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Abstract—Formal verification via BDD-based reachability
analysis has been shown to improve the quality of dataflow
circuits produced via high-level synthesis (HLS): it can restrict
the generality of the dataflow handshake logic only to provably
required constructs and significantly improve their resource
requirements. Unfortunately, BDD-based strategies are unscal-
able for larger circuits. A promising alternative is k-induction,
which offers scalability in the presence of suitable inductive
invariants. Yet, appropriate invariants are not straightforward
to determine: they must provide exclusively relevant information
that constrains the induction to a small number of steps without
complexing the system under verification. In this paper, we
propose a fully automated framework that systematically gen-
erates suitable inductive invariants for scalable dataflow circuit
verification. Our framework systematically exploits a variety of
HLS insights to convey relevant invariant information to the
verifier and applies to any dataflow circuit generated from C
code. On a set of representative benchmarks, we show that our
method significantly outperforms prior BDD-based approaches
(i.e., it takes minutes to prove properties that a BDD-based
checker cannot prove in days) with only a minor reduction in
verification capabilities.

Index Terms—high-level synthesis, dataflow circuit, formal
verification, model checking

I. INTRODUCTION

HLS-produced dataflow circuits have performance merits
over traditional, statically scheduled circuits when accelerating
workloads with unpredictable control flow or memory accesses
[1]–[3]. Yet, this gain is not for free: the bidirectional hand-
shake communication signals that enable dataflow circuits to
excel also cause a significant and often unacceptable resource
cost. Thus, there is a clear need to remove or simplify these
signals whenever their flexibility is not needed [4].

A general way to go about such simplifications is to rely
on formal methods: techniques that prove that, in no possible
situation, a particular handshake signal is required, so that
it can be safely omitted without compromising functional
correctness. A promising way to achieve this goal is k-
induction, but it is scalable only in the presence of suitable
inductive invariants that exclude spurious counter-examples
and enable the induction to be solved in a reasonably small
number of k steps [5]–[7]. Although we might be able to devise
these invariants on a case-by-case basis, this does not suffice
in the HLS context—we need a systematic way to exploit such
invariants in all circuits obtained from high-level code.

In this work, we present a methodology for automati-
cally generating inductive invariants targeting HLS-produced
dataflow circuits. Our method relies on general observations
about the structural patterns and behaviors of dataflow circuits

and exploits features of the code they originate from to system-
atically produce a set of inductive invariants for any dataflow
circuit. On a set of dataflow circuits obtained from C code,
we demonstrate that our invariants successfully reduce the
induction runtime while successfully proving relevant circuit
properties; its capabilities significantly exceed those of other
formal strategies (i.e., BDD-based model checking [4]).

II. BACKGROUND

In this section, we describe the dataflow circuits that we
aim to optimize via formal methods. We illustrate the benefits
of performing such optimizations and contrast several formal
methods that could be employed for this purpose.

A. Dataflow Circuits
Dataflow circuits are built from units that communicate

with their predecessors and successors via latency-insensitive
channels, composed of data and handshake signals [1], [8].
Once the relevant criteria have been met (e.g., control and
memory dependencies have been resolved), units exchange
data in the form of tokens.

The generation process of dataflow circuits has been the
subject of many research works [1], [9]–[12]; without the
loss of generality, we here focus on a recent approach for
generating dataflow circuits from C code [1]. The circuits we
consider organize units into basic blocks (BBs), i.e., straight
pieces of code without control flow decisions inside. We
consider dataflow circuits that implement sequential programs,
i.e., there is a single token entering through the entry point,
traversing through the intermediate BBs, and exiting through
the exit point in a final BB. The circuit is composed of
the following units: (1) A merge propagates a token non-
deterministically to its single output from one of its two data
inputs. (2) A mux has identical functionality as a merge,
except it propagates the input based on an additional condition
input. (3) A branch propagates the received data token to
one of its successors, depending on the value of the received
condition token. (4) An eager fork distributes a copy of the
incoming token to each of the successors as soon as they are
ready to receive it. (5) A join synchronizes multiple tokens
before sending a token to its successor. (6) A control merge
(or cmerge) is a merge, which has an output that indicates
which of the inputs has been taken from the merge. (7) A
buffer is used to store data tokens, break combinational paths,
and increase throughput. (8) An entry is an entry point of a
dataflow circuit; we consider it as a buffer with one initial
token that triggers the circuit’s computation. (9) An exit is
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Fig. 1. A simple dataflow circuit that does not need any ready signal
in its channels, and many valid signals are equivalent. (a) the schematic
that implements the functionality of the simple program below, (b) original
and optimized implementations of the Buf and Fork units, the original
implementation is shaded, and the optimized implementation is in black.

an exit point of a dataflow circuit, we consider it as a buffer
that stores the circuit’s outputs. In general, a buffer insertion
does not impact the functionality of the circuit and they can
be arbitrarily added without penalizing correctness [1], [13],
[14]. There are two caveats: (1) To ensure that the circuit is
deadlock-free, each cyclic path has to have at least two buffer
slots [14] and there must be no more than one token per cyclic
path. (2) To ensure determinism, a buffer must be placed in
between the entry units (i.e., merges and muxes) of a BB, and
the first eager fork (if any exist) of the same BB [3].

