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Abstract—Buffer placement (i.e., pipelining) for frequency
regulation is a fundamental step of High-Level Synthesis (HLS).
Typical HLS approaches place buffers before technology map-
ping; as the circuit implementation details are unknown, the
HLS tool must resort to pre-characterized and conservative
delay estimates when deciding on the buffer placement. An
alternative is to place buffers after technology mapping when the
circuit details are known. However, the buffers themselves may
invalidate prior mapping assumptions and irreversibly impact
the ultimate circuit frequency. In this work, we propose a
methodology that simultaneously tackles technology mapping
and buffer insertion in HLS-produced dataflow circuits. Our
approach achieves a 13.32% and 11.14% average improvement in
execution time and area compared to state-of-the-art approaches
that handle these problems separately.

I. INTRODUCTION

Pipelining is usually performed during high-level synthe-
sis (HLS), prior to technology mapping: the delay of each
computational block is characterized in isolation (e.g., by
synthesizing, placing, and routing the standalone component)
and registers (also called buffers) are placed accordingly
[1]–[4]. Unfortunately, this approach fails to recognize the
component simplifications and gate-level interactions that will
occur during technology mapping: the observed delays are
overblown and cause redundant buffer insertion that later
optimizations (e.g., retiming [5]) can no longer remove. A
dual approach is also possible: technology mapping could
be performed first and its result used to determine a less
conservative buffer placement [6]. Of course, the circuit needs
to be re-mapped afterwards and there is no guarantee that
the previous mapping assumptions hold; the ultimate circuit
structure can still deviate from the assumed one and its buffer
placement may be inadequate.

To overcome these limitations, we present MapBuf, a strat-
egy for simultaneous buffer placement and technology map-
ping based on mixed-integer linear programming. It accounts
for the circuit’s current mapping as well as possible mapping
modifications caused by buffers; it can thus accurately control
the circuit’s critical path without degrading its implementation.
Although our insights apply to any HLS approach, we here
focus on optimizing synchronous dataflow circuits obtained
from C code, as they are known to suffer from poor frequency
regulation [2] and can thus significantly benefit from our
strategy. On a set of benchmarks obtained from C code,
we show that our proposed strategy outperforms a state-of-
the-art method [6], achieving on average a 13.32% speedup

on benchmark workloads while using 11.14% fewer flip-
flops (FFs).

In the rest of the paper, we show an example in Section II to
motivate our work. Then, we present background and related
work in Section III, and we illustrate our methodology in
Section IV and Section V. In Section VI, we depict our entire
workflow and evaluate our method.

II. SIMULTANEOUS IS THE WAY!

Figure 1a shows a portion of a dataflow circuit with three
dataflow units, A, B, and C. The units exchange data via
handshake channels, ready and valid; for simplicity, the data
signals are omitted from the figure. To regulate the circuit’s
critical path, an HLS tool can place buffers on the channels
between the units; we here contrast three possible methods to
minimize the number of buffers using different timing models.
In these models, a look-up table (LUT) represents a unitary
delay; the gates forming a single LUT are shown in the same
color and annotated with the same LUT ID. In all these cases,
the target clock period (CP) corresponds to a combinational
delay of two LUTs.

Figure 1b shows an example of performing buffering prior
to technology mapping (we refer to this strategy as B-M).
Since the delay of each unit is characterized in isolation, the
strategy cannot consider any cross-unit optimizations; each
unit is assumed to consist of independent LUTs, as shown in
the timing model in the figure. To honor the target CP, the HLS
tool must place two buffers, ensuring that each combinational
path has the length of at most two LUTs.

Figure 1c shows the result of performing technology map-
ping prior to buffering (we refer to this strategy as M-B).
Notice that, in this case, a single LUT contains logic from
multiple units (e.g., LUT1 contains gates of units A, B, and
C). Since buffers can be placed only between the dataflow
units, to honor the CP constraint of two LUTs, the HLS tool
must place a buffer between A and B (i.e., path LUT1 - LUT2
- LUT3 must be broken into two stages). However, since the
HLS tool has no knowledge about the impact of this buffer on
the final circuit structure, it must conservatively assume that
LUT2 is replicated into two LUTs. For this reason, the lower
path of LUT2 - LUT3 - LUT4 will remain in the timing model;
this calls for an additional buffer between units B and C.

Figure 1d shows a circuit obtained via simultaneous buffer
placement and technology mapping. Unlike the previous case,
the HLS tool can now account for the mapping change caused
by the placement of a buffer between A and B; concretely, it is
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(“B-M”)

A

B

C

BUFF

BUFF

1

1

1
2

2

3

3

4

(1c) Mapping before buffering
(“M-B”)

A

B

C

BUFF

1

1

1
2

3

3

4

4

(1d) Simultaneous mapping and
buffering (ours, i.e., MapBuf)

Fig. 1: Comparison of different buffer placement techniques
for dataflow circuits. In all figures, gates forming a single LUT
are shown in the same color and annotated with the same LUT
ID. Both Figure 1b and Figure 1c separate technology mapping
and buffer insertion: the former executes buffer placement
before technology mapping, and the latter applies them in the
reversed order. On the other hand, our strategy (Figure 1d)
considers both problems simultaneously to find the solution
with the best performance and lowest number of buffers.

aware that the gates of unit B now map to a new LUT3 and the
gates of unit C to a new LUT4. A single buffer is sufficient
to honor the CP target; the resulting circuit is smaller (i.e.,
fewer buffers) and, possibly, achieves better throughput (if a
buffer is omitted from a throughput-determining path) than the
solutions of Figure 1b and Figure 1c.

