
55

Parallelising Control Flow in Dynamic-scheduling

High-level Synthesis

JIANYI CHENG, Imperial College London, United Kingdom

LANA JOSIPOVIĆ, ETH Zürich, Switzerland

JOHN WICKERSON and GEORGE A. CONSTANTINIDES, Imperial College London,

United Kingdom

Recently, there is a trend to use high-level synthesis (HLS) tools to generate dynamically scheduled hardware.

The generated hardware is made up of components connected using handshake signals. These handshake

signals schedule the components at runtime when inputs become available. Such approaches promise superior

performance on “irregular” source programs, such as those whose control flow depends on input data. This

is at the cost of additional area. Current dynamic scheduling techniques are well able to exploit parallelism

among instructions within each basic block (BB) of the source program, but parallelism between BBs is under-

explored, due to the complexity in runtime control flows and memory dependencies. Existing tools allow some

of the operations of different BBs to overlap, but to simplify the analysis required at compile time they require

the BBs to start in strict program order, thus limiting the achievable parallelism and overall performance.

We formulate a general dependency model suitable for comparing the ability of different dynamic sched-

uling approaches to extract maximal parallelism at runtime. Using this model, we explore a variety of mecha-

nisms for runtime scheduling, incorporating and generalising existing approaches. In particular, we precisely

identify the restrictions in existing scheduling implementation and define possible optimisation solutions.

We identify two particularly promising examples where the compile-time overhead is small and the area

overhead is minimal and yet we are able to significantly speed up execution time: (1) parallelising consecu-

tive independent loops; and (2) parallelising independent inner-loop instances in a nested loop as individual

threads. Using benchmark sets from related works, we compare our proposed toolflow against a state-of-the-

art dynamic-scheduling HLS tool called Dynamatic. Our results show that, on average, our toolflow yields a

4× speedup from (1) and a 2.9× speedup from (2), with a negligible area overhead. This increases to a 14.3×
average speedup when combining (1) and (2).

CCS Concepts: • Hardware→High-level and register-transfer level synthesis; Modeling and param-

eter extraction;

Additional Key Words and Phrases: FPGA, high-level synthesis, dynamic scheduling, static analysis

ACM Reference format:

Jianyi Cheng, Lana Josipović, John Wickerson, and George A. Constantinides. 2023. Parallelising Control

Flow in Dynamic-scheduling High-level Synthesis. ACM Trans. Reconfig. Technol. Syst. 16, 4, Article 55 (Sep-

tember 2023), 32 pages.

https://doi.org/10.1145/3599973

This work is supported by the EPSRC (EP/P010040/1, EP/R006865/1).

Authors’ addresses: J. Cheng, J. Wickerson, and G. A. Constantinides, Imperial College London, London, United Kingdom;

emails: jianyi.cheng17@imperial.ac.uk, j.wickerson@imperial.ac.uk, g.constantinides@imperial.ac.uk; L. Josipović, ETH

Zürich, Zürich, Switzerland; email: ljosipovic@ethz.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1936-7406/2023/09-ART55 $15.00

https://doi.org/10.1145/3599973

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

https://orcid.org/0000-0003-2791-2555
https://orcid.org/0000-0001-6659-8533
https://orcid.org/0000-0001-6735-5533
https://orcid.org/0000-0002-0201-310X
https://doi.org/10.1145/3599973
https://doi.org/10.1145/3599973
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3599973&domain=pdf&date_stamp=2023-09-01

55:2 J. Cheng et al.

1 INTRODUCTION

FPGAs are now widely used as a reconfigurable device for custom high-performance computing,
such as in datacentres including Microsoft Project Catapult [43] and Amazon EC2 F1 instances [1].
However, users need to understand low-level hardware details for directly programming on FPGAs.
To lift this restriction for software engineers, high-level synthesis (HLS) tools automatically
translate a software program in a high-level software language, such as C, into low-level hardware
descriptions. This could also significantly reduce the design effort compared to manual register

transfer level (RTL) implementation. Today, various HLS tools have been developed in both
academia, including LegUp from the University of Toronto [7], Bambu from the Politecnico di
Milano [9] and Dynamatic from EPFL [33], and industry, including Intel HLS compiler [31], Xilinx
Vivado HLS [51], Cadence Stratus HLS [46], and Siemens Catapult HLS [10].

A central step of the HLS process is scheduling, which maps each operation in the input program
to a clock cycle. This mapping can be decided either at compile time (statically) or at runtime (dy-
namically). There has been recent interest in dynamic scheduling, because it enables the hardware
to adapt its behaviour at runtime to particular input values, memory access patterns, and control
flow decisions. Therefore, it potentially achieves better performance compared to the conservative
schedule produced by static analysis.

Dynamic-scheduling HLS tools, such as Dynamatic [33], transform a sequential program into a
circuit made up of components that are connected by handshaking signals. Each component can
start as soon as all of its inputs are ready. Although these tools aim to allow out-of-order execution
as much as possible, they must take care to respect dependencies in the source program. There are
two kinds of dependencies: memory dependencies (i.e., dependency via a memory location) and
data dependencies (i.e., dependency via a program variable). There are also two scopes of depen-
dency: between instructions in the same basic block (BB) and between instructions in different
BBs. This leads to four cases to consider:

(1) Intra-BB data dependencies: these can be respected by placing handshaking connections
between the corresponding hardware operations in the circuit.

(2) Intra-BB memory dependencies: these can be kept in the original program order using
elastic components named load-store queues (LSQs) [32]. An LSQ is a hardware compo-
nent that schedules memory operations at runtime.

(3) Inter-BB data dependencies: these can be respected using handshaking connections, as
in (1), and additionally by starting BBs in strict program order, so the inputs of each BB
are accepted in program order [35].

(4) Inter-BB memory dependencies: these can be respected by starting BBs in strict pro-
gram order and using an LSQ, as in (2).

In all cases, existing dynamic-scheduling HLS tools well exploit parallelism for cases (1) and (2)
above. This allows out-of-order execution within a BB but requires different BBs to start in order,
even when some BBs are independent and could start in parallel. This, naturally, leads to missed
opportunities for performance improvements.

The existing dependency model only analyses intra-BB dependencies, which exploits parallelism
at the data flow level. The inter-BB dependencies are resolved by maintaining the original program
order. The order is preserved by sequentially starting BB execution even though these BBs are
executing in parallel, as shown in Figure 1(b). Analysis for inter-BB dependencies is limited. In this
article, we propose a dependency model that formalises all four cases above. As a demonstration of
applications, we use the dependency model to focus on further exploiting parallelism for cases (3)
and (4). We find BBs that can be started out-of-order or simultaneously, as shown in Figures 1(c)
and 1(d), and use static analysis (powered by the Microsoft Boogie verification engine [36]) to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:3

Fig. 1. Basic block schedules. Assume BB1 executes before BB2 in the original program order. Dynamatic
only supports (a) and (b). We show how to support (c) and (d) using analysis in our proposed model.

ensure that inter-BB dependencies are still respected. We then achieve a parallel BB schedule by
two techniques: (1) parallelising independent consecutive loops (inter-block scheduling); and (2)
parallelising independent consecutive inner-loop instances in a nested loop (C-slow pipelining).
Our main contributions include:

• a general dependency model that formalises both data flow dependencies and control flow
dependencies for dynamic-scheduling high-level synthesis;
• a technique that automatically identifies the absence of dependencies between consecutive

loops using the Microsoft Boogie verifier for parallelism;
• a technique that automatically identifies the absence of dependencies between consecutive

iterations of a loop using the Microsoft Boogie for C-slow pipelining; and
• results and analysis showing that our techniques, compared to original Dynamatic, achieve,

on average, 14.3× speedup with 10% area overhead.

The rest of our article is organised as follows: Section 2 introduces existing works on dynamic-
scheduling HLS, parallelising control-flow graphs (CFGs) for HLS, and C-slow pipelining.
Section 3 explains our general dependency model for dynamic-scheduling HLS. Section 4 demon-
strates inter-block scheduling as an application of the proposed dependency model. Section 5
demonstrates C-slow pipelining as another application of the proposed dependency model.
Section 7 evaluates the effectiveness of these two techniques.

2 BACKGROUND

This section first reviews related work on existing HLS tools that use dynamic scheduling. We
then compare existing works on static analysis of memory dependencies for HLS with our work.
Finally, we review related works on parallelising CFGs for HLS and C-slow pipelining on FPGAs.

2.1 Dynamic-scheduling High-level Synthesis

Most HLS tools such as Xilinx Vivado HLS [51] and Dynamatic [33] translate an input program
into an intermediate representation (IR) such as LLVM IR and then transform the IR into a
control data flow graph (CDFG) for scheduling [22]. A CDFG is a two-level directed graph that
contains a set of vertices connected by edges. The top level is a CFG, where each vertex represents
a basic block (BB) in the IR, and each edge represents the control flow. At the lower level, each
vertex is also a data flow graph (DFG), where each sub-vertex inside the DFG represents an
operation in the BB, and each sub-edge represents a data dependency. The CDFG is used as part
of the dependency constraints in both static and dynamic scheduling [20, 33].

In dynamic-scheduling HLS, initial work was studied by Page and Luk [28], which maps oc-
cam programs into hardware and has been extended to support a commercial language named
Handel-C [11]. The idea of mapping a C program into a netlist of pre-defined hardware compo-
nents has been studied in both asynchronous and synchronous worlds. In the asynchronous world,
Venkataramani et al. [48] propose a toolflow that maps ANSI-C programs into asynchronous hard-
ware designs. Li et al. [39] propose a dynamic-scheduling HLS tool named Fluid that supports
the synthesis of complex CFGs into asynchronous hardware designs. In the synchronous world,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:4 J. Cheng et al.

Sayuri and Nagisa [44] propose a method that synthesises single-level loops into dynamically
scheduled circuits. Josipović et al. [33] propose an open-sourced HLS tool named “Dynamatic”
that automatically translates a program into a dynamically pipelined hardware.

Dynamatic uses pre-defined components with handshake connections formalised by Carloni
et al. [8]. Each edge in the CDFG of the input program is translated to a handshake connection
between components. This allows a component to execute at the earliest time when all its inputs
are valid. The memory dependency is controlled by load-store queues (LSQs). An LSQ exploits
out-of-order memory accesses by checking memory dependency in program order at runtime [32]
and early executing those independent memory accesses.