Fig. 1 shows a dataflow circuit implementing the func-
tionality of the code in the figure and built out of units
introduced above; all channels between units contain data and
handshake signals. In each iteration, the token resides inside
the Buf and is sent back through the back edge from the left
output of the Branch, through the Merge, and to the same
Buf. The circuit repeats this for N consecutive iterations until
the comparator (<) evaluates to false, which terminates the
program by removing the token from the circuit through the
right output of the Branch. Buf is a 2-slot buffer after the
merge, hence it honors the two properties above.

B. Eliminating Redundant Handshake Logic
Dataflow circuits equip every channel with bidirectional

handshake signals; the circuit is, thus, entirely latency-
insensitive. This level of generality is not always necessary.
Consider again the example in Fig. 1a: by observing the
circuit’s behavior, one can immediately notice that there is
no unit that stalls its predecessors; thus, the ready signals are
redundant and the logic that determines them can be replaced
with a constant value of 1 (i.e., all units are always ready);
similarly, since the fork always triggers the execution of its
successors equivalently, the logic to compute all valid signals
can be unified. Fig. 1b illustrates the simplified unit implemen-
tations using the transformations described above; the com-
plexity reduction with respect to the original implementations
(shaded in the figure) is immediately evident.

A recent work [4] exploited BDD-based model checking to
generate formal proofs that guarantee that optimizations such

as the ones above are correct (i.e., they do not alter any reach-
able behavior): for every dataflow channel of a circuit obtained
from high-level code, this work aims to prove the absence of
stalls and the equivalence of valid signals, as in Fig. 1. Circuit
modeling required for such an approach is straightforward
and results in up to 50% area reduction. Note that there is
a fundamental difference between system verification tasks
and circuit optimizations (such as the ones we are interested
in) in how property checking techniques are exploited: in a
typical system verification task, every desired property is part
of the specification of the system, and any failure implies that
the underlying system is incorrect; for the purpose of circuit
optimization, it is acceptable to have some statements false—it
simply indicates that a particular handshake signal cannot be
removed without violating correctness. However, this approach
is not scalable, as we will discuss next.

C. Reachability vs. Induction
Unfortunately, BDD-based reachability analysis is known

for its scalability issues [7]: even for moderately-sized circuits,
no property can be concluded in days [4]. Despite prior efforts
to simplify the model by abstracting away data, control flow,
and memory constructs, the runtime remains unacceptable; in
larger circuits, no useful properties can be concluded.

K-induction is the most prominent technique among the
verification methods of safety properties without reachability
analysis [5], [15]. A property that can be verified using k-
induction satisfies the following [6]: (1) for any k steps
starting from the set of initial states, no counter-example
can be found; (2) assuming the safety property holds for k
consecutive steps, any state obtained after any state transition
preserves the property. In practice, a very large bound k is
needed for concluding non-trivial properties: when k is not big
enough, the induction engine will return a counter-example, in
which none of the states is reachable. Therefore, an inductive
invariant is a key to constraining the induction depth k, thus
ensuring scalability [16]. In the rest of this paper, we devise a
set of inductive invariants that enables us to efficiently verify
properties such as the ones discussed in Section II-B.

III. GENERATING INVARIANTS FROM DATAFLOW
CIRCUITS

This section describes our methods for generating inductive
invariants from dataflow circuits. They restrict the unreachable
state space seen by an induction engine by leveraging differ-
ent structural properties of individual units, entire dataflow
circuits, and the high-level code they originate from.

A. Localized Invariants
This section describes localized invariants that eliminate un-

reachable states of the state-holding elements among the units
(i.e., buffers and eager forks, as mentioned in Section II-A).
These invariants always hold true for these units, regardless
of the dataflow circuit they are used in. We will first discuss
forks and then the buffers.

Fig. 2a describes a fork in terms of its state registers. We
introduce a binary state-variable sent for each output of an
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Fig. 2. Using local invariants to rule out unreachable states of an eager fork.

Entry(x)

Mg1

+

Br1

< N

for (i = 0; i < N; i++) x += a[i];

Entry(i)

1 LD a[i]

Buf1

Br2

+

Buf

Mg2

Buf2

Mg1

+

Br1

< N

1 LD a[i]

Buf1

Br2

+

Buf

Mg2

Buf2

T

T

T

Transfer

Stall Stall

(s1): target property holds (s2): target property fails

Stall

Buf3

T

Buf3

Entry(i) Entry(x)

Exit(i) Exit(x) Exit(i) Exit(x)

Fork10 0

Fork2

0 0

0 0

Fork3
0 0

Fork1

Fork2

Fork3

0 0

0 0

s1

s0

Fig. 3. A possible counter-example against proving property ”Buf 1 never
stalled by Fork1” after adding local invariants described in Section III-A.
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Fig. 4. An in-order graph from the same circuit in Fig. 3.