This example points to the need to perform buffer placement
and technology mapping simultaneously to obtain smaller and
faster circuits. The rest of this paper illustrates our methodol-
ogy to perform this task to achieve high-throughput and low-
area dataflow circuits obtained from C code and targeting an
Field-Programmable Gate Array (FPGA) implementation.

III. BACKGROUND

The following section provides a background on dataflow
circuits. It explains the concepts of buffer insertion and tech-
nology mapping and discusses the relationship between these
circuit design aspects.

A. Dataflow Circuit and Buffer Insertion

A dataflow circuit (also called elastic circuit) is a digital
circuit that uses a handshake communication protocol [7],
[8]. Researchers have recently studied the application of
dataflow circuits in HLS [9] since dataflow circuits can adjust
their scheduling dynamically. Meanwhile, traditional HLS
tools generate a finite-state machine (FSM) to determine the
scheduling of the circuits statically at compilation time [10].
Due to these characteristics, dataflow circuits outperform state-
of-the-art static HLS circuits when the input circuit contains
irregular memory accesses or irregular control flow.

These circuits are composed of dataflow units, which com-
municate through channels. A buffer is the equivalent of
a standard synchronous register: it can be inserted between
dataflow units and is used to break combinational paths (and,
thus, controls the operating frequency). It uses the same
communication protocol to interact with adjacent units and
thus can be placed on any channel without affecting circuit
functionality. This is fundamentally different from traditional
pipelines, where it is necessary to balance registers inser-
tion [10].

Buffer insertion is one of the key optimization steps in
dataflow circuit synthesis flow, as it defines the circuit’s
operating frequency and throughput, thus determining its over-
all execution time. Previous works have extensively studied
this problem and formulated timing models through Mixed-
Integer Linear Programming (MILP) [1], [2]. This formulation
describes buffer insertion to regulate frequency while simulta-
neously selecting the number of buffer slots (i.e., the number
of data items that a buffer can hold) to maximize throughput,
as we show in Section IV-E.

However, these works [1], [2] would pre-characterize the
delays of each dataflow unit and integrate this information
into the timing model. As shown in Figure 1b, this technique
does not account for the output circuit generated by technology
mapping achieving sub-optimal results.

B. Subject Graph and Technology Mapping

A subject graph is a directed acyclic graph (DAG) com-
posed of abstract logic operations (not actual gates) [11].
The nodes of the subject graph with no incoming and no
out-coming edge are called primary inputs (PIs) and primary
outputs (POs), respectively. Combinational inputs (CIs) are the
union of PIs and register outputs; combinational outputs (COs)
are the union of POs and register inputs. Commonly used
subject graphs in the literature include AND-Inverter Graphs
(AIG) [12] and XOR-AND-Inverter Graphs (XAG) [13].

Technology mapping is an essential step of any CAD flow
that maps the subject graph to a technology-dependent network
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composed of macro-cells. Macro-cells in FPGAs include look-
up tables (LUTs), carry chains and digital signal proces-
sors (DSPs). Most technology mapping algorithms utilize cuts
to map subject graph nodes to macro-cells [11], [14], [15]. A
cut 𝐶 of node 𝑛 is a set of nodes (called leaves) such that every
path from any combinational input to 𝑛 traverses at least one
leaf of 𝐶. A cut is 𝐾–feasible if the number of leaves does
not exceed 𝐾 . In FPGA mapping, a 𝐾–feasible cut implies a
𝐾–input LUT.

C. Relationship between Technology Mapping and Frequency
Regulation

Previous works have analyzed the relationship between
technology mapping and frequency regulation [6], [16], [17].
Rizzi et al. [6] have proposed an iterative approach for
mapping-aware buffer insertion in dataflow circuits. As already
shown in Figure 1c, it is essential to consider the effect of
buffer insertion on technology mapping to avoid sub-optimal
buffer placement. This methodology attempts to mitigate this
effect by executing multiple iterations. However, the buffer
placed in each iteration cannot guarantee a minimal buffer
placement. Tan et al. [17] and Pan et al. [16] propose methods
that simultaneously execute technology mapping and fre-
quency regulation (the former by inserting registers, the latter
through retiming them). However, these methods only con-
sider latency optimization and ignore throughput optimization,
which is the most common optimization in HLS [3]. Indeed,
their algorithms cannot size the buffer slots for throughput
improvement. Moreover, they cannot be directly applied to
our scenario because, in our problem, buffers can be placed
only between dataflow units [2] and not on any edge of the
subject graph.

IV. MILP FORMULATION FOR PERFORMANCE
OPTIMIZATION

We demonstrated in Section II the necessity of tackling tech-
nology mapping and buffer insertion problems concurrently.
This section illustrates how MapBuf defines these steps in the
same linear programming system for critical path regulation
and throughput optimization.