Dynamatic parallelises DFGs within and across BBs for high performance, but the CFG still
starts BBs sequentially. Sequentially starting BBs is required to respect inter-BB dependencies at
runtime. An unverified BB schedule may cause an error. Our toolflow uses Boogie to formally
prove that the transformed BB schedule cannot break any dependency, such that the synthesised
hardware is still correct.

2.2 Parallelising Control Flows for HLS

Dependency analysis for parallelising a CFG of a sequential program has been well-studied in
the software compiler world [29]. Traditional approaches exploit BB parallelism using polyhedral
analysers such as Pluto [3] and Polly [25]. These tools automatically parallelise code that con-
tains affine memory accesses [4, 23] and have been widely used in HLS to parallelise hardware
kernels [40, 41, 49, 55]. However, polyhedral analysis is not applicable when analysing irregular
memory patterns such as non-affine memory accesses, which are commonly seen in applications
amenable for dynamic scheduling, such as tumour detection [52] and video rendering [47].

Recently, there are works that use formal verification to prove the absence of dependency to
exploit hardware parallelism. Compared with affine or polyhedral analysis, formal verification
can analyse non-affine memory accesses but takes a longer time. Zhou et al. [54] propose a
satisfiability-modulo theory (SMT)-based [24] approach to verify the absence of memory con-
tention in banked memory among parallel kernels. Cheng et al. propose a Boogie-based approach
for simplifying memory arbitration for multi-threaded hardware [13]. Microsoft Boogie [36] is
an automated program verifier on top of SMT solvers. The Boogie verifier does not run a Boogie
program but generates a set of specifications for verification. It uses its own intermediate verifica-
tion language to describe the behaviour of a program to be verified, which can be automatically
decoded into SMT queries. An SMT solver under Boogie then reasons the program behaviour, in-
cluding the values that its variables may take. Our work also uses Boogie but for parallelising BBs
in dynamically scheduled hardware. Boogie has its own constructs and, here, we list the ones used
in this article:

(1) if (*) {A} else {B} is a non-deterministic choice. The program arbitrarily does A or B.
(2) havoc x assigns an arbitrary values to a variable or an array x, used to capture all the possible

values of x.
(3) assert c proves the condition c for all the values that the variables in c may take.

In this article, we use Boogie to verify the absence of memory dependency between different it-
erations of the same loop or two consecutive loops. Our approach can generate Boogie programs
from arbitrary programs based on the formulation by Reference [19].

Mapping a parallel BB schedule into hardware has also been widely studied. Initial work by Cabr-
era et al. [5] proposes an OpenMP extension to off-load computation to an FPGA. Leow et al. [38]
propose a framework that maps OpenMP code in Handel-C [11] to VHDL programs. Choi et al. [18]
propose a plugin that synthesises both OpenMP and Pthreads C programs into multi-threaded

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:5

Fig. 2. An example of 3-slowing a loop. The 3-slowed loop has tripled latency, the same throughput, and
one-third critical path compared to the initial version.

hardware, used in an open-sourced HLS tool named LegUp [7]. Gupta et al. propose an HLS tool
named SPARK that parallelises control flow with speculation [26]. Existing commercialised HLS
tools [10, 30, 46, 51] support multi-threaded hardware synthesis using manually annotated direc-
tives by users. These works either require user annotation or only use static scheduling, while our
approach only uses automated dynamic scheduling.

Finally, there are works on simultaneously starting BB in dynamic-scheduling HLS.
Cheng et al. [14] propose an HLS tool named DASS that allows each statically scheduled com-
ponent to act as a static island in a dynamically scheduled circuit. Each island is still statically
scheduled, while our toolflow only uses dynamic scheduling.

2.3 C-Slow Pipelining

C-slow pipelining is a technique that replaces each register in the circuit with C registers to con-
struct C independent threads [42]. The circuit then operates as C-thread hardware while keeping
one copy of resources. For instance, a stream of data enters a pipelined loop in Figure 2(a). We
use initiation interval (II) for evaluating the hardware performance. An II of a loop is defined
as the time difference in block cycles between the start of the same operation in two consecutive
iterations. The loop computes with an II of 1, as illustrated by the presence of one register in the
cycle. Assume the loop trip count is N, then the latency of the loop is approximately N cycles for a
large N. The overall throughput of the hardware is 1/N, and the critical path is the delay of the cy-
cle. Assume that each set of data is independent of other sets. Figure 2(b) demonstrates a 3-slowed
loop that is functionally equivalent to the one in Figure 2(a). There are three registers in the cycle,
evenly distributed in the path. This increases the latency of the hardware to 3N cycles. The loop
can iterate with three sets of data in the cycle concurrently. Then, the overall throughput of the
hardware is approximately 3/(3N) = 1/N, and the critical path is nearly 1/3 of the one in Figure 2(a).
A C-slowed loop can have a better throughput or clock frequency to achieve approximately C
times speedup.

C-slow pipelining was first proposed by Leiserson et al. for optimising the critical path of syn-
chronous circuits [37]. Markovskiy and Patel [42] propose a C-slow based-approach to improve the
throughput of a microprocessor. Weaver et al. [50] propose an automated tool that applies C-slow
retiming on a class of applications for certain FPGA families. Our work brings the idea of C-slow
pipelining into the dynamic HLS world. We analyse nested loops at the source level to determine
C for each loop by checking the dependency between inputs to the loop and then apply hardware
transformations to achieve C-slow pipelining.

3 DEPENDENCY MODEL FOR DYNAMIC-SCHEDULING HLS

In this section, we formalise the dependency model for dynamic-scheduling HLS and demonstrate
the restriction of the state-of-the-art dynamic-scheduling HLS tool. The dependency formulation
for static scheduling has been well-studied [6, 16, 53]. Here, we extend the dependency model
in Reference [16] to support dynamic scheduling.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:6 J. Cheng et al.

3.1 Scheduling Specifications

We first formulate the fundamental specifications of the dependency constraints for scheduling.
For two runtime events x and y,1 we introduce the following terms:

• d (x ,y) denotes whether executions of x and y have dependencies,
• x ≺ y denotes whether x executes before y in strict program order,
• t (x) ∈ N denotes the start time of the execution x in clock cycles, and
• l (x) ∈ N denotes the latency of the execution x in clock cycles.

The general dependency constraint is listed as follows:

∀x ,y.d (x ,y) ∧ x ≺ y ⇒ t (x) + l (x) ≤ t (y), (1)

where x andy are the operations in the input program. The total latency of the execution is defined
as tT :

∀x . tT ≥ t (x) + l (x). (2)

The goal is to determine a schedule with a minimum tT that must not break Constraint 1.

3.2 Dynamatic Implementation

Now, we show how the state-of-the-art dynamic-scheduling HLS tool, Dynamatic [33], parallelises
the instruction execution dynamically.

3.2.1 Control Flow Graph. We assume that the input program is sequential. As introduced in
Section 2.1, the input program is initially lowered from C/C++ to a CFG, where each BB contains
instructions in sequential order. A CFG illustrates the control flows of a program. Each vertex
represents a BB, and each edge represents a control transition between two BBs. Each of these
vertices corresponds to a subgraph at the lower level, known as data flow graph (DFG). Each
subgraph vertex represents an operation, and each edge between these vertices represents a data
dependency between two operations. For a given program and its inputs, we define the following
terms for the input source:

• B = {b1, b2, . . .} denotes the set of all the BBs in the program, and
• Ib = {i1, i2, . . .} denotes the set of all the instructions within a BB b.

The original execution order of the input program can be defined as follows:

• EB ⊆ B×N denotes the set of execution of BBs, where (bh ,k) denotes execution of BB h (bh)
in its kth iteration,
• ≺ ⊆ EB × EB denotes the original program order of BB execution, where (bh ,k) ≺ (bh′,k

′)
denotes (bh ,k) executes before (bh′,k

′) in strict program order,
• EI ⊆

⋃
b ∈B Ib × N denotes the set of execution of instructions, and

• ≺b : Ib × Ib denotes the original program order of instruction execution within a BB b.

The execution of BBs ≺ can be dynamic, where a BB may have a different number of iterations
than another BB. However, inside each BB, the execution of instructions ≺b is static, where they
always have the same number of iterations and execution order inside the BB, as shown in the
following constraints:

∀b, i,k . (b,k) ∈ EB ∧ i ∈ Ib ⇒ (i,k) ∈ EI , (3)

∀i, i ′,k . (i,k) ∈ EI ∧ (i ′,k) ∈ EI ∧ i ≺ i ′ ⇒ (i,k) ≺ (i ′,k). (4)

1The runtime event could be the execution of an instruction, a basic block or a loop.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:7

By combining ≺ and ≺b lexicographically, the original program order of the instruction execution
can be obtained. This is used as a reference for correctness checks. A schedule being correct is
defined as the execution result by this schedule is always the same as the result by sequential
execution in the original program order.

3.2.2 Dependency Constraints. There are mainly four types of dependencies to solve as intro-
duced in Section 1. First, the intra-BB data dependencies are represented as edges in DFGs inside
BBs and can be directly mapped to handshake signals between hardware operations. An operation
may have variable latency, depending on its inputs. Operations not connected through handshake
signals are independent and can execute in parallel or out-of-order. Although an operation may
have a variable latency and execute out-of-order, each data path propagates in-order data through
the edges as formalised by Carloni et al. [8]. Such a preserved data order inside each BB preserves
the intra-BB data dependencies.

Second, the intra-BB memory dependencies are dynamically scheduled using LSQs. Dynamatic
analyses ≺b and statically encodes the sequential memory order of each BB into the LSQ. An
LSQ allocates the memory operations in a BB into its queue at the start of the corresponding BB
execution. It dynamically checks these memory operations following the order of ≺b and executes
a memory operation if it is independent of all its priorly executing operations. The LSQ ensures
that the intra-BB memory dependencies are resolved by statically encoding ≺b into the LSQ for
dependency check.

We now need to resolve the inter-BB dependencies. Completely resolving inter-BB dependencies
for concurrent execution at runtime is still an open question. The most dynamic approach so far
is by Dynamatic, which enables dynamic scheduling with only one restriction. The restriction
requires BB executions must start sequentially in strict program order, even they can execute in
parallel. Let t : EI ∪ EB → N denote the start times of an instruction execution or a BB execution
in clock cycles.