eager fork; sent = 1 indicates that the token at the fork input
has been issued to its successor through the corresponding
channel, and sent = 0 indicates that there is no token at the
fork input or the input token has not been sent yet (which
occurs when the successor is not ready to accept the token).
For example, the Fork in Fig. 2a has already issued a token
to the right Buf , but not yet to the left Buf . Without the
addition of invariants, an induction engine would account for
all combinations of the sent register values in an eager fork,
but one can immediately see that some will never occur. For
instance, in Fig. 2b, the fork has sent out a token, but there
is no token appearing at its input; in Fig. 2c, the fork has
issued tokens to both outputs, but the sent registers have not
been reset. To rule out such unreachable states, we devise the
following invariant for each eager fork:

Invariant 1. For any fork f , the number of outputs that
are in sent state must be smaller than the total number of

fork outputs (Nout ).
Nout∑
j=1

f.sentj < Nout . (1)

This invariant states that not all outputs of an eager fork can
be in a sent-out state simultaneously. Yet, this invariant alone
is not sufficient to rule out the state in Fig. 2b: although only
one output is in a sent-out state, this situation is impossible,
as the token is no longer present in the preceding buffer
and can never be issued to the left, thus violating the fork’s
functionality. To exclude such situations, we require a local
relationship between a fork and all the token-holding units
from which it can copy tokens. We denote the elementary
token-holding unit as a slot s, where the binary state variable
s.full denotes whether the slot is full (e.g., in Fig. 1a, Buf
has two cascading slots). We define the following:
Definition 1. A path between a pair of dataflow units u and
v is a set of non-repeating units and channels starting from u
and ending at v. The set of all paths from u to v is denoted
as Paths(u, v).

For instance, Fig. 6 describes a subsection of dataflow circuit,
we can identify an ordered set of units Fork1, ”+”, Fork2,
”<”, Fork3, Buf 3, Br2, and all channels in between the units
as a path p.
Definition 2. A slot s belongs to the set of copied slots
of fork f , denoted as s ∈ CopiedSlots(f) if the following
holds: (1) Paths(s, f) ̸= {∅} and (2) ∃p ∈ Paths(s, f), such
that the path does not contain any slots other than s itself.
Similarly, the set of copying forks of s is the set of forks such
that ∀f ∈ CopyingFork(s), s ∈ CopiedSlots(f).

For example, in the circuit illustrated in Fig. 3, the buffer unit
Buf 1 is composed of slot s0 and slot s1, the lower slot s1
is an copied slot of Fork1, Fork2, and Fork3; however the
upper slot s0 is not.
Remark 1. Since we can associate an output state of a fork
f.sent with a particular channel, for a path p, we denote
f.sentk ∈ p if f ∈ p and output channel k is in the path.

We propose the following for each fork:
Invariant 2. For any output state f.sent of a fork f , all
slots s such that s ∈ CopiedSlots(f):

f.sent =⇒ s.full . (2)
This invariant describes that, if some of the outputs of fork f
have sent out a token, and others have not, the corresponding
token must be held in all copied slots of f . For example, In-
variant 2 rules out the possibility of having fork sent states in
Fig. 2b in any induction counter-examples.

Invariant 3. For any path p such that p does not contain
any slots, the following invariant must hold for all fork
sent-out states f.sent ∈ p:∑

f.sent∈p

f.sent ≤ 1. (3)

This invariant describes that, on every path, a token can
be duplicated only once before entering any other slot. For
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instance, in Fig. 5, only one fork has a sent-out state in the
path between Buf 1 and Buf 3, and Invariant 3 is honored. We
model each buffer as a sequence of slots. Every buffer follows
the first-in-first-out principle, and we propose the following
invariant for each buffer unit:

Invariant 4. Consider a sequence of slots s1, s2, ..., sN
that originate from any buffer unit with N slots.

si.full =⇒ si+1.full ,∀i ∈ 1..N − 1. (4)

This invariant states that, if a given slot inside a buffer is
occupied by a token, then its successor slot in the same buffer
must also be occupied. For instance, in Fig. 1, Invariant 4
describes that whenever a token occupies the upper slot of
Buf , the lower slot must also be occupied.

B. Invariants from Recombining Paths
We characterize the state of a dataflow circuit by the full

and sent states of the slots and forks. Without additional
information, an induction engine would account for any com-
bination of these states. Fig. 3 illustrates a dataflow circuit that
implements the functionality of the code at the bottom; we aim
at removing the ready signal of the channel between Buf 1 and
Fork1. The left part of the circuit is analogous to that of Fig. 1;
the only difference is that, in every loop iteration, the iterator
is also forked into a load to retrieve the value of a[i], to be
accumulated to the token that carries the value of x in the
rightmost cyclic path. While loading the value of a[i] from
memory, the control-flow decision is also buffered in Buf 3.
The circuit terminates its execution when ”<” issues a loop
exit control decision, which sinks both i and x to exit.

