N)
)
Check for
updates

Survival of the Fastest:
Enabling More Out-of-Order Execution in Dataflow Circuits

Ayatallah Elakhras Andrea Guerrieri
EPFL EPFL, HES-SO Valais-Wallis
Lausanne, Switzerland Lausanne, Switzerland
ABSTRACT

Dynamically scheduled HLS, through dataflow circuit generation,
has proven successful at exploiting operation-level parallelism in
several important situations where statically scheduled HLS fails.
Yet, although existing dataflow circuits support out-of-order exe-
cution of different operations, they strictly confine successive in-
stances of the same operation to execute sequentially in program
order, which drastically affects the circuit’s performance in the
presence of a long-latency operation. This is in stark contrast with
the reordering freedom customary in superscalar processors that
naturally exploit qualitatively more parallelism in a broad class of
applications. The goal of this work is to produce dataflow circuits
that have reordering capabilities closer to those of out-of-order
superscalar processors. This can bring dramatic improvements in
some practically important cases, including when outer iterations
in nested loops are independent and the inner loop execution has
an unavoidable large initiation interval. In various cases, our tech-
nique increases throughput by a factor dependent on the initiation
interval of the kernel, at a comparatively modest area cost.

CCS CONCEPTS

- Computer systems organization — Data flow architectures.

KEYWORDS

high-level synthesis, dataflow, out-of-order execution

ACM Reference Format:

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovi¢, and Paolo Ienne. 2024.
Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow
Circuits. In Proceedings of the 2024 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA °24), March 3-5, 2024, Monterey, CA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3626202.
3637556

1 INTRODUCTION

Reconfigurable computing, predominantly realized through FPGAs,
represents a form of spatial computing that holds the potential to
deliver much-needed performance and energy advantages while
the computing industry grapples with the challenges of technology
scaling. A typical practical requirement is to compile optimized
production code, often developed in C/C++, into efficient circuits—a

FPGA °24, March 3-5, 2024, Monterey, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0418-5/24/03
https://doi.org/10.1145/3626202.3637556

This work is licensed under a Creative Commons Attribution
International 4.0 License.

44

Paolo Ienne
EPFL
Lausanne, Switzerland

Lana Josipovi¢
ETH Zurich
Zurich, Switzerland

task usually referred to as high-level synthesis (HLS). The true diffi-
culty in this process lies in creating circuits that harness operation-
level parallelism beyond the levels achieved by traditional CPUs,
as parallelism is a pivotal factor in achieving high performance.
CPUs have achieved an impressive level of sophistication in exploit-
ing instruction-level parallelism through superscalar out-of-order
execution. Competing with them is a formidable endeavour.

1.1 Dynamically Scheduled HLS

Traditional HLS [11, 12], since the nineties, has mostly focused
on statically scheduled circuits, typically composed of datapaths
and finite-state machines controlling the periodic activation of the
datapath components. Broadly, they exploit operation parallelism
similar to very long instruction word (VLIW) processors. Alas, for
programs with irregular control flow and memory accesses, they are
not very effective. Therefore, more recently, various authors studied
the production of dynamically scheduled circuits by reviving the
idea of dataflow circuits—that is, circuits without central controllers
and where operators are connected through handshake signals and
are activated by the availability of new operands.

Arguably, dataflow circuits are the “superscalars” of HLS [2, 30],
but this only is partially true: Although they allow for the dynamic
reordering of different operations, depending on operator availabil-
ity and like out-of-order superscalar processors, their construction
forces execution instances of an operation (e.g., in a loop kernel)
to follow strictly program order, which significantly limits their
performance. For instance, common dataflow circuits cannot use
nonblocking caches [20], which can return later cache hits before
earlier misses, whereas all modern processors do.

Our goal is to produce dataflow circuits that have reordering
capabilities closer to those of out-of-order superscalar processors

s = 0;
for (i = 0; 1 < N; i++)
s += 1i;

Figure 1: A Simple Dataflow Circuit. Edges between components
represent communication channels with handshake signals. The left
part of the circuit computes the iterator i and the right part con-
sumes it to perform the accumulation. Real circuits typically employ
MUXes instead of MERGEs, for reasons explained in Section 2.2.

https://doi.org/10.1145/3626202.3637556
https://doi.org/10.1145/3626202.3637556
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626202.3637556
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626202.3637556&domain=pdf&date_stamp=2024-04-02

FPGA °24, March 3-5, 2024, Monterey, CA, USA

Figure 2: Out-of-Order Components. Ordinary dataflow circuits
consume tokens as they come. If Ld B reorders tokens, successors
consume them incorrectly. This circuit is tagless (colours are only
for illustration): nothing but the order identifies the tokens here.

by selectively reordering the execution instances of an operation;
thus increasing dramatically performance at a reasonable area cost.

2 OUT-OF-ORDER DATAFLOW CIRCUITS

In this section, we discuss in order in dataflow circuits and present
examples motivating out-of-order execution.

2.1 Untagged Dataflow Circuits

Several authors explored the generation of dataflow circuits [3, 8,
15, 18, 27, 33, 36] from high-level descriptions, typically, producing
circuits as in Figure 1. They consist of components interconnected
through elastic channels: operands accompanied by handshake sig-
nals indicating when a piece of data is available (a valid signal)
and when it can be consumed (a reverse direction ready signal).
Data exchanges are usually abstracted as token exchanges. Op-
erators evaluate every time they get all the required tokens (i.e.,
their operands). Values are steered between components through
BRANCHes and MERGEes that are, respectively, the circuit equiva-
lent of ordinary branches and of ¢-functions in compilers based on
the static single assignment (SSA) form [13].

Successive operations must be kept in order since operands are
not distinguishable (they have no label or tag) and are exclusively
identified by their order—that is, program order. If a component
were allowed to output tokens in a different order, almost certainly
something would go wrong, as Figure 2 suggests. The absence
of tags in these circuits is key to their practicality. For instance,
matching input operands is as simple as performing the logic AND
of the input valid signals, because the next arriving tokens are
certainly matching (aligned, as we will later define). If order were
not guaranteed, circuit complexity could be prohibitive.

2.2 MERGEs or MUXes? Order, please!

Interestingly, maintaining tokens in program order inside a channel
does not always happen naturally, even in the absence of any out-of-
order component like the one in Figure 2. The MERGE component
has a disturbing behaviour that could break the latency-insensitivity
property of dataflow circuits: It merges two channels and even if
these channels are perfectly ordered, the order of the produced
output depends on when exactly the tokens arrive. In other words,
the latency of the circuits before the MERGE influences the circuit
behaviour and its correctness (clearly, only one of the possible
resulting orders at the MERGE output can correspond to program
order and thus be correct). Not every MERGE is problematic, though.
For instance, the right MERGE in Figure 1 is safe as it receives a

45

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovi¢, & Paolo lenne

for (i = @; i < N; i++){
s = A[i];
if (s > @)
s = sqrt(s);
B[i] = s;
}

(a)

u

Branch; |x[0]

sqrt(alo)) @ LMeree: A2 O
A2l O Al O @)
Al O OOOZ sqrt(A[0])Q 00 ?
(b) 01 (© 01

Figure 3: An Incorrect Dataflow Circuit. Circuit (b) should imple-
ment the code (a). Yet, if the sqrt operator is not combinational,
the MERGE on the right of the circuit propagates the tokens in the
wrong order. The correct circuit would replace the MERGE with a
MUX to force the correct ordering at the end, as suggested in (c).

single token in the beginning of the execution on its left input and
thereafter receives tokens only at its right input; thus, it has no
race at its inputs.