∀i,b,k . i ∈ Ib ∧ (b,k) ∈ EB ⇒ t (b,k) ≤ t (i,k) (5)

D : ∀e, e ′. e ∈ EB ∧ e ′ ∈ EB ∧ e ≺ e ′ ⇒ t (e) < t (e ′) (6)

This preserves the original program order ≺ during runtime hardware execution and provides a
reference of correctness for dynamic scheduling when combined with ≺b .

Third, with Constraint 6, the inter-BB data dependencies are preserved using muxes. Dynamatic
uses a mux to select data input to a BB at the start of the BB by its preceding BB execution. Since
the BBs are restricted to start sequentially, there can only be at most one BB receiving at most one
starting signal from its multiple preceding BBs. The input data of a BB is selected by the muxes
based on the starting signal and accept the correct input data for the computation. The starting
signal in the sequential BB execution order ensures that the data sent to each BB is also in strict
program order. Such property ensures in-order data flow between BBs, which preserves inter-BB
data dependencies.

Finally, the inter-BB memory dependencies are resolved by the LSQ by dynamically allocating
memory operations between these BB executions. LSQ dynamically monitor the start signals of
BB executions and allocate groups of memory operations in the same BB order, also known as ≺.
It checks the memory operations in an order that combines ≺ and ≺b lexicographically, the same
as the original program order. With the logic that resolves the intra-BB memory dependencies, the
LSQ ensures that the out-of-order memory execution always has the same results as the execution
in the allocated order, i.e., the program order. Such an approach of preserving ≺ for allocation in
the LSQ resolves the inter-BB memory dependencies.

With the implementation above, ≺b is directly encoded to hardware at compile time, and ≺ is
recovered at runtime. All four kinds of dependencies can be resolved by checking dependencies

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:8 J. Cheng et al.

between operations in strict program order. Let d : (EI ∪ EB)2 → {0, 1} denote whether two
executions have dependencies, and let l : EI → N denote the latencies of instruction execution in
clock cycles. Dynamatic ensures the following dependency constraint always holds:

∀e, e ′. e ∈ EI ∧ e ′ ∈ EI ∧ e ≺ e ′ ∧ d (e, e ′) ⇒ t (e) + l (e) ≤ t (e ′). (7)

3.2.3 Hardware Restriction. The dependency constraints above ensure the correctness of the
schedule with optimised performance. However, the hardware architecture could also bring re-
strictions on performance.

Here, we only consider the case of pipelining. HLS uses hardware pipelining to exploit paral-
lelism among different iterations of a BB using a single hardware instance. A resource restriction
is then added to this scheduling model.

∀b,k,k ′. (b,k) ∈ EB ∧ (b,k ′) ∈ EB ∧ k � k ′ ⇒ t (b,k) � t (b,k ′) (8)

This means that two iterations of the same BB cannot start simultaneously in pipelining, which
requires multiple hardware instances. In Dynamatic implementation, Constraint 8 is covered by
Constraint 6. We keep it here, as Constraint 6 will be relaxed in the later sections. Also, Dynamatic
generates a data flow hardware architecture where the input data order is always the same as the
output data order for each BB. This could also restrict the execution of each individual operation:

∀i,k,k ′,b .b ∈ B ∧ i ∈ Ib ∧ (i,k) ∈ EI ∧ (i,k ′) ∈ EI ∧ t (b,k) < t (b,k ′) ⇒ t (i,k) < t (i,k ′). (9)

3.2.4 Summary. In summary, Dynamatic automatically generates efficient dynamically sched-
uled hardware with minimal static analysis. The generated hardware must satisfy four constraints.
First, Constraint 6 ensures the program order is preserved in the hardware design. Second, given
Constraint 6, the hardware logic ensures Constraint 7 for dynamically resolving dependencies us-
ing the sequential program order. Third, the performance of pipelined architecture is restricted by
the resource Constraint 8. Finally, the performance is also restricted by the Constraint 9 introduced
from the data flow architecture.

Constraint 6, which restricts BBs to start sequentially, significantly reduces the need for static
analysis and simplifies the dynamic scheduling problem. However, this is too conservative for
dependency analysis. For instance, when all the BB executions do not have dependencies, Con-
straint 6 could cause sub-optimal performance. We now demonstrate how Constraint 6 can be
relaxed in this model and what analysis can be applied to achieve a schedule with a better perfor-
mance.

3.3 Possible Relaxations

We seek to relax Constraint 6 and only restrict the order between the BB executions that may have
dependencies. If two instruction executions in two BB executions have dependencies, then these
two BB executions have dependencies.

d ((b,k), (b ′,k ′)) = (∃i, i ′. (i,k) ∈ EI ∧ (i ′,k ′) ∈ EI ⇒ d ((i,k), (i ′,k ′))) (10)

Then. Constraint 6 can be relaxed to:

D ′ : ∀e, e ′.e ∈ EB ∧ e ′ ∈ EB ∧ e ≺ e ′ ∧ d (e, e ′) ⇒ t (e) < t (e ′). (11)

However, analysing the dependency between two BB execution at runtime is still challenging.
To enable static analysis for dependency analysis, we over-approximate analysing two particular

BB executions to all the executions of two particular BBs. This means that each dependency is
checked between statements in the source instead of runtime events. Let d ′ : B × B → {0, 1}

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:9

denote whether two basic blocks may have dependency during their executions.

d ′(b,b ′) = (∃k,k ′.d ((b,k), (b ′,k ′))) (12)

We then relax Constraint 11 to the following:

D ′′ : ∀b,b ′,k,k ′. (b,k) ∈ EB ∧ (b ′,k ′) ∈ EB ∧ (b,k) ≺ (b ′,k ′) ∧ d ′(b,b ′) ⇒ t (b,k) < t (b ′,k ′) (13)

This ensures that only some BBs must start sequentially, and BBs that cannot have dependency
during the whole execution can start in parallel or out-of-order. The dependency set of the program
from our formulation lies between Constraint 6 and Constraint 11, where D ′ ⊆ D ′′ ⊆ D. With
this new constraint, the dependencies are still respected with existing muxes and LSQs, since the
dependent BB executions remain starting sequentially.

In the rest of the article, we demonstrate how to apply static analysis for relaxing Constraint 6
towards Constraint 13 and enable two hardware optimisation techniques for dynamic-scheduling
HLS.

4 DYNAMIC INTER-BLOCK SCHEDULING

This section demonstrates an application of the proposed dependency model for achieving the
simultaneous execution of two independent BBs by parallelising independent sequential loops.
It formalises our prior conference paper [15] in the proposed model. Section 4.1 demonstrates
a motivating example of parallelising independent sequential loops. Section 4.2 explains how to
formulate the problem into the proposed model in Section 3 and shows how to use Microsoft
Boogie to automatically determine the absence of dependency between these sequential loops.
Section 4.3 illustrates efficient hardware transformation for parallelising sequential loops.

4.1 Motivating Example

Here, we illustrate a motivating example of parallelising two sequential loops in dynamically sched-
uled hardware. Figure 3(a) shows an example of two sequential loops, loop_0 and loop_1. In each
iteration of loop_0, an element at index f(i) of array a is loaded and processed by a function op0.
The result is stored to an element at index i of array b. In each iteration of loop_1, an element at
index h(j) of array a is loaded and processed by a function op1. The result is stored back to array
a at index g(j). For simplicity, let f(i) = 0, g(j) = j*j+1 and h(j) = j. Hence, there is no
memory dependency between two loops, that is, ∀0 ≤ i < X.∀0 ≤ j < Y. f(i) � g(j).

Dynamatic [33], the state-of-the-art dynamic scheduled HLS tool, synthesises hardware that
computes in a schedule shown in Figure 3(b). The green bars represent the pipeline schedule of
loop_0, and the blue bars represent the pipeline schedule of loop_1. In loop_1, the interval be-
tween the starts of consecutive iterations, known as the initiation interval (II), is variable be-
cause of the dynamic inter-iteration dependency between loading from a[h(j)] and storing to
a[g(j)]. For instance, if we suppose that g and h are defined such that g(0) = h(1), then the first
two iterations must be executed sequentially, and if we further suppose that g(1) � h(2), then the
second and third iterations are pipelined with an II of 1.

However, loop_1 is stalled until all the iterations in loop_0 have started, even though it has
no dependency on loop_0. The reason is that Dynamatic forces all the BBs to start sequentially
to preserve any potential inter-BB dependency, such as the inter-iteration memory dependency in
loop_1. For this example, each loop iteration is a single BB, and at most one loop iteration starts
in each clock cycle.

An optimised schedule is shown in Figure 3(c). In the figure, both loops start from the first cycle
and iterate in parallel, resulting in better performance. Existing approaches cannot achieve the
optimised schedule: static scheduling can start loop_0 and loop_1 simultaneously such as using

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:10 J. Cheng et al.

Fig. 3. Motivating example. Assume no dependence between two loops. The dynamically scheduled hard-
ware from the original Dynamatic [33] a schedule in (b). Our work achieves an optimised schedule in (c).

multi-threading in LegUp HLS [7], but loop_1 is sequential, as the static scheduler assumes the
worst case of dependency and timing; dynamic scheduling has a better throughput of loop_1, but
cannot start it simultaneously with loop_0.

Besides, determining the absence of dependency between these two loops for complex f(i),
g(j), and h(j) is challenging. In this section, our toolflow (1) generates a Boogie program to
formally prove that starting loop_0 and loop_1 simultaneously cannot break memory dependency
and (2) parallelises these loops in dynamically scheduled hardware if they are proved independent.
The Boogie program generated for this example is explained later (in Figure 5).

The transformation for the example in Figure 3(a) is demonstrated in Figures 4(a) and 4(b).
Figure 4(a) shows the CFG generated by the original Dynamatic. The CFG consists of a set of
pre-defined components, as listed in Table 1. As indicated by the red arrows, a control token
enters the upper block and triggers all the operations in the first iteration of loop_0. It circulates
within the upper block for X cycles and then enters the lower block to start loop_1. Figure 4(b)
shows a parallelised CFG by our toolflow. Initially, a control token is forked into two tokens.
These two tokens simultaneously trigger loop_0 and loop_1. A join is used to synchronise the
two tokens when they exit these loops. Both designs use the same hardware, yet, Figure 4(b) uses
these resources in a more efficient way by allowing the two loops to be used in parallel, reducing
the overall execution time. The rest of Section 4 explains the details of our approach.