The target property is honored throughout the execution of

TABLE I
SUMMARY OF FLOW RELATIONS

Unit Type Relation
Operators (Join) λin,k = λout , for each input k

Eager forks

λin + sentk = λout,k , for each output k
When sending token that influences control flow:
λ
+/−
in + sent

+/−
k = λ

+/−
out,k .

where sent+k = din → sentk
and sent−k = din → sentk

Slots

λin = full + λout .
When holding token that influences control flow:
we separately specify full+ and full−

λ
+/−
in = full+/− + λ

+/−
out .

Branches
λin,data = λin,cond = λout,true + λout,false

λ
+/−
in,cond = λout,true/false

Muxes
λin,sel = λin,true + λin,false = λout,0 ,

λ
+/−
in,sel = λin,true/false

Merges λin,0 + λin,1 = λout

the circuit. However, if we attempt to prove it using 1-step
induction (even after adding the invariants of Section III-A),
the solver will generate a counter-example such as the one in
Fig. 3 (i.e., the target property holds in s1 but not in s2, see
Section II-C). Yet, this token assignment is evidently infeasi-
ble: whenever Fork1 injects a token to Buf 3 but not yet to
LD, a token must be held in Buf 1 until it is eventually injected
into LD; meanwhile, exactly one of Fork1,Fork2,Fork3 must
remember a token has already been sent out, which is not
true in this case. We could reason that the state is unreachable
because we can identify a pair of recombining paths (i.e., paths
that originated from the same fork, and recombined at the same
join), as illustrated in Fig. 6, such that both paths start from
Fork1 and end at Br2; without knowing anything about the
delay of the units, the number of tokens that are issued to one
path must eventually be identical to the other.

Prior work proposed an automatic method for discovering
inductive invariants to systematically rule out unreachable
states of this form [7]; For each unit, relations that specify
how each unit governs the token transfer λch (the number of
tokens that have been transferred in a channel ch up to a given
point in time) in its channels can be derived; the invariants that
describe the token count relations of the recombining paths
are generated to rule out the unreachable states. We adapt
this method to dataflow circuits: a set of relations is derived
according to Table I on a per-unit basis; a set of invariants is
derived from applying the Gaussian elimination and added to
the verification model [7], [17].

As an example, we would like to derive an invariant
for the recombining path structure in Fig 6, which is part
of the same circuit in Fig 3. All channels in this figure
are labeled with a red italic letter. For the eager forks
Fork1,Fork2,Fork3:

λn + Fork1.sent0 = λo, λn + Fork1.sent1 = λu,

λp + Fork2.sent1 = λq, λr + Fork3.sent1 = λs.
(5)

The above relations describe that an eager fork allows an
output transfer (i.e., a token issued to a fork output) to happen
before the input transfer (i.e., the token sent to all outputs and
consumed from the fork’s predecessor), up to sent many times
(which can only be 0 or 1); in other words, a fork output
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can replicate at most one token (see Section II-A). For token-
holding elements LD and Buf3:

λu = LD .full + λv, λs = Buf 3.full + λt. (6)

The above relations describe that a slot allows an output
transfer to be delayed from an input transfer by buffering the
token. For combinational units Br2, ”+” and ”<”:

λw = λt, λo = λp, λv = λw, λq = λr. (7)

The above relations describe that the input transfer of these
units must be synchronized. After eliminating the λ variables
from the system of equations derived from individual units
(i.e. the resulting relations hold for any point in time), we
obtain the following invariant:

LD.full + Fork3.sent1 + Fork2.sent1+

Fork1.sent0 = Buf3.full + Fork1.sent1.
(8)

This invariant requires the token occupation in the two recom-
bining paths in Fig. 6 to be balanced, which eliminates the state
s1 in Fig. 3; if one path has more tokens than the other, the
eager fork sents must compensate for the difference.

C. Invariants from Bounded Structures
The invariants of Section III-B do not capture the fact that

our circuits contain a bounded or even a fixed number of
tokens. In this section, we devise invariants that describe these
features. Consider that we add the structural invariants from
Section III-B to rule out the counter-example in Fig. 3: the
solver will generate a different counter-example, as described
in Fig. 5: the two tokens in Buf 2 cause a stall on the path
with the LD , thus breaking the target property.

Throughout the execution of the program, since there is
exactly one token representing the value of x (recall that the
circuit implements a sequential program, see Section II-A) and
there are no eager forks that can duplicate the value of x along
the paths that the token x can traverse, it is impossible to have
two tokens reside in the two slots in Buf 2 simultaneously. To
systematically rule out an incorrect number of tokens, we need
to identify circuit structures in which the token count remains
constant. Fig. 4 details a subsection of the circuit in Fig. 5
that has a fixed number of tokens: the slots in this part of the
circuit hold the value of the variable i; the number of tokens
in this structure is always equal to its number of initial tokens
and the number of copies produced by the forks since there
is no way to inject new tokens or remove tokens from this
part of the circuit. Such structures are generally found in the
dataflow circuits compiled from sequential programs [18]; we
define them as in-order graphs.
Definition 3. An in-order graph (IOG) of a dataflow circuit
is a subset of units and channels, such that: (1) there exists
one and only one entry unit and the entry unit can reach all
other units on the IOG , (2) for each fork on the IOG , only
one of its output channels can belong to this graph, (3) for
each merge and mux on the IOG , all their input data channels
must belong to the graph.