Let 𝐺 = (𝑉𝐺 , 𝐸𝐺) be the initial dataflow graph before
buffer insertion, where 𝑉𝐺 is the set of dataflow units and
𝐸𝐺 is the set of channels. Let 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) be the subject
graph corresponding to 𝐺 for technology mapping, where 𝑉𝐻
is the set of technology-independent nodes and 𝐸𝐻 is the set of
edges. Given 𝐺 and 𝐻, MapBuf utilizes the variables shown in
Table I to formulate the problem. The domains of our variables
include integer, real number, and binary numbers, which make
the problem a mixed integer linear programming problem.

An example of a dataflow graph is shown in Figure 2a, and
its corresponding subject graph is shown in Figure 2b. The
dataflow graph 𝐺 has two dataflow units: 𝑉𝐺 = {𝐴, 𝐵}, and
two channels: 𝐸𝐺 = {Ready,Valid}. In this example, we use
XAG as the subject graph and map gates 𝑎, 𝑏, 𝑐, and 𝑑 directly
to nodes in the subject graph. The square boxes are registers,

Input parameters
𝐷𝑙𝑢𝑡 R+ Delay of a LUT
𝐶𝑃 R+ Target clock period
Output variables
𝑅𝑐 {0, 1} Indicates if channel 𝑐, 𝑐 ∈ 𝐸𝐺 , is buffered
𝑁𝑐 Z≥0 Number of slots of the buffer on channel 𝑐
Internal variables
𝑅𝑒 {0, 1} Indicates if edge 𝑒, 𝑒 ∈ 𝐸𝐻 , is buffered
𝑇 𝑖𝑛
𝑒 R≥0 Timing var. for edge 𝑒 input, 𝑒 ∈ 𝐸𝐻

𝑇𝑜𝑢𝑡
𝑒 R≥0 Timing var. for edge 𝑒 output, 𝑒 ∈ 𝐸𝐻

𝑆
𝛾
𝑛 {0, 1} Indicates if cut 𝛾 of node 𝑛 is selected

TABLE I: Variable declaration for the MILP formulation in
Section IV.

the outputs of 𝑛1 to 𝑛5 are the CIs, and inputs of 𝑛6 and 𝑛7
are the COs, as defined in Section III.

We allocate timing variables to the endpoints of edges in
the subject graph to depict the delay at these points. An edge
𝑒 in the subject graph has two timing variables, denoted by
𝑇 𝑖𝑛
𝑒 and 𝑇𝑜𝑢𝑡

𝑒 . They represent the propagation delay entering
and exiting the edge. For example, 𝑇 𝑖𝑛

𝑒6
in Figure 2b is the

propagation delay entering edge 𝑒6, which is equal to the
departure delay at 𝑎’s output. 𝑇𝑜𝑢𝑡

𝑒6
is equal to the delay at

the input of node 𝑐.
We use timing constraints to express the relationship be-

tween timing variables and their interaction between technol-
ogy mapping and buffer insertion. They examine the feasibility
and ensure the solution honors the target clock period. In the
remaining part of this section, we explain different timing
constraints that we employ in our MILP.

A. Clock Period Constraints

The clock period constraints, as shown in Equation (1) and
Equation (2), are timing constraints that enforce the clock
period target as the upper bound of all timing variables.

𝑇 𝑖𝑛
𝑒 ≤ 𝐶𝑃,∀𝑒 ∈ 𝐸𝐻 (1)

𝑇𝑜𝑢𝑡
𝑒 ≤ 𝐶𝑃,∀𝑒 ∈ 𝐸𝐻 (2)

where 𝐶𝑃 is the user-specified clock period target (see Ta-
ble I).

B. Buffer Insertion Variables and Channel Constraints

We use binary buffer insertion variables, denoted by 𝑅𝑒, to
represent whether edge 𝑒 is buffered. Buffer insertion variable
𝑅𝑒 interacts with two timing variables on 𝑒 as shown in
Equation (3).

𝑇𝑜𝑢𝑡
𝑒 − 𝑇 𝑖𝑛

𝑒 + 𝐶𝑃 · 𝑅𝑒 ≥ 0,∀𝑒 ∈ 𝐸𝐻 . (3)

If 𝑅𝑒 = 0, i.e., no buffer is inserted, the delay propagates
from edge input to edge output with no increase. Otherwise,
if 𝑅𝑒 = 1, the equation becomes 𝑇𝑜𝑢𝑡

𝑒 ≥ 𝑇 𝑖𝑛
𝑒 − 𝐶𝑃, where 𝑇 𝑖𝑛

𝑒

can be at most equal to 𝐶𝑃 due to Equation (1). The largest
value of the right-hand side is 0 which becomes a redundant
constraint since 𝑇𝑜𝑢𝑡

𝑒 is a non-negative value.
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Fig. 2: Example of simultaneous buffer insertion and 3-LUT
mapping. Figure 2b shows the subject graph obtained from the
dataflow graph in Figure 2a. Figure 2c presents an example of
a buffer and selection variable conflict; we use it to illustrate
Equation (6) in Section IV-D.