Now, consider the example of Figure 3. The left part of the circuit
is identical to the previous example. The right part loads A[1], tests
if it is positive, and sends it through two paths that are joined by a
MERGE. If the operator sqrt takes several cycles to execute, the
MERGE may receive on its left input tokens corresponding to later
iterations before receiving earlier tokens on the right input. As
the figure suggests (assuming that A[@] is positive and the other
elements negative), the circuit will behave incorrectly and the store
operations will be in the same situation as the bottom adder in
Figure 2. For this reason, it is customary to implement at least
critical MERGEs as multiplexers (or MUXes) and to ensure that
the MUX selectors passes the earliest token in program order first,
even if it arrives to the MUX last, as in Figure 3c. MUXes selectors
can be calculated either by mimicking the entire in-order control-
flow decisions with appropriate circuitry [2, 31] or by employing
compiler’s analysis to extract the minimum necessary of them [18].
It is worth noting that there may be value in being able to leave a
MERGE 1in this circuit, as outlined in the next section.

2.3 The Value of Disorder

It is worth looking at a few examples illustrating why out-of-order
execution could bring significant benefit. Consider the code of
Figure 4a. Assume that the memory holding array B[] is accessed
through a nonblocking cache [20]. When requests are missed, they
take five cycles and, in the meantime, hits can be served with a
latency of one cycle. If the cache had been blocking, the schedule of
execution would have been qualitatively as in Figure 4b, assuming
the first access being a miss followed by three hits. A nonblocking
cache would gain cycles, as in Figure 4c; alas, untagged dataflow
circuits cannot achieve this like modern processors routinely do.
Now, consider the code in Figure 5a, which is the same as that in
Figure 3. Assume that the latency of the sqrt operator is five cycles

Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow Circuits

(e enr]
T T T (b)

for (1 = @; i< N; i++) { '
s = B[A[i]];
C[i] =s * s;

}

(a)

Figure 4: Example of Out-of-Order Load. Timing diagrams (b) and
(c) qualitatively show how the execution schedule could improve if
the circuit would execute the load on B[] out of order in the loop.

S S
for (1205 1 <; ie) {1} Il —— B[O] | BT | Bl [5G]
s = Ali]; ! i ! ! ! ! ! ! ! !
if(s > 0)
s = sqrt(s);
B[i] = s;
}

(b)

(CAO] [AT T ART [AT] : :
H LT TSot[T |
H | B[] | B[] [B3] | B[O] |

(a) ©
Figure 5: Example of Mutually Exclusive Paths with Different La-
tency. Timing diagrams (b) and (c) qualitatively show how the sched-
ule could improve if stores would happen immediately (out of order),
for values that do not need the square root operator (a).

and that the first element of A[] is positive and the next three are
negative, making the first iteration longer than the successive ones.
Although the store operations of the successive iterations are ready
to execute before that of the first iteration, the use of a MUX as in
Figure 3c, forces the execution of the store operations in program
order, as in Figure 5b. This is clearly not necessary because the
stores are provably independent, and, if dataflow circuits were able
to tolerate tokens to arrive to the store operation B[] out of order,
execution would be faster, as in Figure 5c. It is a situation where
naturally we would like to revert the MUX back into a MERGE, but
only doing so simply breaks the circuit, as in Figure 3.

Figure 6 shows another typical situation. The need to execute
every operation in program order limits the schedule to Figure 6b.
It is far from satisfactory because the loop carried dependency
(through three cycles of adder’s latency) prevents an inner iteration
from starting every cycle making the operators unused most of the
time. Yet, since inner loop iterations belonging to different outer
loop iterations are independent, they could be executed in any order
and thus achieve perfect utilization of the operators and much better
performance. The dataflow circuit corresponding to this code isin a
very similar situation to the previous one: MUXes at the beginning
of the inner loop circuitry force the execution to happen in program
order to guarantee correctness, but this particular ordering is not
essential for correct execution. And, of course, just replacing the
MUXes with MERGEes would break the circuit. It may be worth also
noticing that this is a well-known programmatic situation where
basic HLS techniques fail to extract performance. Other researchers
have developed punctual solutions to address it [6, 10, 24]; instead,
we see this as a particular incarnation of a more general problem.

There is a fourth important use-case; when the compiled code
corresponds to a processing element executing jobs in a task-level
parallel system. The idea is that there is a large number of indepen-
dent jobs to execute and, while the execution time of individual
tasks is not very important, the throughput through the processing

46

FPGA ’24, March 3-5, 2024, Monterey, CA, USA

' =3 H
L .
S[O) d
B[0] Add 1 '
| B[1] | Add | |
| j B[2 1 | | Add :
LSTL ' ' ' 1 '] (<o
] ' | : '
; [B[oL | : I Add
| ' I i j Add
H] | H |
1 ! ! 1 !
(b)
| | RIS
[SIoL] —
! B[] fAda | :
| H I BT Add P for (i=0; 1 <N; i++) {
B : 8] Add S Ty
ST | | ; ; ; e = S[i]
: B[O] | "Add for (3 = 0; j < e; J++)
'] ! B[1] Add - sum += B[3];
S[2 | C[i] = sum;
(BIOL [Add
1 1
I 1 (a)
1 1
' '

(c)

Figure 6: Example of Nested Loop with High Initiation Interval for
the Inner Loop. Timing diagrams (b) and (c) show how the execution
schedule could improve if we can execute out of order the inner loop
iterations of different outer loop iterations in code (a).

elements is what matters most. The situation is similar in essence to
what is described in the previous paragraph, where outer iterations
are replaced by the injection of independent jobs from a queue. Here
too, if dependencies among inner iterations prevent full utilization
of the pipeline, one would like to execute other tasks in parallel to
fill the pipeline “bubbles”, much as all modern processors would
do, thanks to simultaneous multithreading [42]. It seems highly
desirable to have the same feature in HLS-generated circuits and it
is easy to convince oneself through the analogy with Figure 6 that
it is, in essence, the very same problem of relaxing ordering and
correctly identifying matching operands.

3 TAG AND ALIGN TO ENABLE DISORDER

Intuitively, to allow multiple instances of one operation to execute
out of order while preventing the problem of Figure 2, we need (1) to
distinguish different flowing tokens by uniquely tagging them, (2) to
align tokens arriving at the input of any component by matching
them through tags, and, most importantly, (3) to identify which
parts of the original untagged circuit require tagging and aligning.

3.1 Defining New Dataflow Components

We introduce three new dataflow components to implement the
mechanism for enabling the desired out-of-order execution. The
first is a TAGGER which takes an arbitrary number of inputs, syn-
chronizes them by waiting to receive a token from each of them,
and attaches extra tag bits to the payload of each token before
passing them to corresponding outputs. The second is an ALIGNER
which operates on tagged tokens. It also takes an arbitrary number
of inputs, synchronizes them, and additionally aligns (i.e., matches)
the tags of the tokens of each input to ensure that they follow a
consistent order before passing them to the corresponding output.
The matching logic of the ALIGNER is simple: It waits for a token
to arrive from each of its inputs, checks and compares the tags
of the arriving tokens until it finds tokens with identical tags at
every input. If there are two valid matches at once, any of them is
chosen, at random, to proceed to the output. It has buffers at its
inputs to accommodate several tokens until a valid match is found.

FPGA °24, March 3-5, 2024, Monterey, CA, USA

\ [0 \Q / \

- @) &8 08 0
908 v X

» B B =) <7 (11
T 9 9 :

O.

