributed across
the circuit’s basic blocks (i.e., they are sparsely distributed and thus
affect independent logic portions) and their penalties are minimal
(i.e., they disrupt the minimal amount of logic optimizations in
the circuit); we remove all other buffers. We provide this partially
buffered circuit as input to the next iteration, which repeats the
procedure above; the predefined buffers are fixed, but new buffers can
be freely added by the solver based on the updated circuit mapping.
This procedure repeats until all paths meet the desired number of
logic levels.

Although there is no theoretical guarantee that the iterative ap-
proach converges (i.e., the continuous circuit updates may repeatedly
cause significant synthesis disruptions and prevent the circuit from
meeting the target), in practice, the post-synthesis circuit implemen-
tation quickly converges to the desired point in which all path lengths
are accurately regulated by the buffers. We will confirm this in our
evaluation in Section VI-B.

VI. EVALUATION

In this section, we evaluate the effectiveness of our mapping-aware
timing regulation approach.

A. Methodology and Benchmarks

We implement our strategy in Dynamatic [17], an open-source HLS
compiler that produces synchronous dataflow circuits from C code.
Our code is open-source as an add-on to Dynamatic [18].

Dynamatic contains a backend-agnostic timing optimizer [5]. Its
timing model is obtained directly from the RTL descriptions of the
dataflow units, whose delay values are determined by characterizing
each unit in isolation. The optimizer uses a mixed-integer linear
programming (MILP) model to place buffers; the objective is to maxi-
mize circuit throughput while honoring a particular clock period (CP)
constraint. We reproduce this flow for our evaluation baseline: we
measure the number of logic levels individually in each synthesized
unit and calculate its combinational delay accordingly, by assuming
the same predefined logic level delay value of 0.7 ns as we assume
in our circuits.

We easily incorporate our strategy into the existing Dynamatic
flow: we replace its circuit model, as described above, with the
mapping-aware model, obtained from the circuit synthesized with
ABC (using command ‘if -K 6”) and as described in Section IV;
we extend the MILP formulation to account for mapping penalties,
as described in the same section. All other optimization aspects are
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Figure 4: Starting from the C/C++ code, Dynamic HLS generates the DFG description of the circuit. The Logic Synthesizer (in our case,
ABC) creates the LUT graph from the DFG. The LUT-to-DFG Mapper maps the LUT graph to the DFG. The Timing Model Generator
receives the map and DFG as inputs to produce the timing model which is used by the Penalty Calculator to retrieve the penalties for each
dataflow channel. The Timing Model Solver determines the optimal buffer placement for a pre-defined objective function. If the circuit with
the computed buffers positions does not respect the target logic level count, the procedure is repeated with a fixed subset of buffers from
the previous iteration. Once the target number of logic levels is achieved, the algorithm terminates.

identical as in the original model and we can, thus, fairly compare
the two strategies. Note that our approach is in no way limited to
this particular optimizer; our model and preferential strategy could
be used with any buffering approach for dataflow circuits.

We aim to constrain all combinational delays to at most 6 logic
levels of an estimated delay of 0.7 ns; we thus expect our CP to be
around 4.2 ns. Dynamatic uses one MILP run to meet this target,
whereas we iteratively run our algorithm. We use ODIN-II 8.1.0 [19]
with Yosis to extract a blif description of the circuit and provide
it as input to ABC 1.01 [20]. We use ModelSim 2021.2 [21] to
verify our circuits and obtain the clock cycle count; we calculate
the total execution time as a product of the CP and clock cycle
count. We present all area and timing results after placing and routing
the circuits with VPR 8.1.0 targetting a Stratix-IV device (using its
modified architecture from the VTR benchmarks [22]). We use the
Gurobi solver [23] to retrieve the MILP solutions.

We evaluate a collection of recent HLS kernels that were published
as part of a recent work on dataflow circuits [5] and part of standard
HLS benchmarks suites [24, 25]. In all our benchmarks, the MILP
solver finds the optimal solution in under 3 minutes and our iterative
method finds a solution in less than 3 iterations. In the rest of this
section, we are interested in determining whether, for a given target
CP, our solutions achieve superior area and performance with respect
to the state-of-the-art strategy of Dynamatic [5].

B. Results

Table I summarizes our results; we also visualize them in Figure 5.
Our circuits are superior to previous solutions in all performance and
area aspects, as discussed in the remainder of this section.

Throughput and latency improvements. Prior work makes conser-
vative delay assumptions and places redundant buffers on throughput-
and latency-critical paths. Our strategy places buffers only when
actually needed, thus systematically achieving higher throughputs and
lower latencies, as reflected in the total number of clock cycles (i.e.,
Clock Cycles column in the table) and overall execution time.

LUT and FF savings. The redundant buffers of prior work typically
also cause an unnecessary area overhead; as discussed above, our
work omits these buffers and achieves simpler and cheaper circuits
(see LUTs and FFs columns in the table).