Besides channels, edges in the subject graph can correspond
to internal edges inside dataflow units. This is the case for
edges 𝑒1 and 𝑒2 in Figure 2b, which connect the register 𝑛1
and 𝑛2 to gate 𝑎, all within the dataflow unit B. Thus, no buffer
can be inserted on these edges; therefore, we assign 𝑅𝑒 = 0
if 𝑒 is internal. In contrast, edges 𝑒6 and 𝑒8 correspond to the
two channels Ready and Valid, respectively. Thus, 𝑅𝑒6 and 𝑅𝑒8
are free binary variables and could be either 1 or 0.

Moreover, one channel can correspond to multiple subject
graph edges. For instance, channel Ready in Figure 2a cor-
responds to edges 𝑒3 and 𝑒6. The 𝑅𝑒 variables of these two
edges are equivalent (i.e., 𝑅𝑒3 = 𝑅𝑒6 ). Therefore, we add these
equality constraints to ensure that the edges corresponding to
the same channel are either all buffered or none of them are
buffered.

C. Cut Selection Variables and Delay Propagation Con-
straints

Before formulating the constraints, we run cut enumeration
and prepare a set of cuts for each node 𝑛 in the subject graph,
denoted by Γ𝑛. Each cut 𝛾, 𝛾 ∈ Γ𝑛, is a set of leaf nodes in the
subject graph. We define cut selection variables, 𝑆𝛾𝑛 , as a set
of binary variables indicating if the cut 𝛾 is selected by node

𝑛. We use cut selection constraints, as shown in Equation (4),
to enforce the selection of one cut per node. This will allow
us to propagate delays across nodes, as we will illustrate in
the remainder of this section.∑︁

𝛾∈Γ𝑛
𝑆
𝛾
𝑛 = 1,∀𝑛 ∈ 𝑉𝐻 . (4)

The delay propagation per node differs with respect to the
cut selected for the node because the set of input leaves
(and, consequently, input delays) changes depending on the
chosen cut. For this reason, delay propagation equations are
replicated per leaf for each cut of all the nodes in the subject
graph. Equation (5) shows the delay propagation constraints
considering the leaf 𝑙 of the cut 𝛾 of node 𝑛 of the subject
graph, where 𝑛𝑒 is the output edge of node 𝑛 and 𝑙𝑒 is the
output edge of leaf 𝑙.

𝐶𝑃· (1−
∑︁
𝛿∈Δ𝑙

𝑆𝛿𝑛 )+𝑇 𝑖𝑛
𝑛𝑒 ≥ 𝑇𝑜𝑢𝑡

𝑙𝑒 +𝐷𝑙𝑢𝑡 ,∀𝑙 ∈ 𝛾,∀𝛾 ∈ Γ𝑛,∀𝑛 ∈ 𝑉𝐻 ,

(5)
where 𝐷𝑙𝑢𝑡 is the delay that we assume for one LUT level,
and Δ𝑙 is the subset of cuts of node 𝑛 which contain as leaf
𝑙 (i.e., Δ𝑙 ⊆ Γ𝑛 ∧ ∀𝛿 ∈ Δ𝑙 | 𝑙 ∈ 𝛿). In the rest of this section,
we use examples to illustrate Equation (5).

Consider node 𝑑 in Figure 2b. It has two possible candidate
cuts {𝑐, 𝑛5} and {𝑎, 𝑛4, 𝑛5} whose selection variables are 𝑆1

𝑑

and 𝑆2
𝑑

, respectively. In all the equations of node 𝑑, 𝑛𝑒 is
edge 𝑒10. Considering leaf 𝑎, 𝑙𝑒 is edge 𝑒6, and the set Δ𝑎 is
composed only by the second cut since the first one does not
include 𝑎 as a leaf. Equation (5) would become

𝐶𝑃 · (1 − 𝑆2
𝑑) + 𝑇

𝑖𝑛
𝑒10 ≥ 𝑇𝑜𝑢𝑡

𝑒6
+ 𝐷𝑙𝑢𝑡 .

If the second cut is selected, 𝑆2
𝑑
= 1, the delay of edge 𝑒6

is propagated until edge 𝑒10 with a delay increase of 𝐷𝑙𝑢𝑡 .
This means that nodes covered by this cut are substituted by a
LUT during technology mapping, and the delay of the output
of this LUT is equal to the delay of one of its leaves (in
this case 𝑎) increased by the delay of a LUT. If the second
cut is not selected, the equation could be approximated to
𝑇 𝑖𝑛
𝑒10 ≥ 0, which becomes a redundant constraint ignoring the

delay propagation from edge 𝑒6 to 𝑒10.
If we consider the leaf 𝑛5, 𝑙𝑒 is edge 𝑒9, and the set Δ𝑛5 is

composed by both cuts since they contain 𝑛5 as a leaf. In this
case, the previous equation would be

𝐶𝑃 ·
(
1 − (𝑆1

𝑑 + 𝑆2
𝑑)
)
+ 𝑇 𝑖𝑛

𝑒10 ≥ 𝑇𝑜𝑢𝑡
𝑒9 + 𝐷𝑙𝑢𝑡 .