For example, the dataflow circuit in Fig. 5 contains two IOGs:
(1) the one that is described in Fig. 4 and (2) the IOG that con-

sists of Entry(x), Mg2, Buf2, the adder ”+”, Br2, and Exit(x).
For every IOG, we propose the following:

Invariant 5. For any in-order graph IOG , the following
relation is invariant over the number of slots that are
occupied (s.full ) and the output states of forks (f.sent):∑

s∈IOG

s.full = Tinit +
∑

f∈IOG

f.sent . (9)

For any IOG, Tinit = 1. For example, in the IOG that
accommodates value of x in Fig. 5, we could formulate
Invariant 5 as

Entryx.full + Buf 2.slot0.full+

Buf 2.slot1.full + Exitx.full = 1,
(10)

from which we can have the same conclusion as before, i.e.,
it is impossible to occupy both of the slots in Buf 2 with
tokens, which rules out the state s0 in Fig. 5. We developed a
procedure for in-order graph enumeration based on a breadth-
first search; we generate Invariant 5 for all of them.

To exclude unreachable circuit states, in addition to the total
number of tokens on an IOG, it is important to reason about
the distribution of tokens in particular slots. For every IOG, we
formulate the following invariant for every pair of slots:

Invariant 6. For any two slots si, sj ∈ IOG, the following
relation must hold:
(si.full) ∧ (sj .full) =⇒ ∃f, p : (f ∈ p) ∧ (f.sent)∧
(p ⊂ IOG) ∧ (p ∈ Paths(si, sj) ∧ si ∈ CopiedSlots(f)∨
p ∈ Paths(sj , si) ∧ sj ∈ CopiedSlots(f)),

(11)
where f is a fork in p.

Invariant 6 describes that, if two slots on an IOG are both
full, there must be a path connecting them; the slot at the
beginning of this path must be duplicated by a copying fork
(i.e., s ∈ CopiedSlots(f), see Section III-A). For example,
in the IOG in Fig. 4, Invariant 6 rules out the possibility of
having slot1 and Entry both occupied by tokens, as there is
no copying fork to duplicate tokens from Entry (notice that
this state is not ruled out by Invariant 5).

D. Invariants for Token Ordering
Our invariants so far described rules for token counts and

distributions. However, these rules do not account for the
incorrect ordering of tokens, whose values directly influence
the control flow in unreachable states. We therefore devise the
corresponding invariants in this section.

Fig. 7 illustrates a dataflow circuit that accumulates the
squared values of the iterator in every loop iteration. The
circuit begins its execution by injecting the initial values
of the iterator and accumulator into the loop; a dataless
control token is also injected through a cmerge unit CMg1.
In every iteration, CMg1 generates a decision token, forked
through Fork2, and indicates from which input Mux 1 and
Mux 2 should take tokens. The iterator token i is stored in
Buf 2, and is forked into Pipeline1 (a unit of latency 4) to
calculate the squares; at the same time, i triggers the execution
of the decider – an abstract component that produces non-
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deterministic control decisions instead of actual comparison
[4]. The decider dictates whether the cyclic paths (the three
IOGs a, b, and c) should repeat the loop iteration or dispatch
the tokens into the exit units. Condition C indicates to continue
the loop iteration; E indicates entering the loop for Mux and
exiting for Br. The accumulator token x is stored in Buf 1 and
initially has to wait for the first token from Pipeline1 for 4
cycles before it can start accumulating values; while waiting,
the control decisions are buffered in Buf entry and Buf exit ,
which keep track of the control decisions that token x has
to follow. After the first square arrives, in every iteration, a
new square is accumulated into x through the adder, and the
tokens in Buf exit (from 4 cycles before) decide if token x
should continue the loop iteration or exit.

Without suitable invariants, an induction engine will account
for sequences of control-flow decisions that are impossible for
sequential programs. Consider the circuit in Fig. 7 but, instead
of having ”C, C, C” in Buf entry , assume a sequence ”C, E, C”;
all other tokens remain at the same location and values. In this
case, after the token repeats a loop iteration through Mux 1,
Buf entry expects a token to enter the loop through Mux 1,
but the token has already entered (see Buf 1); as no further
token will enter, the Mux 1 select token will never change
to C, and the token in Buf 1 will never advance; the verifier
concludes that the circuit deadlocks and misses the opportunity
to verify any property (e.g., the output channel of Pipeline1
never stalls). Yet, this scenario is clearly nonsensical: Buf entry
can receive only a single E token during the circuit execution
and this token must have already been consumed by the mux
(otherwise, there would be no token in Buf 1).

We propose invariants to eliminate unreachable states asso-
ciated with this value-ordering problem: we restrict the value
sequence of the slots in the path between CMg and Mux 1

only to those that are actually possible in a sequential program
execution. To this end, we introduce a binary variable s.value ,
which represents the token value stored in slot s.