Figure 7: ALIGNER Operation. Using two types of ALIGNERs to
match the inputs of an adder. (a) ALIGNER is free to align with
respect to the earliest matching order; proceeds the yellow tag first.
(b) CONTROLLED ALIGNER takes a control input specifying the
order of alignment; imposes the green tag first. Colors correspond to
actual tags carried by the tokens alongside their payload.

Section 6 explains how we size those buffers to prevent deadlocks.
The ALIGNER is responsible for enabling the “survival of the fastest”
order. However, sometimes, the ALIGNER should not be left free
to choose the fastest order and should instead be guided to align
following a specific order, even if it is not the fastest. This order
could be program order, for instance, and might be necessary for
functionality in some cases, as explained in Section 7. Therefore, we
define another type of ALIGNER, CONTROLLED ALIGNER, that
takes an additional control input which provides the order of tags
that the ALIGNER should match with respect to. Figure 7b shows an
example of the CONTROLLED ALIGNER, where instead of sending
to the output the fastest tokens with the yellow tags, it waits for
a match of green tags to honor the order required by the control
input. The final new dataflow component is the UNTAGGER that
is the exact opposite of the TAGGER: It undoes the effect of the
TAGGER by simply stripping off the tag bits from the payload of
the tokens passing through it. It allows for the reuse of tags and
limits the number of tags in the circuit at any point in time, which
is necessary for preventing deadlocks, as explained in Section 6.

3.2 Challenge of Positioning New Components

Given an untagged dataflow circuit like in Figure 1, where to posi-
tion the new components to enable the desired out-of-order execu-
tion? A tempting answer is to precede every dataflow component
with an ALIGNER similar to reservation stations of out-of-order
superscalar processors, matching values after renaming every desti-
nation register in the Decode stage, inspired by tagging in dataflow
machines [1, 22, 38]. Yet, this idea is fundamentally flawed: (1)
Although superficially similar to tags in superscalar processors,
our tags need to match operands, not sources to destinations. This
makes the tagging process different and it is not clear where this
global tagging should happen. (2) Processors demand a limited
number of reservation stations corresponding to a few functional
units; we would need one ALIGNER per operator, thus the cost
would likely be prohibitive. (3) There are no guarantees that the
circuit is deadlock-free. Therefore, we need a better approach.

We need to limit the number of new components that we in-
troduce to minimize the additional cost and to have control over
the processes of tagging and matching. We develop a technique for
identifying a minimal set of channels over which it is necessary to

47

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovi¢, & Paolo lenne

0N — Wrong _ Correct
He) o
ﬁ OBy O g OO 5O
P 00|80 o |0 @ |g
—00,¢ e e
e —

Figure 8: Minimal Alignments Correcting Figure 2. TAGGER tags
tokens before the out-of-order Ld B disorders. ALIGNER matches the
tags of tokens in a minimal set of channels. UNTAGGER removes
the tags when no longer necessary and sends them back to the FIFO
inside the TAGGER. Colours indicate real tags attached to the tokens;
letters, on the other hand, are only for illustration.

match the tags of tokens to ensure correctness, given the position of
an out-of-order component. We input this minimal set of channels
to an ALIGNER to match their tags ensuring that all intersecting
channels follow a consistent order. For this, we need to first pass
those channels through a TAGGER: It must be placed before the out-
of-order component to tag the tokens before the order is modified.
Finally, we also need to insert an UNTAGGER after the ALIGNER
to remove the obsolete tags. Figure 8 shows our solution for the
simple circuit in Figure 2 with an out-of-order Ld B component.
Clearly, not all channels require tagging and aligning to guarantee
correctness; the channels of the top adder did not require tagging
and aligning, for instance.

The rest of the paper presents rules for correctly positioning
the defined components. Our goal is to show how to construct
practical circuits which reap at least some of the benefits illustrated
in Section 2.3. We will not manage, for practical reasons, to display
all of the use-cases of Section 2.3 in our experiments (we lack a
nonblocking cache and an out-of-order LSQ, for instance), but our
theory is general and applies to them all. Assuming that one wants
to use an out-of-order component in a given circuit or replace a
particular set of MUXes with MERGEs, this paper will show how to
produce a correct circuit. However, debating how to identify which
operation would be worth implementing out of order or which
MUX would be best turned into a MERGE is out of our scope.

4 WHERE TO TAG AND ALIGN?

Our goal is to position ALIGNER and TAGGER components only at
necessary points in the circuit. In this section, we present our posi-
tioning algorithms. We start from an untagged dataflow circuit with
an indication of the components that must tolerate out-of-order
execution. Initially, we consider only circuits that have straight
datapaths where all operations execute exactly once, without any
control flow. In Section 5, we support control flow. We treat the
circuit as a directed graph G, where the components are directly
mapped to graph nodes labeled as out of order or in order, and the
connections between components are directly mapped to the graph
edges. The set Sp contains all nodes labeled as out of order in G.
We insert one ALIGNER and one TAGGER per out-of-order node.

4.1 Position ALIGNER

We apply the following steps iteratively on each node in the set Sp,
considering only one out-of-order node o; at a time. We show the

Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow Circuits

Figure 9: ALIGNER and TAGGER Positioning Example. (a) Circuit
free of control flow. (b) TAGGER and ALIGNER position if Ld A is
out of order. (c) TAGGERs and ALIGNERs positions if both Ld A and
Ld C are out of order. UNTAGGERs are omitted from 9c and the rest
of the paper since their placement is trivially after each ALIGNER.

effect of each step on the circuit in Figure 9a, assuming that Ld A
is out of order, and the rest of the nodes are in order.
Identify the Set of Dirty Nodes Nyjty. Traverse the graph G

starting from one output of the o; node and stopping at a leaf node.

A node is dirty if it is reachable from o;. Add all dirty nodes to the
set Nirty, excluding o itself. Repeat for any other outputs of ;. For
0 =Ld A, Ndirty = {Forky, *,+,St E}.

Identify the Set of Unaligned Edges Eypaigned- We call two
edges unaligned if they can have tokens with different orders, i.e.,
different tag values at once. We add to Eypaligned edges that are
unaligned with any output edge of o;. Those are connecting a node
that is not in the set Ny to a dirty node from the set. For o; =
Ld A}, Sunaligned = {Ld A — Forky,Ld C — x,Forko — St E}.

Position the ALIGNER at the edges of & paligneq- If any edges
from the Eynaligned set happen to combine at one node with an edge
not in the set, they might be mistakenly joined for computation and
would produce wrong results. To prevent this, we simply position
the ALIGNER to cut all edges of Sunaligned: 2s shown in Figure 9b.

4.2 Position TAGGER and UNTAGGER

The ALIGNER requires tokens to be tagged to differentiate them.

We add one TAGGER for each ALIGNER, so the following steps are

also iteratively applied to each out-of-order node o; in the Sg set.

Each TAGGER adds extra bits to the payload of a token, and the
corresponding ALIGNER is informed of the starting index and the
bit width to check in a token’s payload.

Identify the Set of Edges Eiag that Should Receive Tagged
Tokens. The out-of-order node o; should receive tagged tokens at
its input edges to make the change of order produced at its outputs
distinguishable from the order received at its inputs. Therefore,
input edges of the out-of-order node o; are added to &ag. All other
input edges of the ALIGNER, excluding the output edges of o;,
should be also added to Etag. For Figure 9a, where o; = Ld A, Etag =
{Ld B — Ld A Ld C — ALIGNERg, Forky — ALIGNERg}.

48

FPGA ’24, March 3-5, 2024, Monterey, CA, USA

o o)
o)
OR'@),
aal_Mo |
0
(b) o
© 13 @ |3

Figure 10: Clustering Solution for Count Mismatch. (a) BRANCH
splits tokens at its inputs between its two outputs. (b) MUX combines
tokens of its two data inputs into one output. (c) A cluster hiding
noncyclic control flow. (d) A cluster hiding cyclic control flow.