If any of the two cuts are selected, the output delay of edge
𝑒9 is propagated to the input of edge 𝑒10 increased by 𝐷𝑙𝑢𝑡 .
Since these are the only cuts of node 𝑑, one of them must be
selected, and Equation (4) will enforce this delay propagation.

D. Cut Selection Conflicts

As mentioned in Section II, buffer insertion also affects
technology mapping. A cut (and its corresponding LUT)
covers an edge in the subject graph if this edge belongs to
at least one path from the root to any leaf of the cut. After
placing a buffer on an edge, a LUT can no longer cover it
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since LUTs cannot implement the logic of multiple sequential
stages as shown in Figure 1c. Subsequently, it is not possible
to select the cut that represents this LUT. For this reason,
buffer insertion excludes the possibility of choosing particular
cuts. We account for this effect using the conflict constraints
in Equation (6). This equation is replicated for all the edges
and cuts where the cut 𝛾 covers edge 𝑒.

𝑅𝑒 + 𝑆𝛾𝑛 ≤ 1, (6)

where 𝑅𝑒 is the buffer insertion variable for edge 𝑒 and 𝑆𝛾𝑛 is
the cut selection variable for node 𝑛 and cut 𝛾.

Figure 2c shows an example of cut selection conflict. If
𝑅𝑒6 = 1, then 𝑆2

𝑐 = 1 is invalid. A buffer insertion variable can
affect multiple cuts. For instance, if 𝑅𝑒6 = 1, 𝑆1

𝑏
cannot be

selected since edges 𝑒6 and 𝑒3 represent the same channel in
the dataflow graph and, consequently, 𝑅𝑒6 = 𝑅𝑒3 as discussed
in Section IV-B. Also, a cut can be affected by more than one
buffer insertion variable if the cut covers multiple channels. We
precompute these interactions and encode the corresponding
equalities into the MILP.

E. Objective Function

Our objective function, shown in Equation (7), is similar to
the one used in previous work [1].

max. throughput − 𝛼 ·
∑︁
𝑐

(𝑁𝑐), 𝑐 ∈ 𝐸𝐺 , (7)

where 𝑁𝑐 is the number of buffer slots on channel 𝑐 of the
dataflow graph and 𝛼 is a user-defined parameter where 𝛼 ≪ 1.
𝑁𝑐 depends on 𝑅𝑐 which represents the presence of a buffer
on channel 𝑐. In particular, 𝑅𝑐 variables are a subset of the 𝑅𝑒

variables where 𝑒 is the edge of a channel 𝑐. If 𝑅𝑒 is set to 1
on a channel, then 𝑅𝑐 is equal to 1 which means that there is
at least one buffer slot on channel 𝑐 (e.g., 𝑁𝑐 ≥ 1)

V. SPECIALIZED CUT ENUMERATION

The complexity of our MILP depends on the number of
cuts included in the formulation. A higher number of cuts
per node would determine a larger design space exploration
and our MILP solver would, potentially, not be able to find
the optimal solution within the pre-defined timeout. Therefore,
we apply a state-of-the-art cut enumeration method with
priority cuts to restrict the number of cuts [18]. Contrary
to previous cut ranking and pruning which mainly focus on
area recovery [19]–[21], we specialize our cut enumeration for
buffer placement. We rank cuts using the following criteria and
prune those with a lower ranking.

Criteria 1. MapBuf selects the cuts for delay propagation
and places buffers to satisfy the clock period constraints as
indicated in Equations (3) and (5). A lower propagation delay
corresponds to a lower number of buffers; for this reason,
it selects cuts to minimize the number of logic levels. We
implement a heuristic based on cutless FPGA mapping to
achieve this goal [20]: the main difference is that we select
multiple top-ranking cuts per node instead of a single one.

Criteria 2. MapBuf must be able to break every channel
with a buffer; that way, it can explore a wide variety of

buffering solutions in the search for high-quality ones. If all
the cuts of a node cover a channel 𝑐, it would be impossible
to place a buffer on 𝑐 due to Equation (6). To this end, for
each node, we preserve all cuts with at least one leaf on any
channel. For instance, in Figure 2b, we keep the cuts 𝑆1

𝑑
and

𝑆2
𝑑

for node 𝑑 since leaves 𝑐 and 𝑎 have outputs on channels
Valid and Ready, respectively. In this way, it would be possible
to break channel Ready and set cut 𝑆2

𝑑
= 1.

VI. EVALUATION

In this section, we present our entire workflow and illustrate
the effectiveness of MapBuf by comparing it with two recent
optimization strategies that run technology mapping and buffer
insertion separately: B-M that runs buffer insertion before
technology [2], as shown in Figure 1b and M-B that executes
mapping before buffering [6], as illustrated in Figure 1c. Map-
Buf lies in the middle of the design space and tackles mapping
and buffering simultaneously, as depicted in Figure 1d.