4.2 Problem Formulation and Dependency Analysis

Here, we first show how to formalise the problem based on the model in Section 3. We then show
how to extract sets of subgraphs from a sequential program, where subgraphs in the same set

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:11

Fig. 4. Hardware transformation of the motivating example in Figure 3.

Table 1. Elastic Components for Dynamically Scheduled HLS

may start in parallel. The absence of dependency between these parallelised subgraphs is formally
verified using the generated Boogie program by our tool.

4.2.1 Problem Formulation. The search space for BBs that can start in parallel could be huge,
and it scales exponentially with the code size. To increase scalability, we limit our scope to
loops. Each loop forms a subgraph in the CFG for analysis. Parallelising BBs outside any loop
adds significant search time but has negligible improvement in latency. We define the following
terms:

• G = {д1,д2, . . .} denotes a set of consecutive subgraphs in the CFG of the program,
• EG ⊆ G × N denotes the executions of subgraphs,
• ≺G⊆ EG × EG denotes the original program order of subgraph execution, and
• Bд ⊆ B denotes the set of all the BBs in subgraph д.

The subgraph setG must satisfy the following constraints based on the original sequential program
order. First, the BB sets of all the subgraphs in G must be disjoint.

∀д,д′.д ∈ G ∧ д′ ∈ G ∧ д � д′ ⇒ Bд ∩ Bд′ = ∅ (14)

Second, no BB outside a subgraph executes during the execution of the subgraph in sequential
program order. Let b0 (e) and bn (e) denote the first BB execution and the last BB execution in a
subgraph execution, where e ∈ EG .

�b,k,д,m. (д,m) ∈ EG ∧ b � Bд ∧ (b,k) ∈ EB ⇒ b0 (д,m) ≺ (b,k) ≺ bn (д,m) (15)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:12 J. Cheng et al.

Finally, all the subgraphs in G must consecutively execute, i.e., directly connected to at least one
subgraph in CFG. That means that they are sequentially executed in each iteration. Let c (д,д′)
denote whether the execution of a subgraph д′ is consecutive after the execution of subgraph д.

c (д,д′) = (�m,д′′. (д,m) ∈ EG ∧ (д′,m) ∈ EG ∧ (д′′,m) ∈ EG ⇒ (д,m) ≺ (д′′,m) ≺ (д′,m))
(16)

�д,д′,m,b,k . (д,m) ∈ EG ∧ (д′,m) ∈ EG ∧ c (д,д′) ∧ (b,k) ∈ EB ⇒ bn (д,m) ≺ (b,k) ≺ b0 (д′,m)
(17)

Now, we start to map the execution of subgraphs into a hardware schedule. As explained in
Constraint 6 in Section 3, Dynamatic forces BB to start sequentially. This leads to the following
constraint regardless any dependency:

∀д,д′,m. c (д,д′) ∧ (д,m) ≺ (д′,m) ⇒ t (bn (д,m)) < t (b0 (д′,m)). (18)

If it is proven that the execution (д,m) cannot have any dependency with the execution (д′,m)
of its consecutively following subgraph, then there is no need to use muxes and LSQs to resolve
the dependency between these two subgraphs. Then, (д′,m) can start execution early, such as
t (b0 (д,m)) = t (b0 (д′,m))), which leads to a correct schedule with a better performance. Let
d ′(д,д′) denote that two subgraphs д and д′ may have a dependency, and let d ′c (д,д′) denote that
there exists a subgraph between the execution of д and д′ in the same iteration including д that
may have a dependency with subgraph д′.

d ′(д,д′) = (∃b,b ′.b ∈ Bд ∧ b ′ ∈ Bд′ ⇒ d ′(b,b ′)) (19)

d ′c (д,д′) = d ′(д,д′) ∨ (∃д′′,m. (д,m) ≺ (д′′,m) ≺ (д′,m) ⇒ d ′(д′′,д′)) (20)

Constraint 6 is now relaxed to:

∀д,д′,m. (д,m) ≺ (д′,m) ∧ d ′c (д,д′) ⇒ t (bn (д,m)) < t (b0 (д′,m)), (21)

∀b,b ′,k,k ′,д.b ∈ Bд ∧ b ′ ∈ Bд ∧ д ∈ G ∧ (b,k) ≺ (b ′,k ′) ⇒ t (b,k) < t (b ′,k ′). (22)

Constraint 21 restricts the starting time of a subgraph execution by its most recently executed
subgraph that has dependencies. Inside each subgraph, BB execution remains to start sequentially,
as shown in Constraint 22.

The optimised schedule still respects all the inter-BB dependencies, since it only modifies the
start times of independent subgraph execution. The intra-BB dependencies remain unchanged,
since the transformation is applied at only the subgraph level. Therefore, Constraint 7 still holds for
the optimised schedule. Also, Constraint 8 and Constraint 9 still hold, as the hardware pipelining
and dataflow architecture remain the same.

The following sections explain how to solve two main problems: (1) How to efficiently determine
a large set of G and a highly parallelised schedule for G? (2) How to map a parallelised schedule
into efficient hardware?

4.2.2 Subgraph Extraction. Given an input program, our toolflow analyses sequential loops in
each loop depth and constructs a number of sets of subgraphs. Each set contains several con-
secutive sequential loops at the same depth, where each loop forms a subgraph. For instance,
the example in Figure 3 has a set of two subgraphs, corresponding to loop_0 and loop_1. Our
toolflow then checks the dependency among the subgraphs for each set. Dynamatic translates
data dependency into handshake connections in hardware for correctness. Our toolflow does not
change these connections, so the data dependency is still preserved. For memory dependencies,
our toolflow generates a Boogie program to prove the absence of dependency among subgraphs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:13

Fig. 5. A Boogie program generated for the example in Figure 3. It tries to prove the absence of memory
dependency between two sequential loops loop_0 and loop_1.

For this example, Boogie proves that the two loops do not conflict on any memory locations and
can be safely reordered.

For example, Figure 5 shows the Boogie program that proves the absence of a dependency be-
tween loop_0 and loop_1 in Figure 3. The Boogie program consists of two procedures. First, the
procedure in Figure 5(a) describes the behaviour of function transformVector and arbitrarily
picks a memory access during the whole execution. The procedure returns a few parameters for
analysis, as listed in lines 4–8 in Figure 5(b). The for loop structures are automatically translated
using an open-sourced tool named EASY [13]. In the rest of the function, each memory opera-
tion is translated to a non-deterministic choice if(*). It arbitrarily returns the parameters of a
memory operation or continues the program. If all the memory operations are skipped, then the
procedure returns an invalid state in line 16. The non-deterministic choices over-approximate the
exact memory locations to a set of potential memory locations. For instance, any memory location
accessed by the code in Figure 3(a) is reachable by the procedure in Figure 5(a). The assertions in
Figure 5(b) must hold for any possible memory location returned by the procedure in Figure 5(a)
to pass verification.

Figure 5(b) shows the main procedure. In line 3, the verifier assumes both arrays hold arbitrary
values, making the verification input independent. Then, the verifier arbitrarily picks two memory
accesses in lines 9–10. Each memory access can capture any memory access during the execution
of transformVector. The assertion describes the dependency constraint to be proved that for
any two valid memory accesses (line 11), if they are in different subgraphs (line 12), they must be
independent. Lines 13–15 describe the independency, where they either touch different arrays or
different indices, or they are both load operations. If the assertion always holds, then it is safe to
parallelise loop_0 and loop_1.

Our toolflow generates
k (k−1)

2 assertions for k subgraphs, because that is the number of ways
of picking two subgraphs from k . The subgraphs are rescheduled based on the verification results.
If a subgraph is independent of any of its preceding subgraphs within a distance of n, then it can
simultaneously start with its (m − n)th last subgraph. In this article, we analyse at loop level for
parallelism instead of the BB level for better scalability, and the search space is already huge. In the
cases of two or more consecutive subgraphs that are all mutually independent, it is straightforward
to schedule them all in parallel. However, a sequence of subgraphs that are neither completely
independent nor completely dependent may result in several possible solutions. For instance, the
CFG in Figure 6(a1) contains three consecutive loops, BB1, BB2, and BB3. BB1 and BB2 can be
parallelised, as can BB2 and BB3, but BB1 and BB3 cannot. We, therefore, have to choose between

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:14 J. Cheng et al.

Fig. 6. A CFG may be parallelised differently, depending on (a) parallelising in top-to-bottom/bottom-to-top
order, and (b) grouping BBs with the loop before/after. The dashed arrows represent memory dependency.

parallelising them as in Figure 6(a2) or in Figure 6(a3). Our current approach greedily parallelises
BBs in top-to-bottom order, so it yields Figure 6(a2) by default, but this order can be overridden
via a user option. It may be profitable in future work to consider Figure 6(a3) as an alternative if
BB2 and BB3 have more closely matched latencies.

Second, the BBs between sequential loops can be included in a subgraph of either loop, resulting
in several solutions. For instance, Figure 6(b1) can be parallelised to Figure 6(b2) or to Figure 6(b3).
In Figure 6(b2), BB2 is grouped with its succeeding loop BB3 and so is BB4. In Figure 6(b3), the
BBs are grouped with their preceding loops. This may result in different verification results,
which affect whether the subgraphs can be parallelised. For instance, if BB3 depends on BB2, then
Figure 6(b2) is memory-legal and Figure 6(b3) is invalid (our toolflow will keep the CFG as in
Figure 6(b1)). This grouping can be controlled via a user option.

4.3 Hardware Transformation

We here explain how to construct dynamically scheduled hardware in which BBs can start simulta-
neously. First, we illustrate how to insert additional components to enable BB parallelism. Second,
we show how to simplify the data flow to avoid unnecessary stalls for subgraphs.

4.3.1 Components Insertion for Parallelism. With given sets of subgraphs that start simultane-
ously, our toolflow inserts additional components into the dynamically scheduled hardware to
enable parallelism. For each set, our toolflow finds the start of the first subgraph and the exit of
the last subgraph in the program order. The trigger of the first subgraph is forked to trigger the
other subgraphs in the set. The exit of the last subgraphs is joined with the exits of the other sub-
graphs and then triggers its succeeding BB. For the example in Figure 4(b), the start of the function
is forked to trigger both loop_0 and loop_1. A join is used to synchronise the BB starting signals
in loop_0 and loop_1. The join waits for all the BBs in both loops to start and then starts the
succeeding BB of the loops.