Untag the outputs of the ALIGNER. Clearly, the above rules
show that we localize the process of tagging and aligning and leave
the rest of the circuit unaffected. But, this would not be entirely true
if we leave the tokens with the extra tag bits beyond the point when
the tags are really needed, i.e., beyond the ALIGNER. Therefore,
we add an UNTAGGER to counter the effect of every added TAG-
GER. We insert an UNTAGGER at the output of every ALIGNER
before passing the output to the rest of the circuit. We omit the
UNTAGGERs from most of the figures for space since they are
always inserted right after ALIGNERs. Although the operation of
the UNTAGGER and its positioning rules are simple, its value in
our circuits is less trivial than it seems, as we explain in Section 6.

4.3 Repeat for Other Out-of-Order Nodes

Assume that Ld C in Figure 9a is also labeled as out of order along
with Ld A, doing a second iteration of the above algorithm for
positioning the TAGGER and ALIGNER will produce the circuit in
Figure 9c. In general, the order of processing multiple out-of-order
nodes in G does not matter: in the above example, we processed
Ld A before Ld C, but proceeding the other way round would have
produced an identical circuit. It is worth mentioning that having
two TAGGERs in the example of Figure 9c is redundant; only one of
them can do the purpose. Nevertheless, when we consider circuits
with control flow, having a separate TAGGER for each ALIGNER
will be necessary for functionality, as explained in the next section.

5 CLUSTERING TO HIDE CONTROL FLOW

Introducing control flow to a data flow circuit happens through
the usage of components that steer tokens between the rest of the
components, in correspondence to control flow decisions. These
are the BRANCHes and MUXes discussed in Section 2. The key
characteristic of these components is that, as opposed to any other
component, the token count of their input and output channels
do not match, and this is the essence of their steering capability.
A BRANCH splits incoming tokens to only one of its two outputs
based on its condition’s value, as in Figure 10a. On the contrary,
a MUX steers tokens arriving at either of its two data inputs to
only one output, again based on the value of its condition inputs,
as in Figure 10b. As shown in Figure 3, the functionality of the
two components is the exact opposite and if they are subject to the
same condition, they cancel each other’s effect when connected in
sequence, as shown in Figure 10c and Figure 10d, for instance. We
make use of this observation in the next sections.

FPGA °24, March 3-5, 2024, Monterey, CA, USA

1

[TAGGER,]

| @ |

(ALIGNER,)

Branch;

h‘mho

Fork, . +ti
Mux

(b)

Figure 11: Out-of-Order Execution around Noncyclic Control Flow.
(a) Circuit with an if-then-else structure. Purple dashed edges receive
fewer tokens. (b) Positioning the TAGGER and ALIGNER with respect
to the out-of-order Ld A, after clustering the if-then-else structure
to prevent token counting mismatch.

5.1 Alignment Count Mismatch Problem

The consequence of having BRANCHes and MUXes in the cir-
cuit is that different channels could have different token counts.
Figure 11a shows a circuit with noncyclic control flow. The
purple dashed edges in the circuit receive fewer tokens than
the rest of the edges. Suppose that Ld A is an out-of-order
node and the rest of the nodes are in order. The algorithm
of Section 4.1 would position the ALIGNER on the following
set of edges: {Ld A — Branchy, Fork; — Branchg, Branch; — +,
Fork; — Mux, Forkg — St C}, which contains a mix of the pur-
ple dashed edges along with other edges. In particular, the problem
occurs due to aligning the output of Branch; with the data and con-
dition inputs of Branchg along with the condition input of Mux,
since this will result in a deadlock when the output of Branch;
receives no tokens while other edges receive tokens. A different
flavor of the same problem is in Figure 12a, which shows a circuit
with cyclic control flow. In this case, the purple dashed edges in the
circuit receive more tokens than the rest of the edges.

5.2 Clustering Control Flow into New Nodes

We can prevent the alignment count mismatch problem if we limit
the search space for the TAGGER and ALIGNER positioning algo-
rithm to only encounter edges with the same token count. Instead of
traversing all nodes in the graph G, as in Section 4, we traverse only
nodes that are guaranteed to receive the same number of tokens
at their input and output edges. To do so, we cluster BRANCHes,
MUXes, and enclosed components into new nodes that have input
and output edges with the same token count as the remaining edges
of the graph. The problematic edges of Figure 11a and Figure 12a
can be hidden by clustering them into a new node, marked by the
purple boundaries in Figure 11b and Figure 12b, respectively. We
then consider only the input and output edges of this new node,
without exposing any of its constituents, for alignment with the
rest of the circuit. This way, the circuit appears as if it was free of
control flow; thus making it safe to apply the algorithm of Section 4.

Our solution comes from observing the opposite functionality
of BRANCHes and MUXes that makes them cancel each other’s

49

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovi¢, & Paolo lenne

Figure 12: Out-of-Order Execution around Cyclic Control Flow.
(a) Circuit implementing a loop structure, as produced by Elakhras et
al. [18]. Purple dashed edges receive more tokens. (b) Positioning the
TAGGER and ALIGNER, with respect to the out-of-order Ld A, after
clustering the loop structure to prevent token counting mismatch.

effect on the token count if they are driven by the same condition
and are connected in sequence. For this to be true, BRANCHes and
MUXes implementing one part of the control flow must have their
condition inputs driven by the same component in the circuit. This
requirement is fulfilled by the fast token delivery circuit generation
methodology [18] that calculates the minimum necessary control
flow conditions sufficient for the correct delivery of tokens between
components: It ensures that BRANCHes and MUXes belonging to
the same noncyclic control flow (e.g., if-then-else construct) are
conditioned from the same component. For the cyclic control flow,
BRANCHes and MUXes belonging to the same cycle are also re-
lated at their condition, but less directly. Specifically, for reasons
related to the semantics of cyclic control flow, a MUX receives the
same condition as that of a BRANCH, but through the INIT compo-
nent [18]. Given this precision, we apply the following clustering
rules on circuits produced by the fast token delivery [18] strategy.

Noncyclic Control Flow Clustering. A noncyclic cluster starts
at the inputs of one or more BRANCHes and stops at the output of
one or more MUXes having the same condition as the BRANCHes.
All nodes connected between such MUXes and BRANCHes are
considered internal to the cluster.

Cyclic Control Flow Clustering. On the contrary, a cyclic
cluster starts at a MUX that has one of its inputs corresponding to
a control flow’s backward edge, as identified by standard compiler
techniques [21], and stops at a BRANCH that has one of its outputs
corresponding to that same control flow’s backward edge, and its
condition matching that of the INIT that drives the condition of
the MUX. The input of such a cluster is the nonbackward edge of
the MUX and the output is the nonbackward edge of the BRANCH.
The backward edge and all nodes connected between such a MUX
and a BRANCH are internal to the cluster.

5.3 Hierarchical Alignment

Constructing new nodes by clustering components to hide control
flow breaks the original circuit graph G into X + 1 subgraphs Gy to
Gx, where X can be zero, or a positive integer. Gy corresponds to
G and contains all subgraphs. Each cluster results in a subgraph,

Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow Circuits

(b)

Figure 13: Hierarchical Representation of a Circuit. (a) Circuit graph
G. (b) The breakdown of G into three subgraphs Gy, G1, G2. Each
subgraph clusters components with the same control flow decisions.

as 1 and G in Figure 13b, each resulting from different control
flow conditions. In general, any two subgraphs G; and G; are either
completely disjoint or one of them entirely contains the other one.
Each subgraph G; has the following properties: (i) Tokens produced
at any output edge match the count of the tokens absorbed at any
input edge, (ii) All input edges connect either to a BRANCH or
a MUX, (iii) All output edges are driven either by a MUX or a
BRANCH, (iv) Considering that individual subgraphs are collapsed
into single hierarchical nodes, there are no visible BRANCHes or
MUXes except at the boundary of the subgraph.