A. Workflow

Our workflow is shown in Figure 3. The inputs are a
dataflow graph generated by an open-source dynamically
scheduled HLS tool [9], the target FPGA architecture, and the
target clock period. The output is a buffered dataflow graph.
Given the dataflow circuit, we run logic synthesis and retrieve
the subject graph. We then perform cut enumeration to prepare
a set of cuts for each node in the subject graph using the
strategy of Section V. We employ our MILP formulation from
Section IV and solve it using the Gurobi solver [22] with
a 40-minute timeout. We extract the buffer placement from
the MILP solution to obtain the buffered dataflow circuit. We
run logic synthesis and technology mapping on this circuit
using ODIN-II 8.1.0 with Yosis [23] and ABC 1.01 (applying
the command “if -K 6”) [24]. We evaluate the number of
clock cycles and verify the functional correctness of the circuit
by running behavioral simulations in Modelsim 2021.2 [25].
We evaluate the maximum achievable clock period by parsing
the post-layout setup timing report of VPR 8.1.0 [26] using
a modified VTR version of the Stratix-IV architecture [26].
Finally, we read the FPGA utilization report from VPR and get
the number of LUTs and FFs required in the implementation.

Notice that we do not use the LUT mapping solution (i.e.,
the cut selection variables) to implement the LUTs directly
but run ODIN-II and ABC on the buffered dataflow graph
instead. On one hand, MapBuf models only the depth of the
logic network to regulate frequency. On the other hand, ABC
executes area recovery heuristics which improves the number
of LUTs, thereby, the implementation area. Note that this
aspect is orthogonal to our optimization and only an additional
optimization that our baseline strategies benefit from as well.

We use a consistent evaluation flow on the buffered dataflow
graph of all three buffering methods we compare. We analyze
the same HLS kernels evaluated from a recent work that ex-
plores buffer placement in dataflow circuits [6]. Additionally,
we introduce a benchmark implementing a single forward path
of a Convolutional Neural Network (CNN) [27] to illustrate
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Fig. 3: MapBuf workflow. All three approaches that we consider (i.e., M-B, B-M, and MapBuf) input a dataflow circuit
description, the target clock period, and FPGA architecture information, with the goal of producing a buffered dataflow circuit
by solving an MILP. B-M [2] relies on precharacterized delays and entirely omits LUT mapping details (red dashed line).
M-B [6] iterates between circuit mapping and the MILP (dashed blue lines). The novelty of MapBuf is in describing both
buffer insertion and technology mapping simultaneously inside a single MILP formulation (highlighted with bold black lines).

the effectiveness of our approach on large workloads. We set
our target clock period to 𝐶𝑃 = 4.2 ns consistently with our
baselines [2], [6].

Fig. 4: Delay characterization. We show the delay value
distribution measured in our flow for the following constructs:
(i) inside a single LUT, (ii) on the wire between two LUTs, (iii)
the effective LUT level delay (i.e., the sum of the single LUT
delay and the surrounding wiring), and (iv) an arithmetic unit
(including the wire delays to and from the arithmetic units).
The average delay of a LUT level (𝐷𝑙𝑢𝑡 ) is 0.595 ns, consisting
of an average logic delay of 0.239 ns and a wire delay of
0.356 ns; we include this average value in our timing model.
For a 4.2 ns clock period target, the longest combinational path
should contain at most 7 LUT levels. Besides, we employ the
average arithmetic unit delay, 𝐷𝑎𝑟𝑖𝑡ℎ = 2.151 ns.

B. Delay Characterization

Our model needs delays of different macro-cells; we here
describe how we obtain them.

We determine the LUT level delay (𝐷𝑙𝑢𝑡 ) and carry chain
delay (𝐷𝑎𝑟𝑖𝑡ℎ) by evaluating all benchmarks using the work-
flow from Section VI-A; our results are plotted in Figure 4.
We incorporate the average of the measured delay values into

our timing model. Other special nodes like DSPs are pipelined,
and there is no combinational delay from input to output.
𝐷𝑎𝑟𝑖𝑡ℎ is the pre-characterized delay for carry chains. The

edges leaving and entering the carry chain unit still respect the
Equations (1), (2) and (3). However, as the carry chain units
are not implemented using LUTs, we replace Equation (5)
with the following equation for delay propagation.

𝑇 𝑖𝑛
𝑒2 ≥ 𝑇𝑜𝑢𝑡

𝑒1 + 𝐷𝑎𝑟𝑖𝑡ℎ,

where 𝑒1 and 𝑒2 are the arithmetic unit’s input and output
edges.

C. Results: Performance Evaluation

Table II demonstrates the number of clock cycles, achieved
clock period, logic levels, the execution time (i.e., product of
clock period and cycles) achieved by the three approaches we
consider (i.e., B-M, M-B, and our MapBuf). Results show that
MapBuf’s buffered circuit requires fewer clock cycles than B-
M on all benchmarks since pre-characterization overestimates
the propagation delay. As a result of reducing the clock cycles
and shortening the clock period, we reduce the execution time
by up to 43%, as depicted in the “Speedup” column.

Compared with M-B, MapBuf’s mapping and LUT-level
prediction are more flexible. During one iteration, M-B method
assumes a fixed mapped LUT network when running buffer in-
sertion and a static buffer configuration when running another
technology mapping. Therefore, the iterative method selects
a locally optimal solution. Meanwhile, MapBuf explores both
buffer insertion variables and cut selection variables simulta-
neously. As a result, MapBuf’s throughput and, thus, execution
time, is higher than M-B on all benchmarks, resulting in the
average speedup of 13.32%.