The BB starting order is now out-of-order, but the computed data must be in-order. The trans-
formation above ensures the order of data does not affect the correctness. Since we only target
loops, only the muxes at the header of the loops are affected. Outside of the loops to be paral-
lelised, the order remains unmodified. When each parallelised loop starts, a token enters the loop
and circulates through the loop exactly in the program order. The parallelised loop outputs are
synchronised by the join, thus, everything that happens later remains in order. Only the BB orders
among these parallelised loops are out-of-order, which have been proven independent.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:15

Fig. 7. An example of parallelising BB starting schedule by CFG transformation. There are two sets of se-
quential loops in different depths. Assuming all the loops are independent, each set of sequential loops starts
simultaneously after the transformation in (b). (c) only shows the time when a BB starts, where a BB may
take multiple cycles to execute.

An advantage of such transformation is that the execution of parallelised subgraphs and their
succeeding BB are in parallel, although they still start in order. The memory dependencies between
these subgraphs and the succeeding BB are still respected at runtime, as they start in order. This
effect qualitatively corresponds to what standard dynamically scheduled hardware exhibits, yet,
in that case, only on a single BB at a time. Compared to traditional static scheduling, which only
starts the succeeding BB when all the subgraphs finish execution, our design can achieve better
performance.

Figure 7 shows an example of parallelising nested parallel subgraphs. The code contains two
sequential loops, loop_0_1 and loop_2. Loop loop_0_1 is a nested loop that contains two sequen-
tial loops, loop_0 and loop_1. For simplicity, assume that there is no dependency between any
two loops.

Our toolflow constructs two sets of subgraphs in two depths, allowing more parallelism in the
CFGs. One set contains loop_0_1 and loop_2, and the other set contains loop_0 and loop_1.
The transformation of CFG is illustrated in Figure 7(b). loop_0_1 and loop_2 are parallelised
at the start the program, and loop_0 and loop_1 are further parallelised inside loop_0_1. The
corresponding BB starting schedule is demonstrated in Figure 7(c), which only shows the time
when each BB starts. A BB may have a long latency and execute in parallel with other BBs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:16 J. Cheng et al.

Fig. 8. An example of simplified data flow for live variables. t is a live variable in line 3, but not used in
loop_1. t circulates in loop_1 to preserve liveness but is seen as data dependencies, stalling loop_1 before
t is valid. Our toolflow identifies and removes these cycles, such that loop_1 can start earlier.

4.3.2 Forwarding Variables in Data Flow. The second step is to simplify the data flow of live
variables for parallelising sequential loops. Dynamatic directly translates the CFDG of an input
program into a hardware dataflow graph. In the data flow graph, each vertex represents a hardware
operation, and each edge represents a data dependency between two operations.

The data flow of a loop uses cycles for each variable that has carried dependency. The data
circulates in the cycle and updates its value in each iteration. However, such an approach also
maintains all the live variables in these cycles while executing a loop, even when they are not
used inside the loop. The edges of these cycles are seen as data dependencies in the hardware,
where the edges for unused live variables could cause unnecessary pipeline stalls.

For example, the loops in Figure 8(a) can be parallelised. loop_0 accumulates array B onto t,
and loop_1 accumulates array A onto s. The sum of s and t is returned. The dataflow graph of
loop_1 is shown in Figure 8(b). The loop iterator i and the variable s have carried dependency in
loop_1. They are kept and updated in the middle and right cycles. The result of loop_0, t, is still
live and required by addition in line 9. t is kept in the left cycle, circulating with i and s.

loop_1 is stalled by the absence of t even when parallelised with loop_0, but t is not needed by
loop_1. To remove these unnecessary cycles, our toolflow checks whether a live variable is used
in the loop. If it is not, then our toolflow removes the corresponding cycle and directly forwards
the variable to its next used BB. Figure 8(c) illustrates the transformed dataflow graph. t is now
directly forwarded to the final adder, enabling two loops to start simultaneously.

4.3.3 LSQ Handling. The parallel BB schedule also affects the LSQs. First, the original Dyna-
matic starts BB sequentially, whereas the LSQ expects sequential BB allocation. Our parallelised
schedule allows multiple BBs to start simultaneously; therefore, we place a round-robin arbiter
for the LSQ to serialise the allocations. The out-of-order allocation still preserves correctness,
as the simultaneous BB requests have been statically proven independent by our approach in
Section 4.2.2.

Second, the arbiter may cause deadlock if the LSQ depth is not sufficient to consume and reorder
all memory accesses, (e.g., a later access may be stuck in an LSQ waiting for a token from an earlier
access, but the earlier access cannot enter the LSQ if it is full, thus never supplying the token). This
issue has been extensively explored in the context of shared resources in dataflow circuits [34];

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:17

similarly to what is suggested in this work, the appropriate LSQ size could be determined based
on the number of overlapping loop iterations and their IIs. Although systematically determining
the minimal allowed LSQ depth is out of the scope of this work, we here assume a conservative
LSQ size that ensures that deadlock never occurs in the benchmarks we consider. We note that
minimising the LSQ is orthogonal to our contribution and could only positively impact our results
(by reducing circuit area and improving its critical path).

5 DYNAMIC C-SLOW PIPELINING

This section demonstrates another application of the proposed dependency model for achieving
out-of-order execution of independent and consecutive iterations of the same BB by C-slow pipelin-
ing in nested loops. It formalises our prior conference paper [17] in the proposed model. Section 5.1
demonstrates a motivating example of C-slow pipelining the innermost loop of a loop nest. Sec-
tion 5.2 explains how to formulate the problem into the proposed model in Section 3 and shows
how to use Microsoft Boogie to automatically determine the absence of dependency between the
outer-loop iterations of the loop nest for C-slow pipelining. Section 5.3 explains how to realise
C-slow pipelining in hardware.

5.1 Motivating Example

In this section, we use a motivating example to demonstrate the problem of pipelining a nested
loop. In Figure 9(a), a loop nest updates the elements in an array a. The outer loop loop_0 loads
an element at address f(i). The inner loop loop_1, bounded by N-i, computes s with a row in an
array b, shown as function g. The result is then stored back to array a at address h(i) at the end
of each outer-loop iteration.

For simplicity, assume there is no inter-iteration dependency in the outer loop loop_0. Assume
the latency of function g is three cycles. An inter-iteration dependency of the inner loop loop_1
on s causes a minimum II of 3. The pipeline schedule of the hardware from vanilla Dynamatic is
shown in Figure 9(b). The first iteration of loop_0 is optimally pipelined with an II of 3 shown
as the green bars. However, the second iteration, shown as blue bars, can only start after the last
iteration of loop_1 in the first iteration of loop_0 starts. Although the loop contains three registers,
the control flow is not parallelised because of Constraint 6.

The schedule shown in Figure 9(c) is also correct and achieves better performance. Since the II
of loop_0 is 3, the two empty slots between every two consecutive iterations allow the next two
iterations of loop_0 to start earlier. The second iteration of loop_0 now starts one cycle after the
start of the first iteration of loop_0, followed by the third iteration shown as orange bars. After
the last iteration of loop_1 starts, the current inner-loop instance leaves new empty pipeline slots
spare. This triggers the start of the fourth iteration, shown as yellow bars, filling into the new
empty slot.

The reason that Dynamatic cannot achieve the schedule in Figure 9(c) is that the control flow in
the latter schedule is out-of-order, which breaks Constraint 6. The LSQ cannot retain the original
program order of memory accesses and cannot verify the correctness of memory order from the
out-of-order control flow, which may lead to wrong results. In this section, we use static analysis
to prove such control flow will still maintain a legal memory access order for a given program, so
the LSQ still works correctly for this new program order.

This is an example for which traditional techniques such as loop interchange and loop unrolling
do not help because they only work under stringent constraints. In this example, loop interchang-
ing cannot be applied, because the bound of the inner loop depends on its outer loop. Also, loop
unrolling does not change the control flow and cannot improve performance. In this section, we
propose a general approach that works for arbitrary nested loops.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:18 J. Cheng et al.

Fig. 9. A motivating example of computing a triangle matrix. Assume there is no inter-iteration dependency
in loop_0, and each instance of loop_1 has a minimum II of 3. The default pipeline schedule only starts
the second iteration of loop_0 after the last iteration of loop_1 in the first iteration of loop_0 starts. Our
approach inserts the following iterations of loop_0 into the empty slots of its first iteration.

5.2 Problem Formulation and Dependency Analysis

Here, we first show how to formalise the problem of C-slow pipelining based on the model in
Section 3. We then show how to analyse the correctC for each loop nest based on the dependency
analysis using the generated Boogie program by our tool.

5.2.1 Problem Formulation. C-slow pipelining is amenable for improving the throughput when
(1) a hardware design that has an II of greater than 1; and (2) it allows out-of-order execution of
control flow. To simplify the problem, we restrict the scope of our work to nested loops. A loop in
a CFG is defined as a set of consecutive BBs with back edges. Here, we define the following terms
for an inner loop in a loop nest:

• BL ⊆ B denotes the set of all the BBs in a loop,
• EL (j,k) ⊆ EB denotes the BB executions in the kth iteration of the jth instance of the loop.

Since we only focus on loops, the abstraction has been raised to the loop level for this problem;
here, we use EL (j,k) to denote a particular loop execution event. This improves the scalability of
our analysis. The II of each loop may vary between loop iterations as it is dynamically scheduled.
For a loop, the maximum II of the loop at runtime can be defined as:

∀b,k .b ∈ BL ∧ k > 1 ∧ (b,k) ∈ EB ∧ (b,k − 1) ∈ EB ⇒ II ≥ t (b,k) − t (b,k − 1). (23)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:19

An II of greater than one means there are empty pipeline slots in the schedule, which could be
attributed to a lack of hardware resources or inter-iteration dependencies. Here, we assume infinite
buffering and only analyse the case for the stall caused by inter-iteration dependencies.