Definition 4. Given a path p, the value function Values(p)
returns an ordered set {sfirst .value, ..., slast .value}, repre-
senting an ordered sequence of unique tokens (i.e. the tokens
duplicated by eager forks are removed) on p.

Remark 2. The first element in a sequence (sfirst ) is the value
of the last token that was injected into the path.

Invariant 7. ∀CMgentry ,Mux entry ∈ BBentry in the
header BB of the outermost loop, all paths pcm ∈
Paths(CMgentry ,Mux entry), the sequence can be rep-
resented using regular language as follows:

Values(pcm) := {C ∗ E?}, (12)
where ”∗” indicates that the preceding symbol repeats ar-
bitrarily many times and ”?” indicates that the preceding
symbol occurs 0 or 1 time.

This invariant describes that only the last valid value in the
path (i.e., first to be consumed by the Mux ) between CMg
and Mux can be a loop entry (E).

Additionally, once a token enters the outermost loop, no
further token can be injected into the same CMg from the
entry point into the loop header BB:

Invariant 8. For all entry units of the dataflow circuit
Entry , and all paths pec ∈ Paths(Entry ,CMgentry):

(Values(pcm) ̸= {∅}) =⇒ (Values(pec) = {∅}).
(13)

We must also restrict the order of the token values that
control the behavior of the Branch. In Fig. 7, instead of having
”E, C, C, C” in Buf exit , assume a sequence ”C, C, C, E”. In
this case, the sequence in Buf exit expects Br1 to first let the
program exit from the loop, and then repeats the loop iteration
three more times. However, after the token exit from IOGa, no
token in Buf entry , Buf exit , and Pipeline1 can be consumed,
pointing the verifier to deadlock and precluding circuit simpli-
fications. To rule this out, we propose the following invariants
to restrict the value sequence of the slots in the path between
Decider and Br only to those that are actually possible in
sequential program execution:

Invariant 9. In the BBexit that is the exit BB of the
outermost loop, the decider Decexit , all branch nodes
Brexit , and the paths pdb ∈ Paths(Decexit ,Brexit).
The sequence in the path can be represented in regular
language:

Values(pdb) := {E?C∗}. (14)

This invariant describes that the outermost loop exit should
always be the last decision to be produced by a decider.
Consider the IOGDec that contains Decexit , we construct new
subgraphs IOG ′

Dec that are the union of all units and channels
of IOGDec and pdb.

The following describes, if any slot holds the outermost loop
exit decision, then no other slot can send tokens to it.

Invariant 10. For all slots that hold outermost loop
exit condition sdb ∈ pdb, all slots that are sdb’s an-
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TABLE II
MODEL STATISTICS & INVARIANT VERIFICATION RUNTIME

Benchmark #Slots #Sents #Units #Ch. No Recomb.
Paths (s) All Invar (s)

fir 46 19 86 98 0.05 1.04
matrix power 67 34 150 170 0.07 931.98

matvec 65 41 147 172 0.12 79.89
bicg 83 48 177 204 0.11 5960.88
2mm 248 142 557 665 3.29 TO(72h)
3mm 270 180 660 782 3.51 TO(72h)

cestors sancestor ∈ IOG ′
Dec and all paths pab ∈

Paths(sancestor , sdb) such that pab ⊂ IOG ′
Dec , the fol-

lowing must hold:
(sdb.value = E) =⇒ (Values(pab) = {∅}). (15)

For example, in Fig. 7, consider IOGDec shown in blue
and containing a decider Dec; buffer Buf exit receives tokens
from IOGDec . We see a condition E inside Buf exit : since no
ancestor of Buf exit holds a token that can be sent to Buf exit ,
Invariant 10 is honored.

To account for token duplication across the decider (i.e., a
token is held by a decider’s predecessor, and not yet issued to
all its successors), we include the following constraint:

Invariant 11. Consider every slot s, path psd such that
p ∈ Paths(s,Dec), p ⊂ IOGDec , and psd contains no
other slots than s, for all sdb ∈ pdb the following must
hold:
(sdb.value = E ∧ psd ̸= {∅}) =⇒ (psd = {E}). (16)

With these invariants, we exclude token sequences that are
not possible in any sequential program.

IV. EVALUATION

In this section, we evaluate the effectiveness of our inductive
invariant-based strategy in verifying and optimizing dataflow
circuits obtained from high-level code.

A. Methodology and Benchmarks
We incorporate our strategy in a verification framework [4]

targeting dataflow circuits produced by Dynamatic, an open-
source HLS compiler that translates C/C++ into dataflow cir-
cuits [19]. This framework automatically generates an abstract
circuit model based on SMV [20] and a set of properties
to prove (e.g., valid signal equivalence and the absence of
stalls for every channel, as discussed in Section II-B). The
original framework verifies these properties using BDD-based
model checking in nuXmv [21]. Whenever a channel property
evaluates to true, the channel logic is simplified accordingly;
if the property is false, the channel remains intact.