We currently assume a fixed LUT delay plus average wire
delay and ignore the wire delay variability. As shown in
Figure 4, the longest wire delay is around 2.0 ns, which is
larger than MapBuf’s wire delay assumption of 0.35 ns. This
explains why, despite the fact that we accurately honor the
LUT level target, the clock period results on some bench-
marks, e.g., “insertion sort”, are higher than the target. In
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Cycles Clock period (ns) LUT level Execution time (ns) Speedup
B-M M-B ours B-M M-B ours B-M M-B ours B-M M-B ours B-M M-B

gaussian 5050 4481 3354 5.35 4.75 4.58 4 5 5 27018 21285 15371 43% 28%
covariance 179494 179465 176862 4.68 4.49 4.29 5 4 5 840032 805798 758561 10% 6%
insertion sort 232 219 199 5.11 5.02 5.13 6 6 6 1186 1099 1021 14% 7%
gemver 9622 8632 6652 5.92 5.31 6.02 5 4 6 56962 45836 40052 30% 13%
gsumif 5271 4342 4227 5.02 4.79 4.18 5 5 5 26460 20798 18350 31% 12%
gsum 5368 4450 4326 4.69 4.02 4.27 6 4 5 25176 19002 18684 26% 2%
matrix 101515 70828 67662 4.64 4.77 4.40 5 6 6 471030 337850 297577 37% 12%
mvt 20115 20072 20048 3.83 4.53 3.72 4 5 4 77040 90926 74599 3% 18%
stencil 2d 30674 28300 23592 4.97 4.65 4.98 5 5 5 152450 131595 117441 23% 11%
CNN 657990 626092 440552 5.98 5.2 5.11 7 5 5 3934780 3255678 2251221 43% 31%
Avg. impr. % B-M - 10.49% 20.92% - 4.46% 6.53% - 14.36% 25.92%
Avg. impr. % M-B - - 11.50% - - 1.57% - - 13.32%

TABLE II: Performance comparison of B-M (buffering before mapping, see Figure 1b), M-B (mapping before buffering,
see Figure 1c), and MapBuf (indicated as ours). We measure the clock cycles, clock period, and LUT levels, and calculate
the execution time as the product of the clock period and cycles. For each parameter, we present the arithmetic mean of
improvements compared to B-M (“Avg. impr. % B-M”) and M-B (“Avg. impr. % M-B”). MapBuf systematically honors the
LUT level target, always reduces the number of clock cycles with respect to both baselines, and typically achieves a lower
clock period. Consequently, MapBuf achieves execution time speedups with respect to both methods on all benchmarks (see
rightmost column “Speedup”), with an average speedup of 25.92% compared to B-M and 13.32% compared to M-B.

#FFs #LUTs
B-M M-B ours B-M M-B ours

gaussian 808 801 648 1302 1241 1083
covariance 1616 1306 1381 2653 2285 2373
insertion sort 2230 1867 1828 3528 2903 2799
gemver 5129 5177 3109 7207 7281 4786
gsumif 917 820 813 1513 1284 1373
gsum 649 514 567 1084 858 971
matrix 966 891 714 1455 1397 1145
mvt 1607 1317 1178 2420 2117 1902
stencil 2d 1567 1599 1192 2396 2386 1917
CNN 2355 2462 2226 3996 4122 3848
Avg. impr. % B-M - 8.60% 19.79% - 8.50% 16.77%
Avg. impr. % M-B - - 11.14% - - 8.11%

TABLE III: FPGA utilization comparison. We show the LUT
and FFs usage in the FPGA implementation; “Avg. impr. %
B-M” and “Avg. impr. % M-B” represent the arithmetic mean
of area reduction compared to B-M and M-B, respectively. In
addition to the significant performance improvements shown
in Table II, MapBuf generally uses fewer FFs and LUTs than
prior approaches.

the future, we intend to include the wire delay variability
in the timing model to further improve the accuracy of our
model and, consequently, circuit performance. Yet, even with
this discrepancy, MapBuf systematically outperforms both M-
B and B-M, which points to the relevance of considering buffer
insertion and technology mapping simultaneously.

D. Results: FPGA Utilization Evaluation

All three methods minimize the total number of buffer
slots as part of their objective function to reduce the area
consumption of the final circuit. The results in Table III
demonstrate the effectiveness of MapBuf regarding area op-
timization. With the help of cut selection variables, MapBuf
satisfies the target logic level while using, on average, 19.79%
fewer FFs compared to the B-M method and 11.14% compared
to the M-B method. Since MapBuf inserts less FFs, it breaks
fewer combinational logic paths and reduces the number

of LUTs consequently. In contrast, the other two methods
place unnecessary buffers, as shown in Section II. For this
reason, MapBuf generates circuits with 16.77% fewer LUTs
compared to the B-M method and 8.11% compared to the
M-B method. Together with the results in Section VI-C, we
conclude that MapBuf inserts buffers less aggressively than
the other two methods, but in more appropriate locations: our
circuits are typically faster and cheaper than prior solutions.
Hence, MapBuf achieves Pareto-optimal design points that
were not possible with prior techniques.