Constraint 6 forces each iteration of a loop to start execution sequentially, which can derive the
following constraints for the loop:

∀j,k, e, e ′. e ∈ EL (j,k − 1) ∧ e ′ ∈ EL (j,k) ⇒ t (e) < t (e ′), (24)

∀j,k,k ′, e, e ′. e ∈ EL (j − 1,k) ∧ e ′ ∈ EL (j,k ′) ⇒ t (e) < t (e ′). (25)

Constraint 24 means that all the BB executions in an iteration of the loop cannot start unless all
the BB executions in its last iteration have started. Constraint 25 means that all the BB executions
in an instance of the loop cannot start unless all the BB executions in its last instance of the loop
have started. The difference of the start times between two iterations when an II is greater than 1,
also known as the empty pipeline slots, cannot be filled with the following iterations because of
Constraint 24 and Constraint 25. If it is proven that the jth instance and the (j-1)th instance of the
loop are independent, Constraint 25 can be relaxed, as the absence of dependency enables early
execution of the jth instance. This allows the following iterations to start early, filling the empty
slots as illustrated in Figure 9(c).

The parallelism among iterations depends on the number of consecutive independent instances,
also known as the dependency distance of the outer loop. The minimum dependency distance Q
of the outer loop of a loop l must satisfy the following:

d ′′(j, j ′) = (∃k,k ′, e, e ′. e ∈ EL (j,k) ∧ e ′ ∈ EL (j ′,k ′) ⇒ d (e, e ′)), (26)

∀j,q. j > Q ∧ 1 ≤ q ≤ Q ⇒ ¬d ′′(j − q, j). (27)

The constraint for a C-slowed nested loop is that there are always at most Q outer-loop iterations
executing concurrently.

Although the outer-loop iterations are parallelised, the execution of inner loops still follows Con-
straint 24, where the inter-iteration dependencies of the inner loops are respected. Constraint 25
transformed from Constraint 6 is then relaxed to the following combined with Constraint 24.

∀j,k, e, e ′. j > Q ∧ e ∈ EL (j −Q,k) ∧ e ′ ∈ EL (j,k) ⇒ t (e) < t (e ′) (28)

Constraint 7 still holds, as only the independent iterations execute earlier. Constraint 8 and Con-
straint 9 still hold, as the hardware property remains the same. The starting order of BB executions
outside the C-slowed loop remains the same as vanilla Dynamatic. The starting order of BB exe-
cutions inside the C-slowed loop is now in parallel and out-of-order.

The following sections explain how to solve two main problems: (1) How to efficiently determine
C for a correct schedule with better performance and area efficiency? (2) How to transform the
hardware to realise C-slow pipelining?

5.2.2 Exploration forC Using Dependency Analysis. The dependency constraint above is equiv-
alent to the minimum dependency distance of the outer loop must be greater than C , i.e., C ≤ Q .
A loop-carried data dependency always has a dependency distance of 1, therefore, we only need
to analyse memory dependencies. Our toolflow automatically generates a Boogie program to de-
scribe the memory behaviour of the nested loop and calls the Boogie verifier to prove the absence
of memory dependency within a given distance.

For example, Figure 10 illustrates the Boogie program generated for the motivating example
in Figure 9. It tries to prove the absence of memory dependency between any two outer-loop
iterations with a distance less than C , which mainly includes two parts. The Boogie procedure in
Figure 10(a) arbitrarily picks a memory access from the nested loop during the whole execution and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:20 J. Cheng et al.

Fig. 10. A Boogie program generated for the example in Figure 9. It tries to prove the absence of memory
dependency between any two outer-loop iterations with a distance less than C.

returns its parameters. The returned parameters include the label of the statement being executed,
the array and address of the accessed memory, the iteration index of the outer loop, and the type of
the memory access. Detailed definitions of these parameters are listed in lines 6–11 in Figure 10(b).

In Figure 10(a), the for loop structures in Boogie are directly generated by the automated tool
named EASY [13]. In the loop body, each memory access is replaced with an if(*) statement.
The if(*) statement arbitrarily chooses to return the parameters of the current memory access
or continue. The procedure is then able to capture all the memory access that may execute during
the whole execution.

If all these memory accesses are skipped, then the procedure exits at line 23 with a false valid
bit, indicating that the returned parameters are invalid. Figure 10(b) describes the main Boogie pro-
cedure for dependency analysis. It takes a givenC as an input. In line 4, it assumes that arrays a and
b hold arbitrary values. This makes the verification results independent from the program inputs.
Lines 12 and 13 arbitrarily pick two memory accesses from the nested loop using the procedure in
Figure 10(a).

The assertion at line 15 proves Constraint 27 for a given C . First, the picked two memory
accesses from lines 12 and 13 must hold valid parameters (line 15). Second, two accesses touching
different arrays cannot have dependency (line 16). Two accesses executed by the same statement
are safe (line 17), where the dependency is captured by the hardware logic based on the starting
order of BB iteration under Constraint 8. Two loads cannot have dependency (line 18). Two
returned memory accesses are arbitrary and have no difference. Here, we assume the memory
access with index 0 executes in an earlier outer-loop iteration than the one with index 1 (line 19).
In the C-slow pipelining formulation, only the outer-loop iterations with an iteration distance
less thanC can execute concurrently (line 20). Any two memory accesses that exclude the cases at
lines 15–20 cannot access the same address. The assertion must hold for any two memory accesses
for any input values. The Boogie verifier automatically verifies whether the assertion always holds
for a given C . If the assertion always holds, then it is safe to parallelize C iterations of the outer
loop.

Besides the dependency constraints, a resource constraint of C-slow pipelining is that each path
must be able to hold at least C sets of data. Dynamatic already inserts buffers into the hardware

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:21

Fig. 11. A largeC may not improve the overall throughput but slow the execution of single instances. AC of
3 only leads to an additional area for the code example above.

for high throughput. Our hardware transformation pass inserts an additional FIFO with a depth of
C (named C-slow buffers) in each control path cycle of the inner loop to adapt C-slow pipelining,
which can hold at least C tokens.

5.2.3 Exploration forC Using Throughput Analysis. The dependency analysis above only defines
a set of Cs that are suitable for C-slow pipelining. We show how to automatically determine an
optimisedC among theseCs using throughput analysis. The Boogie program determines an upper
bound C that cannot break any dependency. However, a large C may not improve the overall
throughput but only cause more area overhead.

For example, Figure 11 illustrates an example where C-slow pipelining does not improve overall
throughput. Figure 11(a) shows a function named vecTrans that transforms an array named a. The
function contains a nested loop. In the outer loop, it loads the element in array a and accumulates
the values in matrix b onto the element. In the inner loop, the elements in matrix b are accumulated
in a triangle form.

The default pipeline schedule of function vecTrans is shown in Figure 11(b). In the schedule,
both the inner loop and the outer loop are fully pipelined. Although there is a carried dependency
in the inner loop on the variable s, the integer adder has a latency of one clock cycle, leading to
an II of 1.

This example is not amenable for C-slow pipelining, however, this cannot be identified by Boogie.
In the dependency distance analysis, Boogie found thatC can be any positive integer, as there is no
inter-iteration dependency in the outer loop. For example, Figure 11(c) shows a 3-slowed schedule
for function vecTrans. In the schedule, the start time of iterations in the first inner loop instance is
delayed by three cycles, allowing two iterations in the second and third inner loop instances to start
early. Such transformation preserves correctness but has no impact on the overall throughput. For
this example, C-slow pipelining only causes more area overhead by adding the additional scheduler
for out-of-order execution.

A condition where C-slow pipelining potentially improves the overall throughput is that the II
of an inner loop is greater than 1. This leaves empty pipeline slots for early execution of the later

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:22 J. Cheng et al.

Fig. 12. An example where both the inner loop and the outer loop have a dynamic carried dependency,
leading to dynamic IIs. Choosing C from average IIs achieves the best performance and has the minimum
area among dynamically scheduled hardware. The results are measured from uniformly distributed data.

inner loop instances. When the program is dynamically scheduled, the II of an inner loop may vary
at runtime. Here, we use probabilistic analysis to statically infer an optimisedC from the average II.

Figure 12(a) shows a code example where the dependencies in both the inner loop and the outer
loop are dynamic. In the outer loop, the function loads and computes an element in array a at an
index of f(i). It then updates the element in the same array at an index of h(i). In the inner loop,
a variable s updates itself based on the elements in matrix b, which is used to update array a in
the outer loop.

In the outer loop, the memory dependencies between the loads and stores with array a are
dynamic and depend on the iteration index of the out-loop i. For simplicity, assume that the min-
imum dependency distance in the outer loop for given f(i) and g(i) is no less than 256. That is,
C-slow pipelining is valid for any C where 1 ≤ C ≤ 256.

In the inner loop, the data-dependent condition causes two possible IIs. When the condition at
line 11 is false, function g is skipped, leading to an II of 1. When the condition is true, function g is
executed and the carried dependency on s causes an II of 118. The II of 118 is contributed by the
latency between the input and the output of function g. The overall throughput then depends on
the distribution of elements in matrix b, which affects the condition.

We then have 256 options to choose C no greater than 256, limited by the dependency in the
outer loop. Here, we discuss three approaches for choosing C based on the II of the loop. First,
choosing a C based on an optimistic II reduces the area overhead of adding the scheduler for C-
slow pipelining. However, a small C may limit the parallelism among inner loop instances when
there are more empty slots for certain input data. For this example, an extreme case is where
the minimum II is 1, which disables C-slow pipelining (C = 1 is equivalent to a single thread).
Second, choosing aC based on a conservative II enables sufficient pipeline slots for early execution
following inner loop instances. However, a large C may add unnecessary area overhead when
there is only a small number or none of the empty pipeline slots, as illustrated in Figure 11(b).
Finally, choosing a C based on an average II may balance the tradeoff between area overhead and
performance improvement, achieving a more efficient hardware design. Our toolflow reuses the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:23

results of the throughput analysis during the Dynamatic synthesis flow. The buffering process in
Dynamatic already uses static analysis to estimate the II of each control path.

Figure 12(b) shows the results of the area and performance of the example in Figure 12(a) us-
ing different pipeline approaches. First, we evaluate three baselines: vanilla Dynamatic [33] for
dynamic scheduling, Vivado HLS [51] for static scheduling, naive C-slow pipelining with only de-
pendency constraints [17]. Vanilla Dynamatic allows pipelining loop with dynamic dependency,
achieving better performance than static scheduling. However, the use of load-store queues that
dynamically schedules memory operations causes significant area overhead. However, Vivado HLS
that uses static scheduling cannot resolve data-dependent dependencies at compile time and keeps
the loop sequential. The resultant hardware design below vanilla Dynamatic has poor performance
but high area efficiency because of resource sharing at compile time. Finally, the naive C-slow
pipelining only analyses the dependency distance in the outer loop for choosing C . It generates
hardware sitting on the top left that has better performance than both, because it allows early
execution of later inner loop instances. However, the value of C is over-approximated to a large
value. This results in unnecessary area overhead, since only a small portion of the inserted C-slow
buffer in the control path is used.