We use the same flow for our strategy; the only dif-
ference is that, instead of BDD-based model checking, we
employ k-induction enhanced with the inductive invariants
from Section III. Note that BDD model checking classifies
all properties as true or false; our induction-based strategy
may result in an undecided property if the induction depth
is too small to verify it. In such cases, we do not optimize
the corresponding channel logic. Hence, our goal is to have a
short runtime, a minimal number of undecided, and a maximal
number of true properties that allow circuit simplifications.

TABLE III
PROPERTY VERIFICATION RUNTIME & SYNTHESIS RESULTS

Bench. Techn. Inv k Check
Time(s) #T/F/U LUT

(%Red)
FF

(%Red)
No Opt. - - - 0/0/68 513 508

BDD - - 7.8 53/15/0 276(-46%) 267(-47%)
Ind ∅ 1 0.3 17/12/39 503(-2%) 500(-2%)
Ind all 1 1 35/12/21 383(-25%) 379(-25%)
Ind ∅ 5 0.9 20/15/33 495(-4%) 495(-3%)
Ind all 5 1.5 52/15/1 288(-44%) 267(-47%)
Ind ∅ 10 3.4 20/15/33 495(-4%) 495(-3%)

fir

Ind all 10 1.6 53/15/0 276(-46%) 267(-47%)
No Opt. - - - 0/0/128 830 415

BDD - - 243.7 45/83/0 493(-41%) 364(-12%)
Ind ∅ 1 0.8 15/33/80 585(-30%) 409(-1%)
Ind all 1 4.1 36/33/59 752(-9%) 380(-8%)
Ind ∅ 5 2.3 17/77/34 567(-32%) 405(-2%)
Ind all 5 7.3 44/77/7 735(-11%) 370(-11%)
Ind ∅ 10 6.3 17/82/29 567(-32%) 405(-2%)

matrix
power

Ind all 10 10.8 44/82/2 735(-11%) 370(-11%)
No Opt. - - - 0/0/128 781 587

BDD - - 55.1 96/32/0 373(-52%) 280(-52%)
Ind ∅ 1 0.8 20/19/89 768(-2%) 581(-1%)
Ind all 1 5.5 46/19/63 634(-19%) 494(-16%)
Ind ∅ 5 3.7 22/31/75 753(-4%) 578(-2%)
Ind all 5 23.8 55/31/42 552(-29%) 425(-28%)
Ind ∅ 10 16.8 22/32/74 753(-4%) 578(-2%)

matvec

Ind all 10 51.6 77/32/19 463(-41%) 360(-39%)
No Opt. - - - 0/0/152 904 844

BDD - - 2202.2 58/94/0 711(-21%) 678(-20%)
Ind ∅ 1 1.4 20/29/103 889(-2%) 838(-1%)
Ind all 1 9.1 47/29/76 798(-12%) 751(-11%)
Ind ∅ 5 4.9 22/68/62 889(-2%) 835(-1%)
Ind all 5 26.4 50/68/34 749(-17%) 716(-15%)
Ind ∅ 10 15.6 22/85/45 889(-2%) 835(-1%)

bicg

Ind all 10 53.8 50/85/17 749(-17%) 716(-15%)
No Opt. - - - 0/0/489 3061 2794

BDD - - TO(72h) 0/0/489 3061(-0%) 2794(-0%)
Ind ∅ 1 14.7 52/61/376 2997(-2%) 2720(-3%)
Ind all 1 2750.3 160/61/268 2470(-19%) 2259(-19%)
Ind ∅ 5 92.2 57/106/326 2924(-4%) 2618(-6%)
Ind all 5 7592.6 185/106/198 2301(-25%) 2117(-24%)
Ind ∅ 10 472.3 57/161/271 2924(-4%) 2618(-6%)

2mm

Ind all 10 20677 186/161/142 2285(-25%) 2084(-25%)
No Opt. - - - 0/0/596 2706 1907

BDD - - TO(72h) 0/0/596 2706(-0%) 1907(-0%)
Ind ∅ 1 21.8 49/91/456 2677(-1%) 1901(-0%)
Ind all 1 742.6 230/91/275 2356(-13%) 1720(-10%)
Ind ∅ 5 150.5 51/122/423 2694(-0%) 1898(-0%)
Ind all 5 2867.9 263/122/211 2312(-15%) 1679(-12%)
Ind ∅ 10 745.5 51/165/380 2694(-0%) 1898(-0%)

3mm

Ind all 10 11523.8 263/165/168 2312(-15%) 1679(-12%)

We verify our set of invariants using 1-step induction prior
to verifying our circuits; this allows us to use our invariants as
system assumptions when proving the properties of interest.
This approach differs from prior works on induction [7]
that verify the invariants in conjunction with the properties
of interest. The reason is the fundamental difference of the
verification goals, discussed in Section II-C: unlike in standard
verification systems, a false property is perfectly acceptable
here; it just indicates the inability to simplify a particular
logic construct. Thus, it is sensible to first prove that the
entire set of inductive invariants is correct and to reason about
the system properties separately—combining the two would
require repeating the verification process while excluding false
properties until the invariant correctness has been proven,
thus unnecessarily prolonging the verification process for the
same final outcome. The verification of most invariants is
extremely fast, as reported in Table II, column No Recomb.
Paths, showing the time needed to verify all invariants except
those of Section III-B (i.e., recombining paths). Including
these invariants increases the verification time drastically
(column All Invar). Although we here prove these invariants

7



for completeness, these proofs could easily be omitted as
they originate directly from the well-known composability of
latency-insensitive units that makes dataflow circuits correct
by construction [8], [22].