E. Results: LUT Level Estimation Accuracy

As mentioned in the Section VI-A, after MapBuf outputs
the buffered dataflow circuit, we use ABC to run technology
mapping and proceed with clock period evaluation based on
ABC’s mapping result. The LUT level derived by MapBuf’s
MILP constraints may deviate from the ultimate value after
ABC. We are here interested in evaluating these effects and
analyze possible discrepancies. Therefore, we use a benchmark
suite of combinational logic networks with different sizes [28]
to evaluate MapBuf’s performance. We change (only in this
evaluation) the objective function to minimize the LUT level
and read the objective function value after optimization. Fig-
ure 5 shows the results. MapBuf achieves almost the same
results as ABC, indicating the high quality of LUT level
calculation in MapBuf.

F. Results: MILP Runtime

MapBuf combines buffer insertion and technology mapping
into a MILP formulation which is, naturally, more complex
than approaches that handle these optimizations separately
(such as the two approaches we discussed in this section).
We here investigate the runtime of MapBuf and its ability to
achieve near-optimal results within an acceptable time frame.

Our runtime experiment considers CNN, as it contains the
most complex loop nest (i.e., a single loop encapsulating three
loops with up to six levels of nesting) among our benchmarks.
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Fig. 5: Accuracy of MapBuf’s LUT level estimation. 𝑥-axis
is the solution of our MILP solver with 200 seconds timeout,
and 𝑦-axis is the LUT level after running ABC’s script “if
-K 6”. Both axes are of log scale, and the dashed line
𝑦 = 𝑥 indicates that MapBuf achieves the same LUT level
as ABC. Points above and below the diagonal line indicate
an underestimation and an overestimation of LUT levels by
MapBuf, respectively. MapBuf achieves the depth-optimal
LUT level precisely the same as ABC’s mapping results and
slightly overestimates networks deeper than 128 LUT levels.

We consider four optimization techniques: B-M, M-B (in
particular, the last round of the iterative method), MapBuf
with an exhaustive cut enumeration that allows up to 100
cuts per node (MapBuf-Exhaustive), and MapBuf with one
cut per node in addition to the cuts preserved by criteria 2
from Section V (MapBuf-Lite). All four techniques target the
optimization function from Equation (7); we can, thus, directly
compare the objective function value that each technique is
able to achieve within a given CPU runtime.

Figure 6 plots the evolution of the objective function value
of the four techniques with CPU runtime. A higher value
indicates a circuit with better performance. We can identify
which term is updated by the slope of the line since throughput
improvements increase the objective function more signifi-
cantly than reducing buffers (due to the value of 𝛼). We use
dashed lines to indicate the last update of throughput and,
thus, the CPU time required to acquire the final performance
(without accounting for possible improvements in the area).
We observe the following from the figure: (1) M-B and B-M
quickly converge to the same objective function value, which
does not further improve with time. (2) MapBuf-Exhaustive
takes 21% longer to converge than the B-M method, but then
achieves a higher objective function value than M-B and B-
M; this is in line with our observations from Section VI-C,
which demonstrates the superior performance of MapBuf.
(3) MapBuf-Lite converges faster than MapBuf-Exhaustive
and even 49% faster than B-M, with only a minor decrease
in objective function value; this indicates the ability of our
heuristic from Section V to effectively reduce MILP runtime
without significant performance degradation. All of these point
to MapBuf’s ability to achieve high-performance design points
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Fig. 6: MILP objective function value with respect to CPU
time of benchmark “CNN”. The squares represent updates of
the objective value. We plot two runs of MapBuf with different
numbers of precomputed cuts (MapBuf-Exhaustive which and
MapBuf-Lite) and two runs of the baselines B-M and M-B.
We normalize the 𝑦-axis using B-M’s final objective value. The
objective function values in all four runs gradually converge
but at different speeds. Results show that MapBuf’s CPU time
is comparable to the other two methods and achieves better
objective function values, which points to its scalability and
ability to achieve high-quality results.

that prior techniques were not able to discover, as well as its
scalability and broad applicability.

VII. CONCLUSION

Buffer insertion for performance optimization is a critical
design step of high-level synthesis (HLS); however, its effec-
tiveness is hindered by the inability of HLS to account for the
effects of technology mapping on the circuit’s combinational
delays. This paper proposes MapBuf, an optimization strategy
for HLS-produced dataflow circuits that formulates technology
mapping and buffer insertion into a joint mixed-integer linear
programming (MILP) problem. By simultaneously exploring
mapping solutions and buffer configurations, MapBuf can
accurately insert buffers to maximize circuit throughput and
regulate its frequency. In addition to the exact MILP for-
mulation, we propose a heuristic cut ranking algorithm to
specialize cut enumeration—it enables MapBuf to efficiently
and scalably explore cuts during mapping. We demonstrate
that our method places buffers less aggressively and more
accurately: it outperforms two recent optimization methods by
achieving 25.92% and 13.32% average speedup while employ-
ing 19.79% and 11.14% fewer FFs, respectively. The fact that
MapBuf systematically achieves Pareto-optimal design points
that were unattainable by prior methods points to its relevance
in making HLS-produced circuits efficient and suitable for
various FPGA architectures.
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