We also evaluate the three approaches mentioned above for choosing an optimised C . First,
the minimum II indicates that there is no empty slot in the inner loop schedule, preventing the
transformation for C-slow pipelining. This leads to the same design as vanilla Dynamatic. The
case where these two points overlap is only for this particular benchmark, where the minimum II
of 1. Otherwise, the result with the minimum II greater than 1 may not overlap with the result by
vanilla Dynamatic. Second, the maximum II indicates the best case that maximises parallelism for
c-slow pipelining. However, this could still cause unnecessary area overhead when the iterations
that have the maximum II are rare, such as in the case where only one iteration has the maximum
II and the rest have the minimum II. Finally, the average II estimates the overall throughput of
the inner loop. Such analysis reduces the C-slow buffer size while preserving sufficient slots for
parallelism and maintaining the high performance of the naive C-slow approach. The constraint
for an optimised C is then:

C ≤ min(Q, I Iav), (29)

where Q is the maximum C that passes the Boogie verification (also known as minimum depen-
dency distance), and I Iav is the average II of the inner loop. Detailed algorithm implementation is
shown in Algorithm 1.

Here, we take the motivating example as a case study and then discuss the overall results for all
the benchmarks. Figure 13 shows the total clock cycles of the hardware for the motivating example
with different C . Only C ≤ 6 for this example does not break memory dependency, where CD = 6.
WhenC increases initially, more outer-loop iterations are parallelized, significantly improving the
throughput. The average II of the inner loop is 5. WhenC is greater than 5, the throughput remains
the same, since almost all the empty pipeline slots have been filled. The overhead caused byC = 6
is a larger size of FIFOs used for storing the data.

5.3 Hardware Transformation

Once the value ofC for a loop is determined, our toolflow inserts a component named loop scheduler

between the entry and exit of each loop. Each C is used as a parameter of the corresponding loop
scheduler. The loop scheduler dynamically schedules the control flow and ensures that at most C
iterations can execute concurrently. Any outermost loop or unverified loop has its loop scheduler
holding C = 1 and executes control flow sequentially.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:24 J. Cheng et al.

Fig. 13. Speedup by varyingC for the example in Figure 9.C > 6 breaks the memory dependency in the outer
loop. Increasing C initially improves the throughput. However, once all the empty slots are filled, further
increasing C has less effect on the throughput. Our tool automatically determines an optimal C = 5, shown
in blue. f(i) = i, g(x, y) = x + y and h(i) = i * i + 7.

ALGORITHM 1: The algorithm for finding C using average I I .

Require: M � the input program module

CL ← {} � a dictionary to return, which indicates an C for each nested loop

L ← дet_nested_loops (M) � a set of nested loops from the input program

for each nested loop l in L do

L′ ← дet_sub_loops (l) � a set of sub-loops for loop l

II ← дet_aver aдe_I I (L′) � the set of average IIs of the sub-loops in loop l

C ← min II � the starting C for searching by picking the minimum value of IIs

B ← дet_Booдie_proдr am (M, l) � the Boogie program for checking C for loop l

D ← Booдie_ver if y (B, C) � the verification state returned by Boogie verifier

while C > 1 & D � success do

C ← C − 1 � a decremented C for next-round verification

D ← Booдie_ver if y (B, C)
end while

CL (l) = C � the optimised C for loop l

end for

return CL

Figure 14 shows the proposed loop scheduler integrated into a dynamically scheduled control
flow graph. For example, the control flow graph of the code in Figure 9 from vanilla Dynamatic is
shown in Figure 14(a). Each dotted block represents a BB. The top BB represents the entry control
of the outer loop, which starts the outer iteration and decides whether to execute the inner loop.
The middle BB represents the control of the inner loop. The bottom BB represents the exit control
of the outer loop, which decides whether to exit the outer loop.

In each BB, a merge is used to accept a control token that triggers the start of the current BB
execution. Then, a fork is used to produce other tokens to trigger all the data operations inside
this BB, hidden in the ellipsis. The control token flows through the fork to a branch. The branch
decides the next BB to trigger based on the BB condition. The control flow in Figure 14(a) follows
the following steps:

(1) A control token enters the top BB to start.
(2) The token goes through the top BB and enters the middle BB to start the inner loop.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:25

Fig. 14. Our toolflow considers each instance of the innermost loop as a thread and achieves the schedule
in Figure 9(c). The dashed arrows represent the token transition in the control flow. The scheduler tags the
control tokens in the innermost loop to reorder them at the output after out-of-order execution.

(3) The token circulates in the middle BB through the back edge until the exit condition is met.
(4) The token exits the middle BB and enters the bottom BB. It either goes back to the top BB

to repeat 2) or exits, depending on the exit condition.

The control flow is sequential, as there is always at most one control token in the control path.
Figure 14(b) shows the control flow graph with the proposed loop scheduler integrated into the
inner loop. The loop scheduler for the outer loop has C of 1 and is neglected for simplicity. The
control flow is then:

(1) A control token t1 enters the top BB to start.
(2) t1 goes through the top BB and enters the middle BB with a tag added by the loop scheduler.

The loop scheduler checks if there are fewer than C(=3 in this example) tokens in the inner
loop. If yes, then it immediately produces another token t2 and sends it to the bottom BB to
execute the control flow early (indicated as the red dashed arrow).

(3) t1 circulates in the middle BB. t2 goes to the top BB and enters the middle BB with another
tag. The loop scheduler produces another token t3 and sends it to the bottom BB.

(4) The above repeats and t4 is produced. t1, t2, and t3 are all circulating in the middle BB.
(5) t4 reaches the branch in the top BB but is blocked by the loop scheduler until one token exits

the middle BB and is consumed by the loop scheduler.
(6) The above repeats until the last token exits the bottom BB. An AND gate is inserted at the

exit of the bottom BB to synchronise the control flow. It requires a token from the exit of the
nested loop, and there is no token remaining in the inner loop.

Since the execution order of loop iterations has changed, all the data flows must be strictly
scheduled by the control flow. Dynamatic uses merges to accept input data at the input of a BB
when there is always at most one valid input. There may be multiple valid inputs at the start of BB
after the transformation. To preserve correctness, we replace all the merges in the inner loop with
muxes, such that the data is always synchronised with the control token and can recover in-order
using the tag in the control token. An advantage of this approach is that only the control tokens

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:26 J. Cheng et al.

Fig. 15. Our work integrated into Dynamatic. Our contributions are highlighted in bold blue text.

need to be tagged to preserve the original order, where the data flow is always synchronised by
the control flow.

The design of the loop scheduler is shown in Figure 14(c). It guards the entry and exit of the
inner loop. The ready signal at the bottom right is forced to 1, as the scheduler already controls
the input throughput using C , and there cannot be back pressure at the output. In the scheduler,
a counter is used to count the number of executing control tokens in the inner loop. Based on the
value of the counter and the specified C , it decides whether to accept the token from the outer
loop and replicates a token to the output to the outer loop for early execution of the next outer-
loop iteration. The input token from the exit of the inner loop decrements the counter value by
one, allowing the next token from the outer loop to enter the inner loop. An empty bit is used to
indicate whether there is no control token in the inner loop.

6 TOOLFLOW

Our toolflow is implemented as a set of LLVM passes and integrated into the open-sourced HLS
tool Dynamatic for prototyping. As illustrated in Figure 15, the input C program is first lowered
into LLVM IR. Then, the dependency in the code is analysed by the generated Boogie program,
as explained in Section 4.2.2 and Section 5.2.2. Our Boogie program generator generates Boogie
assertions and calls the Boogie verifier to automatically verify the absence of dependency for the
extracted instances (subgraphs or outer iterations). The front end of Dynamatic translates the
LLVM IR into a dot graph that represents the hardware netlist. Our back-end toolflow inserts addi-
tional components for the corresponding transformation, explained in Section 4.3 and Section 5.3,
resulting in a new hardware design in the form of a dot graph. Finally, the back end of Dynamatic
transforms the new dot graph to RTL code, representing the final hardware design. Our work can
also be integrated into other HLS tools, such as CIRCT HLS [21].

7 EXPERIMENTS

We compare our work with Xilinx Vivado HLS [51] and the original Dynamatic [33]. To make the
comparison as controlled as possible, all the approaches only use scheduling, pipelining, and array
partitioning. We use two benchmark sets to evaluate the designs in terms of total circuit area and
wall-clock time. Cycle counts were obtained using the Vivado XSIM simulator, and area results
were obtained from the post-Place & Synthesis report in Vivado. We used the UltraScale+ family
of FPGA devices for experiments, and the version of Xilinx software is 2019.2.

7.1 Experiment Setup and Benchmarks

The benchmarks are chosen based on whether our approaches are applicable. Finding suitable
benchmarks is a perennial problem for papers that push the limits of HLS, in part because existing

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:27

Fig. 16. Speedup, compared to original Dynamatic, as more subgraphs in the CFG are parallelised.

benchmark sets such as PolyBench [45] and CHStone [27] tend to be tailored to what HLS tools
can already comfortably handle. We use two open-sourced benchmark sets for evaluation. One
is the LegUp benchmark set by Chen and Anderson [12] for evaluating multi-threaded HLS. The
LegUp benchmark set manually specifies the threads using Pthreads [2]. We inlined all the threads
to a sequential program. The other benchmark set is from PolyBench [45] but modified for sparse
computation for evaluating dynamic-scheduling HLS. We only include the benchmarks where our
approach is applicable. The other benchmarks will have the same results as the original Dynamatic.
The second benchmark set aims to evaluate dynamic loop pipelining and contains few loop kernels.
To create more opportunities for our optimisation to be applied, we unrolled the outermost loops
by a factor of 8. This is the largest factor that still led to the designs fitting our target FPGA. We
also partitioned the memory in the blocking scheme to increase memory bandwidth. The bench-
marks that we used are listed as follows: histogram constructs a histogram from an integer array,
matrixadd sums a float array, matrixmult multiplies two float matrices, matrixtrans transposes
a single matrix, substring searches for a pattern in an input string, los checks for obstacles on
a map, fft performs the fast Fourier transformation, trVecAccum transforms a triangular matrix,
covariance computes the covariance matrix, syr2k is a symmetric rank-2k matrix update, and
gesummv is scalar, vector, and matrix multiplication.