The algorithm for positioning the TAGGER and ALIGNER must
be applied recursively at each level of the hierarchy. If a subgraph G;
contains an out-of-order node, the algorithm should be applied first
to subgraph G;, stopping at the subgraph’s boundary. Following
this, the subgraph G;, as a whole, should be considered as an out-of-
order node and the positioning algorithm should be applied to the
subgraph G; containing the subgraph G;, and so on. Consider the
circuit in Figure 14a with an out-of-order Ld B inside a noncyclic
control flow. The recursive application of the algorithm results
in the insertion of two TAGGERs and ALIGNERs, as shown in
Figure 14b. One might wonder why we did not align the left input
of the MUX at the bottom of the cluster. This has to do with a
property of MUXes that we will address in the next section and
that will slightly modify our algorithm of positioning ALIGNERs.

5.4 MUXes and Alignment

The TAGGER and ALIGNER positioning algorithm is applied recur-
sively within and across clusters. Within a cluster, it can hit one or
more MUXes at the boundaries of the cluster. When this happens,
we do not consider the MUXes dirty and we do not count their
input edges unaligned. We thus modify the algorithm of Section 4.1
to ensure that the traversal to build Ny, does not only stop at
leaf nodes but also at MUXes to exclude them from the Nty set.

We do not need to explicitly align the input edges of MUXes
because they have a unique property making them naturally align
their data inputs with the values of their condition input, irrespec-
tive of tags. This is because the total number of condition tokens
with a specific value must match the total count of tokens arriving

50

FPGA °24, March 3-5, 2024, Monterey, CA, USA

ELch Branch0
Fork]) | TAGGER,

Figure 14: Hierarchical Alignment Example 1. (a) Circuit with an
out-of-order node inside an if-then-else structure. (b) Two TAGGERs
and ALIGNERs are placed by the recursive application of the posi-
tioning algorithm. (c) MUX inputs do not need to go through the
ALIGNER. Matching of data and condition is regardless of their tags
(colors), making the top and bottom MUXes equivalent.

at the corresponding data input of the MUX. This implies that the
data is naturally paired with the condition, and reordering those
pairs does not break the functionality, provided that the total count
of the data tokens and the corresponding condition tokens values
match. Suppose that the MUX in Figure 14b receives three data
tokens with tags identified by colors as orange, yellow and green, as
in Figure 14c. The functionality of the MUX is not compromised if
the orange data token is matched with a green condition token be-
cause the green data token will be in turn matched with the orange
condition token later. Essentially, MUXes can naturally tolerate
out-of-order execution and can propagate it to the rest of the circuit
across higher levels of the hierarchy. This applies also to MUXes in
a cyclic control flow, as in the case of MUXy in Figure 15; there too,
we stop the traversal as indicated above. Still, we will revisit the
problem of aligning within a cyclic control flow in Section 7.

6 TAGGING AND DEADLOCK PREVENTION

New tokens arriving at the inputs of the TAGGER mark the be-
ginning of a new instance of execution in the region delimited by
the TAGGER. It is necessary for the functionality of the ALIGNER
that tokens of different instances of the execution are uniquely
identified by different tags; therefore, no two tokens in a path of the
circuit can have the same tag value. For this, the TAGGER draws
tags from a finite pool of unique tags present in an internal FIFO.

6.1 Assigning Tags

Immediately after the ALIGNER, tags become irrelevant; therefore,
it is natural to place the UNTAGGER that strips off the tags there.
When a set of tokens with the same tag crosses the UNTAGGER
after an ALIGNER, their common tag cannot be present anymore
anywhere in the circuit—it is, therefore, available for reuse. The
UNTAGGER is, thus, connected by a channel that resupplies a
FIFO inside the TAGGER with those tags ready for reuse. This is
equivalent to the renaming mechanism in superscalar processors:
the Decode stage renames registers with physical destinations from

FPGA °24, March 3-5, 2024, Monterey, CA, USA

ALIGNER,

(b)

Figure 15: Hierarchical Alignment Example 2. (a) Circuit with an
out-of-order node inside a loop structure. (b) Two TAGGERs and
ALIGNERs are placed by the recursive application of the positioning
algorithm within and across the cluster. (c) Correcting Figure 15b to
impose program order around the loop-carried dependency.

a FIFO of free registers while the Commit unit resupplies the FIFO
as instructions graduate.

If the TAGGER does not have a free tag in the FIFO, it pauses and
backpressures the predecessors until a tag becomes available. The
number of tags in the FIFO at the beginning of execution limits the
number of distinct tags in the circuit at any point in time. Limiting
the number of tags limits the maximum number of tokens in the
paths from the TAGGER to the UNTAGGER. This is crucial to define
the minimum amount of buffering necessary to prevent deadlocks.

6.2 Adding Enough Buffers

Dataflow circuits require the insertion of registers, or buffers, to
break combinational cycles and optimize performance. Josipovic¢ et
al. used a mixed-integer linear programming optimization model
to position and size buffers [32]. Yet, their approach assumes that
there is at most a single token on each cycle, which is guaranteed
by the construction of untagged dataflow circuits (like in Figure 1),
but is not the case in our circuits that could have as many tokens
in a cycle as the TAGGER has tags available. Luckily, it is easy
to extend their technique by modifying one of their throughput
constraints [32]. Specifically, we modified their Equation 7, which
represents the average number of tokens in the channel, by setting
the variable B, to the number of tokens available to the TAGGER
instead of 1, for channels representing backward edges, making the
model aware of the presence of multiple tokens to size the buffers
accordingly.

The functionality of the ALIGNER is to propagate sets of tokens
only once their tags have been matched. Clearly, this requires some
buffering at its inputs to accommodate a number of tokens on each
input; otherwise, it will deadlock if the first tokens to arrive at
two or more of its inputs happened to have different tags. But,
what is the sufficient sizing for those buffers to prevent deadlocks?
Again, the fact that the TAGGER has only a limited number of tags
available helps here too because deadlocks can be avoided with the
same number of slots at every input of the corresponding ALIGNER.

51

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovi¢, & Paolo lenne

ALIGNER,)

[
&S o

Figure 16: Converting MUXes to MERGEs Example. (a) Circuit with
no out-of-order components. (b) Applying the idea of Section 8 on
Figure 16a. It identifies the entire cluster enclosed in the purple box
as out of order. No ALIGNER is inserted inside the cluster.

7 IMPOSING BACK PROGRAM ORDER

Our algorithm to position TAGGERs, ALIGNERs, and UNTAGGERs
ensures that all components follow the same computation order
(that could be different from the program order) in the presence
of out-of-order components. But, there are two cases where it is
necessary to maintain program order in some channels.

Architecturally Visible Effects. As with superscalar proces-
sors, the computation order inside the circuit is inessential, if the
effects outside of the circuit are at least understood. One situation
is that of store operations having data hazards with other store
operations, with load operations, or with successive instances of
themselves. We use the memory analysis of Josipovi¢ et al. [25]
to identify the minimum set of memory operations with hazards
in dataflow circuits, and revert to program order as appropriate.
The other situation is the circuit outputs that we also reorder un-
less the external context tolerates out-of-order returns (e.g., the
multithreading case of Section 2.3).