We report the verification results and runtime of nuXmv on
a consumer laptop. Each verification run is timed out after 72
hours (in case it has not terminated prior to that time limit). We
report the post-place-and-route area results (i.e., the number
of FPGA LUTs and FFs) using Vivado [23].

Since all the optimization strategies we consider focus on
the datapath of dataflow circuits, we consider exclusively the
datapath resources and we omit those of the memory interface.
To ensure that our circuit modifications have not compromised
circuit behavior, we additionally verify them in ModelSim [24]
through functional simulation to confirm that our optimizations
did not modify the circuit’s functionality in any way.

Our benchmarks are typical HLS kernels that originate
from a standard HLS suite [25] and have been previously
used for evaluating the effectiveness of dataflow circuits in
HLS [3], [4], [12], [26]. Table II details the characteristics of
our benchmarks: #Slots and #Sents are the total number of
slots and sent-out states in eager forks; #Units and #Ch. are
the total number of units and channels in the data path. As
we will see next, these characteristics will significantly impact
the scalability and effectiveness of our optimization.

B. Results: BDD vs. Induction
We here compare our induction-based strategy with a BDD-

based approach in terms of verification runtime, the number of
verified properties, and area optimization effectiveness.

Table III compares different verification techniques, as in-
dicated in column Techn.: No Opt corresponds to dataflow
circuits that are not optimized via formal verification, BDD is
BDD-based model checking [4], and Ind refers to k-induction-
based model checking. For experiments with Ind, in column k,
we report the maximum allowed induction depth; in column
Inv, we indicate whether we included the invariants from
Section III as all or ∅. We report the property checking results
in column #T/F/U: (T) is the number of properties that are
honored by the circuit; only they can be used for optimization,
(F) is the number of properties that are falsified by counter-
examples, and (U) is the number of properties that cannot be
concluded within the induction depth. The final two columns
show the LUT and FF usage and improvement.

For the designs that BDD is able to handle, the verifier
proves all properties (i.e., undecided count is always zero)
and the circuits can be aggressively optimized: the LUT and
FF count is significantly (i.e., up to 52%) smaller than in the
non-optimized circuits. However, the checking time quickly in-
creases with benchmark complexity; for the two most complex
benchmarks (2mm and 3mm), the verifier times out and the
circuits cannot be optimized at all. In contrast, all induction-
based verifications successfully terminate: the benchmarks that
were verifiable with BDD can now be verified faster, and
those where BDD was unsuccessful now terminate within a
reasonable runtime. As expected, the number of undecided

properties varies with different induction characteristics; we
will further explore these variations in the following sections.
Consequently, BDD is sometimes able to optimize the circuits
more aggressively than its induction-based counterparts (e.g.,
in matrix power, the best induction-optimized design achieves
a LUT reduction of 32%, whereas the BDD reduction is
41%). Still, the minor reduction in optimization capabilities in
smaller benchmarks is acceptable for the significant runtime
savings (in the matrix power, the small reduction in LUT
savings comes at a 100× verification time speedup); most im-
portantly, in larger benchmarks, where area reduction typically
matters the most, induction achieves optimized designs (i.e.,
with up to 25% LUT and FF savings) which were impossi-
ble with BDD. This points to the importance of employing
induction for scalable circuit verification.

V. RELATED WORK

Automatically generating inductive invariants has been the
subject of many research works [7], [15], [27], [28]; to our
best knowledge, the most recent work that targets hardware
verification is Chatterjee et al. [7]. This work focuses on
deadlock freedom verification of communication fabrics and
has presented a systematic strategy for generating suitable
inductive invariants, rule out unreachable states, and verify
properties using 1-step induction. Despite the similarity be-
tween the units that are used to model communication fabrics
and the dataflow units, the purposes that these platforms
serve are very different; dataflow units are more complex and
diverse. For instance, dataflow circuits contain eager forks
instead of lazy forks to increase the throughput by allowing
operations to execute more out-of-order. As a result, our
desired properties require additional rules to prove.

Sequential synthesis aims at reducing circuit cost without
alternating functionality, which shares a similar goal with our
approach [15], [29]. Yet, these approaches are mostly based
on either pure k-induction or mining inductive invariants from
gate-level descriptions.

VI. CONCLUSION

In this work, in order to support k-induction-based model
checking on dataflow circuits derived from high-level code, we
have developed a strategy for generating inductive invariants.
Our invariants rule out unreachable states that violate the
properties of individual units, of the entire data flow circuits,
and of the high-level code from which they are derived. By
enabling a more scalable verification strategy, we reduce the
resource requirements of larger dataflow designs that previous
techniques could not handle. This makes this HLS paradigm
more affordable and widely applicable.
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