Reliable critical path regulation. In all benchmarks, our approach
achieves the targeted number of logic levels (see Logic Levels
column), which indicates that our mapping algorithm successfully
reasons about the circuit’s mapping to FPGA logic, identifies actual
post-synthesis critical paths, and accurately breaks them with buffers.
This is not the case in prior work, which sometimes accidentally
and nondeterministically achieves a good CP (e.g., mvt in the table

insertion_sort
stencil_2d

covariance gsum gsumif
gaussian matrix mvt

gemver
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Previous

Execution Time (ns)
# LUTs
# FFs

Figure 5: Execution time (i.e., product of CP and clock cycles)
and resources (i.e., LUT and FF count) of the dataflow circuits
optimized with our iterative, mapping-aware strategy, normalized to
the corresponding circuits optimized with a state-of-the-art, mapping-
agnostic approach [5]. Our designs are depicted as columns and
the baseline values are all in dashed line equal to 1. Most of our
circuits Pareto-dominate prior work by simultaneously reducing both
execution time and resource requirements.

meets the CP target; although not reported in the table, we note that
the achieved CP unpredictably diverges for slight target changes).
The minor discrepancies from the target of 4.2 ns are due to the
fact that we currently do not account for routing delays, which can
significantly contribute to the critical path, as others have noted before
us [12, 13]. It is important to note that accounting for this effect
could only further improve our results and increase the benefits of
our approach over the mapping-agnostic baseline that cannot account
for neither mapping nor routing.

In summary, the fact that our approach always achieves Pareto-
optimal solutions (in most cases, our circuits are Pareto-dominant
as well, as they improve both area and performance) points to the
effectiveness of our approach and demonstrates the need to include
mapping awareness in dataflow circuit performance optimization.

VII. CONCLUSIONS

Dataflow circuits have recently gained notable interest in the
context of HLS. However, current techniques to generate and optimize
such circuits from high-level code are agnostic of the underlying hard-
ware architecture, which makes their frequency difficult to estimate
and regulate. In this work, we propose a timing optimization approach
that iteratively refines the circuit’s buffering while accounting for its
LUT mapping on an FPGA. We demonstrate that our approach can
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Benchmark CP (ns) Clock Cycles Execution Time (ns) ET Ratio # LUTs LUT Ratio # FFs FF Ratio Logic Levels
Prev. Iter. Prev. Iter. Prev. Iter. Prev. Iter. Prev. Iter. Prev. Iter.

insertion sort 5.11 5.02 232 219 1186 1100 -8% 3528 2903 -18% 2230 1867 -17% 6 6

stencil 2d 4.97 4.65 30674 28300 152450 131511 -14% 2396 2386 -1% 1567 1599 +3% 5 5

covariance 4.68 4.49 179494 179465 840032 805798 -5% 2653 2285 -14% 1616 1306 -20% 5 4

gsum 4.69 4.02 5368 4450 25176 17889 -29% 1084 858 -21% 649 514 -21% 6 4

gsumif 5.02 4.79 5271 4342 26461 20799 -22% 1513 1284 -16% 917 820 -11% 5 5

gaussian 5.35 4.75 5050 4481 27018 21285 -22% 1302 1241 -5% 808 801 -1% 4 5

matrix 4.64 4.77 101515 70828 471030 337850 -29% 1455 1397 -4% 966 891 -8% 5 6

mvt 3.83 4.53 20115 20072 77041 90927 +19% 2420 2117 -13% 1607 1317 -19% 4 5

gemver 5.92 5.31 9622 8632 56963 45836 -20% 7207 7281 +2% 5129 5177 +1% 5 4

TABLE I: Comparison of our iterative method (Iter.) with a state-of-the-art pipelining approach (Prev.) [5]. The solutions obtained by our
iterative approach always meet the target of 6 logic levels, typically achieve a better clock period (CP), and consistently improve throughput
(i.e., lower clock cycle count) over prior solutions, thus causing a persistent improvement in total execution time. In most cases, the resources
(i.e., LUTs and FFs) improve as well, as our approach places fewer buffers at strategic positions in the circuit.

precisely control the number of logic levels (and, consequently, the
combinational delay) of each dataflow pipeline stage. Our accurate
buffering strategy reduces the execution time by up to 29% and the
resource requirements by up to 21% in LUTs and FFs compared to
prior dataflow circuit buffering strategies. Our work is the first step in
understanding of how HLS-produced dataflow circuits map to FPGA
constructs and the foundation to make them amenable to a variety of
FPGA architectures.
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[17] L. Josipović, A. Guerrieri, and P. Ienne, “Dynamatic: From C/C++ to
dynamically scheduled circuits,” in Proceedings of the 28th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Seaside,
CA, Feb. 2020, pp. 1–10.

[18] “Mapping-aware buffer placement plug-in,” Apr. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.7821272

[19] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin II–an
open-source Verilog HDL synthesis tool for CAD research,” in Pro-
ceedings of the 18th IEEE Symposium on Field-Programmable Custom
Computing Machines, Charlotte, NC, May 2010, pp. 149–56.

[20] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength
Verification Tool,” in Computer Aided Verification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 24–40.

[21] Intel, “ModelSim,” 2021. [Online]. Available: https://www.intel.com/
[22] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-P.

Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng, P. Pa-
tros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High performance CAD
and customizable FPGA architecture modelling,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 13, no. 2, pp. 1–55, Jun.
2020.

[23] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

[24] L.-N. Pouchet, Polybench: The polyhedral benchmark suite, 2012.
[Online]. Available: http://www.cs.ucla.edu/pouchet/software/polybench

[25] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
Proceedings of the IEEE International Symposium on Workload Char-
acterization, Raleigh, NC, October 2014.

6
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 10,2024 at 10:43:05 UTC from IEEE Xplore.  Restrictions apply. 