Loop-Carried Dependencies. Dataflow channels correspond-
ing to control flow backward edges (as identified by standard com-
piler techniques [21]) implement loop-carried dependencies: They
transfer tokens produced in one iteration to be consumed in the
next iteration, which requires keeping the execution in program
order. If one of the nodes reachable by an out-of-order node hap-
pens to have an output edge corresponding to a backward edge, to
maintain correctness, we need to align this edge with respect to the
program order. An example of this is Branchy in Figure 15 which
has its output connected to a backward edge and is reachable by
the out-of-order node Ld B.

After applying the rules of Sections 4 and 5 to position an
ALIGNER for every out-of-order component, we analyze the result-
ing circuit: If the channels or nodes surrounding any ALIGNER fall
under any of the cases mentioned above, we convert the ALIGNER
that is free, by default, to the CONTROLLED ALIGNER defined in
Section 3.1. For instance, ALIGNER in Figure 15b should become a
CONTROLLED ALIGNER because Branchy mimics a loop-carried
dependency. The additional input of the CONTROLLED ALIGNER
should impose the program order. It can be provided from any

Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow Circuits

5 1 Average Il =9 1 Average Il =9

Figure 17: Execution Time, LUTs and FFs Against Number of Tags
N For Bicg. As N increases, the area increases, but the execution
time decreases up to a limit, around the II, after which it stabilizes.

tagged channel that is not affected by the reordering of the out-
of-order component. One safe source for it is any input of the
corresponding TAGGER. As soon as we control an ALIGNER using
the program order, the cluster containing this ALIGNER no longer
behaves as out of order, and it is safe to remove any TAGGERs or
ALIGNERSs inserted by the above rules in the hierarchy enclosing
this cluster. Hence, in Figure 15¢, we convert ALIGNERy to CON-
TROLLED ALIGNER and remove ALIGNER; as well as TAGGER;.

8 MUXES TO MERGES FOR DISORDER

Deciding which operator to implement as out of order to achieve
the largest performance advantage is outside the scope of this
paper. However, it is clear from the last two examples of Section 2.3
(Figure 6) that sometimes there is value in executing independent
sets of iterations of a loop out of order by replacing MUXes with
MERGEs in a cluster, transforming it into an out of order node.
Here we address how to perform this transformation correctly.
We first identify the clusters in the circuit by applying the rules
of Section 5 and we manually select the cluster corresponding to
the loop we want to convert to out of order (e.g., the inner loop of
Figure 6). Then, we choose any of the MUXes of the cluster and
convert it to a CMERGE—that is, to a MERGE with an additional
control output that reports which input of the MERGE has been
forwarded to the output [31]. Just like a MERGE, a CMERGE can
introduce disorder to the circuit by allowing the faster input to
proceed first, regardless of program order. Therefore, the CMERGE
makes this cluster, as well as every other cluster enclosing it in the
hierarchy, out of order. The control output of the CMERGE is then
connected to the select condition of the rest of the MUXes in the
same cluster, if any, in place of the original select signal expressing
control flow. This way, we ensure that all MUXes in one cluster are
synchronized among themselves and with the CMERGE. Figure 16
shows an example of this transformation; all components are in-
order and we want to transform the loop cluster to become out of
order. Synchronizing the control decisions of the MUXes in one
cluster through the CMERGE is necessary to align their outputs
and guarantee correctness. For instance, if CMERGE(y and MUX;
(Figure 16) were left free to output from inconsistent inputs at any
point in time, the components inside the cluster would receive
mismatched tokens and produce a wrong computation.

9 EVALUATION

We implemented our technique as a pass inside Dynamatic [29],
an open-source C-to-dataflow circuits tool based on LLVM [35].
Our pass [17] is inserted between the dataflow circuit generation
step that produces untagged circuits, implementing the fast token

52

FPGA ’24, March 3-5, 2024, Monterey, CA, USA

img-avg I

gsum_many

gsum_single

gemm
matvec ==

mvt -
bicg =

m[18] mOurs

0 100 200 300 400 500 600

Figure 18: Execution Time Comparison. Our approach decreases
the execution time (in us) by a large factor in most cases.

delivery strategy [18], and before buffers insertion. We, firstly, con-
vert some MUXes into CMERGEs, as suggested in Section 8, and
specify the number of tags N. Then, we automatically cluster the
control flow nodes, as explained in Section 5, and automatically
position TAGGERs, ALIGNERs and UNTAGGERs, as in Section 4.
We identify controlled ALIGNERSs, following Section 7, and change
the annotation of the cluster containing it to not be labeled as out
of order anymore. After this, buffers are placed using the modified
version of Dynamatic’s placement strategy [32], as in Section 6.2.
We use the rest of the flow unmodified except for the additional
components in the VHDL library. We synthesize the generated
netlists using Vivado [44], targeting a Kintex-7 Xilinx FPGA. We
simulate the designs and do functional verification using a set of
test vectors. We measure (1) the cycle count from simulation, (2) the
clock period (CP) from the postrouting timing analysis, and (3) re-
source usage (i.e., LUT, FF, and DSP counts) from Vivado after
placement and routing. We use the same circuits prior to applying
our technique as a baseline to evaluate our approach.

9.1 Choosing the Number of Tags

We have no strict rule for determining the optimal number of tags
N required by every TAGGER (as mentioned in Section 6) and
our technique can produce functional circuits with N being any
positive integer. We experimented the effect of varying N on area
and performance of bicg from the PolyBench suite [39], which has
a similar structure to the code in Figure 6a, with an average II of
9 cycles, and plotted the results in Figure 17. The execution time
decreases as N increases until N = 10; afterwards, new execution
instances are issued even after the pipeline is full and earlier ready
instances are unnecessarily lagged. In theory, if N is not large
enough to populate the pipeline stalls, the potential performance
advantage is not fully harnessed, but increasing N increases the
area due to the addition of more buffer slots to accommodate the
increased parallel tokens, and due to the larger ALIGNER sizes.
Although the optimal N should be intuitively close to II, practically,
the dynamic behavior of our circuits and the impact of N on the
critical path make it hard to know where the actual optimum is and
what is the extra area cost, as many of the points in Figure 17 are
Pareto optimal. Yet, in most cases, making N at least equal to the II
of the circuit should reap a decent performance advantage.

9.2 Benchmarks and Results

We collected results for benchmarks with program structures simi-
lar to those discussed in our motivation in Section 2.

FPGA °24, March 3-5, 2024, Monterey, CA, USA

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovi¢, & Paolo lenne

Table 1: Dataflow circuits tolerating out-of-order execution by our technique, contrasted to those produced by the fast token delivery [18]
circuit generation methodology of the open-source tool Dynamatic [29] that do not tolerate out-of-order execution. We measure cycle counts in
simulation and obtain the timing and resources from Vivado, after place-and-route. We report the number of tags N used for each benchmark.

Benchmark N Cycle count CP (ns) Execution time (us) LUTs FFs DSPs
[18] Ours [18] Ours [18] Ours [18] Ours [18] Ours
img-avg 4 1,722 634 6.42 8.21 11.05 5.21 2.1x 1415 1,593 +13% 1,320 1,206 -9% 5
gsum_many 10 68,523 32,874 791 995 541.81 327.0 1.7x 2,835 3,657 +29% 3,256 3,725 +14% 22
gsum_single 10 6,703 9,333 690 9.01 46.25 84.11 0.55x 2,736 2,677 -2% 3,142 3,114 -1% 22
gemm 20 68,825 8,144 6.75 12.81 464.78 104.30 4.5x 3,214 5937 +85% 2,693 3,688 +37% 11
matvec 50 7,936 918 6.41 1351 5086 1240 4.1x 1,272 4396 +246% 1,373 3,423 +149% 5
mvt 10 7,940 2,044 6.27 11.70 49.79 2392 2.1x 2,886 5,544 +92% 2,701 3,730 +38% 10
bicg 10 7936 1,000 6.43 11.27 51.06 11.27 4.5x 2,051 3,229 +57% 2,182 2,737 +25% 10

Loop Nests with High II for the Inner loop. Most of our
benchmarks come from the PolyBench suite [39] (bicg, mvt, gemm).
Besides, one benchmark is a floating-point matrix-vector multipli-
cation (matvec). They are all composed of loop nests with different
properties, but they have a few commonalities: (i) the inner loop has
long-latency loop-carried dependencies due to floating-point opera-
tions that limit the loop’s II, and (ii) the outer loop has independent
iterations; thus, iterations can go out of order. These properties
make them ideal candidates for our technique, so they have consid-
erable improvements in the execution time. The matvec benchmark
required a large value (50) of N to achieve a 4.1x improvement in
the execution time; as a result, it witnessed the largest increase in
area due to the numerous buffer slots and large ALIGNERSs needed
to accommodate this large N.

Mutually Exclusive Paths with Different Latency. One of
our benchmarks gsum [7] is a loop that conditionally computes
floating-point polynomial expressions that incur unpredictable
long-latency loop-carried dependencies. We evaluate it in two ways:
(1) gsum_single is the original kernel [7] that has a loop-carried
dependency over a conditional long-latency operation in its outer
loop; thus, is forced to follow the program order and does not ben-
efit from any disorder. Interestingly, our technique resulted in even
worse clock cycles than the baseline since the TAGGER synchro-
nizes initially independent paths early in the execution, slowing
the fastest of them down. (2) gsum_many is multiple independent
invocations of the original kernel manifesting task-level parallel,
since there is a number of independent gsum_single kernels to ex-
ecute. They are parallelized by our technique; thus, the cycle count
and execution time are improved, but by a moderate factor since
the conditional long-latency operation is executed only in 10% of
the iterations. The img-avg benchmark is a simplified implementa-
tion of an image-averaging filter that does conditional averaging to
individual pixels. We gain by the out-of-order processing of pixels.

Table 1 summarizes the results and Figure 18 compares execution
times. We report the number of tags N used for each benchmark
after exploring different values of N. In summary, we significantly
gain in the execution time because we largely improve the I of loops,
as mentioned above. However, this comes at an increased resource
cost and a worsened critical path for two main reasons: (1) the
structures of the TAGGER and ALIGNER that have synchronization
mechanisms and matching capabilities, (2) the extra buffer slots
added to accommodate the N tokens circulating in the circuit in
place of slots for a single token.

53

10 RELATED WORK

Several HLS approaches generate synchronous [16, 27] and asyn-
chronous [2, 37, 41] dataflow circuits and aim to increase their exe-
cution parallelism by circuit buffering for high throughput [32, 40],
building memory interfaces for irregular parallelism [4, 19, 26], ad-
vancing computations via speculation [28], and increasing spatial
parallelism between independent circuit constructs [8, 18]. While
they increase parallelism between different operations, they strictly
keep successive executions of the same operation in program order.
We remove this constraint and, thus, attain a new dimension in
terms of parallelism.

Previous research addressed particular forms of out-of-order
execution of the same operation: Some authors [9, 10, 23, 34] employ
loop-specific mechanisms to execute inner loops of a loop nest in
parallel and reorder at the loop exit. Others [6, 24] support out-of-
order memory interfaces by tagging tokens prior to issuing them
to memory. We here generalize the problem beyond a particular
use case; our approach handles both of these situations and others,
such as the ones illustrated in Section 2.3. We do not claim any
qualitative advantage over prior work on their specific individual
supported cases.

Dataflow machines [1, 5, 14, 22, 38, 43] issue all tokens out of
order with tags appropriately aligned using a generic, processor-
like I-structure. Our spatial circuits do not have any centralized
structure; instead, we insert dedicated units into targeted positions
of our distributed circuit network to handle out-of-order execution.
Our ability to customize the insertion of this logic to the require-
ments of a particular application enables us to tag tokens only when
needed and achieve the desired parallelism levels with acceptable
resource overhead.

11 CONCLUSION

Untagged dataflow circuits, as produced by some HLS tools, trig-
ger successive execution of an operation in program order. This
places them at a disadvantage compared to modern processors that
freely reorder all independent operations. In important practical
situations, following program order limits the performance of these
circuits. We have developed a technique to enable out-of-order
execution by locally transforming untagged circuits into tagged
ones. We have applied this to a set of computational kernels and
demonstrated significant speedups at a relatively modest cost. We
believe this gives a new dimension to dataflow circuits and tangibly
increases their potential to excel in computing applications.

Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow Circuits

REFERENCES

(1]
(2]

(3]
(4]

(5]

6]

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

Arvind and R. S. Nikhil. Executing a program on the MIT Tagged-Token dataflow
architecture. IEEE Transactions on Computers, 39:300-318, Mar. 1990.

M. Budiu, P. V. Artigas, and S. C. Goldstein. Dataflow: A complement to su-
perscalar. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software, pages 177-86, Austin, Tex., Mar. 2005.

M. Budiu and S. C. Goldstein. Pegasus: An efficient intermediate representation.
Technical Report CMU-CS-02-107, Carnegie Mellon University, May 2002.

M. Budiu and S. C. Goldstein. Optimizing memory accesses for spatial com-
putation. In Proceedings of the 1st International ACM/IEEE Symposium on Code
Generation and Optimization, pages 216—27, San Francisco, Calif., Mar. 2003.

D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R. Moore,
J. Burrill, R. G. McDonald, and W. Yoder. Scaling to the end of silicon with EDGE
architectures. IEEE Computer, 37(7):44-55, July 2004.

T. Chen and G. E. Suh. Efficient data supply for hardware accelerators with
prefetching and access/execute decoupling. In Proceedings of the 49th International
Symposium on Microarchitecture, pages 1-12, Taipei, Oct. 2016.

J. Cheng, L. Josipovi¢, G. A. Constantinides, P. Ienne, and J. Wickerson. Combining
dynamic & static scheduling in high-level synthesis. In Proceedings of the 28th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages
288-98, Seaside, Calif., Feb. 2020.

J. Cheng, L. Josipovi¢, G. A. Constantinides, and J. Wickerson. Dynamic inter-
block scheduling for HLS. In Proceedings of the 32nd International Conference on
Field-Programmable Logic and Applications, pages 243-52, Belfast, UK, Aug. 2022.
J. Cheng, L. Josipovi¢, J. Wickerson, and G. A. Constantinides. Parallelising
control flow in dynamic-scheduling high-level synthesis. ACM Transactions on
Reconfigurable Technology and Systems, 16(4):55:1-55:32, 2023.

J. Cheng, J. Wickerson, and G. A. Constantinides. Dynamic C-Slow pipelining for
HLS. In Proceedings of the 30th International Symposium on Field-Programmable
Custom Computing Machines, pages 1-10, New York, NY, May 2022.

J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-level
synthesis for FPGAs: From prototyping to deployment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 30(4):473-91, Apr. 2011.
J. Cong and Z. Zhang. An efficient and versatile scheduling algorithm based on
SDC formulation. In Proceedings of the 43rd Design Automation Conference, pages
433-38, San Francisco, Calif., July 2006.

R. G. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An
efficient method of computing static single assignment form. In Proceedings of
the 16th Symposium on the Principles of Programming Languages, pages 25-35,
Austin, TX, Jan. 1989.

J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic data-flow
processor. ACM Computer Architecture News, 3(4):126-32, Dec. 1974.

D. Edwards and A. Bardsley. Balsa: An asynchronous hardware synthesis lan-
guage. The Computer Journal, 45(1):12-18, Jan. 2002.

S. A. Edwards, R. Townsend, and M. A. Kim. Compositional dataflow circuits.
In Proceedings of the 15th ACM-IEEE International Conference on Formal Methods
and Models for System Design, pages 175-84, Vienna, Sept. 2017.

A. Elakhras. Survival of the fastest. https://doi.org/10.5281/zenodo.7406581, 2024.
A. Elakhras, A. Guerrieri, L. Josipovi¢, and P. Ienne. Unleashing parallelism in
elastic circuits with faster token delivery. In Proceedings of the 32nd International
Conference on Field-Programmable Logic and Applications, pages 253-61, Belfast,
UK, Aug. 2022.

A. Elakhras, R. Sawhney, A. Guerrieri, L. Josipovi¢, and P. Ienne. Straight to the
queue: Fast load-store queue allocation in dataflow circuits. In Proceedings of the
31st International Symposium on Field-Programmable Gate Arrays, pages 39-45,
Monterey, Calif., Feb. 2023.

K. I. Farkas and N. P. Jouppi. Complexity/performance tradeoffs with non-
blocking loads. In Proceedings of the 21st Annual International Symposium on
Computer Architecture, pages 211-22, Chicago, Ill., Apr. 1994.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and
Systems, 9:319-349, 1987.

V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes. The Epsilon dataflow
processor. In Proceedings of the 16th Annual International Symposium on Computer
Architecture, pages 36-45, Jerusalem, Apr. 1989.

54

[23

[24]

[25]

(28]

[29

(30]

[32

(33]

[43]

[44

FPGA °24, March 3-5, 2024, Monterey, CA, USA

R. J. Halstead and W. Najjar. Compiled multithreaded data paths on fpgas for
dynamic workloads. In Proceedings of the International Conference on Compil-
ers Architectures and Synthesis for Embedded Systems, pages 3:1-3:10, Montreal,
Canada, Sept. 2013.

T.J. Ham, J. L. Aragén, and M. Martonosi. Decoupling data supply from compu-
tation for latency-tolerant communication in heterogeneous architectures. ACM
Transactions on Architecture and Code Optimization, 14(2):1-27, June 2017.

L. Josipovi¢, A. Bhattacharyya, A. Guerrieri, and P. Ienne. Shrink it or shed it!
Minimize the use of LSQs in dataflow designs. In Proceedings of the IEEE Interna-
tional Conference on Field Programmable Technology, pages 197-205, Tianjin, Dec.
2019.

L. Josipovi¢, P. Brisk, and P. Ienne. An out-of-order load-store queue for spatial
computing. ACM Transactions on Embedded Computing Systems, 16(5s):125:1—
125:19, Sept. 2017.

L. Josipovi¢, R. Ghosal, and P. Ienne. Dynamically scheduled high-level syn-
thesis. In Proceedings of the 26th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 127-36, Monterey, Calif., Feb. 2018.

L. Josipovi¢, A. Guerrieri, and P. Ienne. Speculative dataflow circuits. In Pro-
ceedings of the 27th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pages 162-71, Seaside, Calif., Feb. 2019.

L. Josipovi¢, A. Guerrieri, and P. Ienne. Dynamatic: From C/C++ to dynamically
scheduled circuits. In Proceedings of the 28th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pages 1-10, Seaside, Calif., Feb. 2020.

L. Josipovi¢, A. Guerrieri, and P. Ienne. Synthesizing general-purpose code into
dynamically scheduled circuits. IEEE Circuits and Systems Magazine, 21(2):97-118,
Second quarter 2021.

L. Josipovi¢, A. Guerrieri, and P. Ienne. From C/C++ code to high-performance
dataflow circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, CAD-41(7):2142-55, July 2022.

L. Josipovi¢, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella. Buffer placement
and sizing for high-performance dataflow circuits. In Proceedings of the 28th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages
186-96, Seaside, Calif., Feb. 2020.

R. Li, L. Berkley, Y. Yang, and R. Manohar. Fluid: An asynchronous high-level
synthesis tool for complex program structures. In Proceedings of the 27th Interna-
tional Symposium on Asynchronous Circuits and Systems, pages 1-8, Beijing, Sept.
2021.

G. Liu, M. Tan, S. Dai, R. Zhao, and Z. Zhang. Architecture and synthesis for area-
efficient pipelining of irregular loop nests. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(11):1817-1830, Feb. 2015.

The LLVM Compiler Infrastructure. http://www.llvm.org, 2018.

S. F. Nielsen, J. Sparsg, J. B. Jensen, and J. S. R. Nielsen. A behavioral synthesis
frontend to the Haste/TiDE design flow. In Proceedings of the 15th International
Symposium on Asynchronous Circuits and Systems, pages 185-94, Chapel Hill,
N.C., May 2009.

S. F. Nielsen, J. Sparse, and Madsen. Behavioral synthesis of asynchronous
circuits using syntax directed translation as backend. In Proceedings of the 22th
International Conference on VLSI Design, pages 24861, Jan. 2009.

G. M. Papadopoulos. Implementation of a General-Purpose Dataflow Multiprocessor.
PhD thesis, Massachusetts Institute of Technology, Laboratory for Computer
Science, 1998.

L.-N. Pouchet. Polybench: The polyhedral benchmark suite, 2012.

C. Rizzi, A. Guerrieri, P. Ienne, and L. Josipovi¢. A comprehensive timing model
for accurate frequency tuning in dataflow circuits. In Proceedings of the 22nd
International Conference on Field-Programmable Logic and Applications, pages
375-83, Belfast, UK, Aug. 2022.

J. Sparsg. Current trends in high-level synthesis of asynchronous circuits. In
Proceedings of the 16th IEEE International Conference on Electronics, Circuits, and
Systems, pages 347-50, Yasmine Hammamet, Dec. 2009.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Max-
imizing on-chip parallelism. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 392—403, Santa Margherita Ligure,
May 1995.

A. H. Veen. Dataflow machine architecture. ACM Computing Surveys, 18(4):365-
96, Dec. 1986.

Xilinx Inc. Vivado Design Suite, 2019.

https://doi.org/10.5281/zenodo.7406581

	Abstract
	1 Introduction
	1.1 Dynamically Scheduled HLS

	2 Out-of-Order Dataflow Circuits
	2.1 Untagged Dataflow Circuits
	2.2 MERGEs or MUXes? Order, please!
	2.3 The Value of Disorder

	3 Tag and Align To Enable Disorder
	3.1 Defining New Dataflow Components
	3.2 Challenge of Positioning New Components

	4 Where to Tag and Align?
	4.1 Position ALIGNER
	4.2 Position TAGGER and UNTAGGER
	4.3 Repeat for Other Out-of-Order Nodes

	5 Clustering to Hide Control Flow
	5.1 Alignment Count Mismatch Problem
	5.2 Clustering Control Flow into New Nodes
	5.3 Hierarchical Alignment
	5.4 MUXes and Alignment

	6 Tagging and Deadlock Prevention
	6.1 Assigning Tags
	6.2 Adding Enough Buffers

	7 Imposing Back Program Order
	8 MUXes to MERGEs for Disorder
	9 Evaluation
	9.1 Choosing the Number of Tags
	9.2 Benchmarks and Results

	10 Related Work
	11 Conclusion
	References