7.2 Dynamic Inter-block Scheduling

Figure 16 assesses the extent to which more parallelisation of subgraphs leads to more speedups
compared to the original Dynamatic, using the seven LegUp benchmarks. We see that all the lines
except fft indicate speedup factors above 1. Placing more subgraphs in parallel leads to more
speedup, with histogram and matrixtrans achieving optimal speedups. In the fft benchmark,
two reasons for the lack of speedup are: (1) that other parts of the CFG have to be started sequen-
tially and (2) that the memory is naively partitioned in a block scheme, so the memory bandwidth
is limited, and there is serious contention between BBs for the LSQs.

Detailed results for both benchmark sets are shown in Table 2. For the LegUp benchmark set,
we observe the following:

(1) Static scheduling (Vivado HLS) is the clear winner in terms of area (see rows “LUTs” and
“DSPs”), but in the context of dynamic scheduling, our approach brings only a negligible
area overhead, because we only insert small components into the hardware.

(2) Inter-block scheduling requires substantially fewer cycles than the original Dynamatic,
thanks to the parallelism it exploits between BBs (see column “Cycles”).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:28 J. Cheng et al.

Table 2. Evaluation of Our Work on Two Benchmark Sets

Benchmarks
LegUp benchmarks [12] C-slow benchmarks [17]

histogram matrixadd matrixmult matrixtrans substring los fft trVecAccum covariance syr2k gesummv

Code size

loops 9 8 72 8 16 24 24 16 48 24 16
bbs 91 17 145 17 54 89 65 49 113 49 33
insts 384 112 1,521 81 255 513 457 249 593 385 297
graphs 9 8 72 8 8 8 8 8 24 8 8

LUTs
(1,000s)

vhls 1.67 1.11 6.87 0.103 0.938 2.68 2.65 1.21 3.83 2.04 2.05

dhls 156 9.15 79.4 2.67 14.4 46.5 351 149 56.6 30.5 26.9
inter-block 156 9.17 79.8 2.69 14.6 46.1 351 150 55.5 30.7 26.9
cslow 156 9.15 101 2.67 14.4 46.5 351 151 56.8 30.6 27.6
both 156 9.17 100 2.69 14.6 46.1 351 153 65.7 34.4 30.2

DSPs

vhls 0 2 5 0 0 0 16 10 5 5 144

dhls 0 30 320 0 0 0 192 40 72 152 144
inter-block 0 30 320 0 0 0 192 40 72 152 144
cslow 0 30 320 0 0 0 192 40 72 152 144
both 0 30 320 0 0 0 192 40 72 152 144

Cycles
(1,000s)

vhls 197 262 4,195 65.6 98.3 48.8 86 1,060 668 647 2,130
dhls 317 106 1,090 65.6 217 114 5.39 393 605 602 787
inter-block 39.8 48.9 229 8.2 154 19.9 5.15 161 77.1 84.1 327
cslow 317 106 164 65.6 217 114 5.39 256 263 255 524
both 39.8 48.9 164 8.2 154 19.9 5.15 33.2 33.6 33.9 66.6

Fmax
(MHz)

vhls 464 159 155 562 470 281 155 159 155 155 155
dhls 57.7 110 123 227 126 272 81.8 132 132 126 162
inter-block 58.3 110 104 210 129 282 103 121 102 98.9 163

cslow 57.7 110 83.3 227 126 272 81.8 157 89.7 130 119
both 58.3 110 72.3 210 129 282 103 117 102 128 120

Wall-clock
time (ms)

vhls 0.424 1.65 27 0.117 0.209 0.174 0.555 6.65 4.3 4.17 13.7
dhls 5.49 0.968 8.86 0.288 1.72 0.419 0.0659 2.97 4.57 4.79 4.87
inter-block 0.682 0.446 2.2 0.039 1.2 0.0705 0.0501 1.32 0.759 0.85 2.01
cslow 5.49 0.968 1.97 0.288 1.72 0.419 0.0659 1.64 2.93 1.96 4.39
both 0.682 0.446 2.27 0.039 1.2 0.0705 0.0501 0.284 0.328 0.264 0.553

Relative
area-delay
product

vhls 1 1 1 1 1 1 1 1 1 1 1
dhls 1,210 4.83 3.79 64 126 41.8 15.7 55 15.7 94 4.67
inter-block 151 2.23 0.946 8.71 88.9 6.96 12 24.7 2.56 16.5 1.93
cslow 1,210 4.83 1.07 64 126 41.8 15.7 40.3 9.61 39 5.17
both 151 2.23 1.22 8.71 88.9 6.96 12 5.41 1.31 5.12 0.595

For each benchmark, we highlight the best results in each dimension. vhls = Vivado HLS; dhls = original Dynamatic;

cslow = C-slow pipelining; inter-block = inter-block scheduling; both = inter-block scheduling + C-slow pipelining.

The code size lists the number of loops, BBs, instructions, and extracted subgraphs.

(3) Inter-block scheduling achieves up to 8.05× speedup (see row “Wall clock time” for
histogram). We further observe that the area-delay products we obtain are down to 0.125×
of the original Dynamatic.

(4) Although Vivado HLS has low performance in cycles, its high clock frequency makes it
win for histogram and substring. Also, it uses if-conversion to simplify BBs (unlike our
work), which results in fewer BBs. The BBs in the innermost subgraphs still start sequentially,
leading to large cycle counts.

(5) The performance of fft does not change, because the performance bottleneck is the memory
bandwidth, where the parallelised loops always access the same memory block concurrently.
This could be further improved by optimising the array partitioning scheme, but it is orthog-
onal to this work.

7.3 C-slow Pipelining

For the C-slow pipelining benchmark set, we make the following observations for C-slow pipelin-
ing:

(1) The observations on the area are similar to the results for inter-block scheduling, as the
C-slow scheduler is small.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:29

Table 3. Verification Time in Seconds for Dependence Check in Boogie

Benchmarks histogram matrixadd matrixmult matrixtrans substring los fft triangleVecAccum covariance syr2k gesummv

Inter-Block 1.128 0.002 1.080 1.102 1.122 1.197 1.182 1.080 1.098 1.210 1.103
C-Slow – – – – – – – 1.215 1.098 1.088 1.050

(2) C-slow pipelining requires substantially fewer cycles than the original Dynamatic, thanks
to the parallelism it exploits between outer-loop iterations (see rows “Cycles”).

(3) C-slow pipelining enables a speedup up to 4.5× with only 8% area overhead (see rows “Wall
clock time” for matrixmult). We further observe that the area-delay products we obtain are
down to 0.28× of the original Dynamatic.

7.4 Combining Inter-block Scheduling and C-slow Pipelining

For the C-slow pipelining benchmark set, we also make the following observations for combining
both approaches:

(1) The area-delay product of Dynamatic is significantly worse than Vivado HLS, because the
version of Dynamatic we used does not support resource sharing, leading to significant area
overhead (although it is now supported [34]).

(2) Unrolling alone is not enough to obtain substantial speedups, because the BBs still have to
start sequentially (see column “Cycles→ unroll”).

(3) By applying both techniques simultaneously on the unrolled programs, we achieve a 14.3×
average speedup with a 10% area overhead. That significant speedup can be attributed in
part to the reordering of BBs.

7.5 Verification Times

Table 3 lists the verification time taken by the Boogie verifier to check the absence of dependency.
It shows that for all the benchmarks, the verification time takes no more than two seconds in
a run. The verification time scales exponentially with the number of memory statements in the
input programs and the complexity of the memory access pattern. However, optimisations such
as profiling and affine analysis could simplify the formal verification problem in Boogie for better
scalability.

8 CONCLUSIONS

Existing dynamic-scheduling HLS tools require all BBs to start in strict program order to respect
any dependencies between BBs, regardless of whether dependencies are actually present. This
leads to missed opportunities for performance improvements by having BBs start simultaneously.
In this article, we propose a general dependency framework that analyses the inter-BB depen-
dencies and identifies the existing restrictions of the dynamic scheduling approach for HLS. Our
model helps guide the researchers to push the limit of the state-of-the-art scheduling technique by
lifting these restrictions and exploring more optimisations. This could further improve the perfor-
mance of the generated HLS hardware by identifying the absence of certain dependencies in the
constraints in static analysis and exploiting hardware parallelism.

We also illustrate two examples of using the proposed model for optimising dynamic scheduling.
First, we show how to parallelise two consecutive loops if they are proven independent. Our tool
takes an arbitrary program and automatically generates a Boogie program to verify the absence
of dependency between these two loops. Second, we show how to enable C-slow pipelining for
a nested loop if both the II of the inner loop and the minimum dependency distance of the outer
loop are greater than one. Our tool takes a nested loop and automatically generates a Boogie

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

55:30 J. Cheng et al.

program to verify the dependency constraints and uses static throughput analysis for determining
an optimised C for high-performance and area-efficient C-slow pipelining.

These two proposed optimisation techniques optimise the control flow of the generated hard-
ware from different sides and have shown that they can be composited. One aims to optimise the
schedules between different loop statements, and the other aims to optimise the schedules between
different iterations of the same loop statement. However, both techniques achieve hardware paral-
lelism by statically proving the absence of dependency between two runtime events. Particularly,
both use Microsoft Boogie verifier as the formal verification tool in the back end for verifying the
dependency constraints statically. The performance gain is significant, while the area overhead is
negligible because of more dependency information obtained using the static analysis. Such static
analysis is still conservative compared to the theoretical dynamic scheduling model, because it
over-approximates the dependency check for two runtime events to the dependency check for
two statements. The proposed approaches close the performance gap between the dynamic sched-
uling implementation and the theoretical dynamic scheduling. Our future work will explore the
fundamental limits of the proposed model, both theoretically and practically.

ACKNOWLEDGMENT

For the purpose of open access, the authors have applied a Creative Commons Attribution (CC
BY) license to any Accepted Manuscript version arising.

REFERENCES

[1] Amazon. 2022. Amazon EC2 F1 Instances. Retrieved from https://aws.amazon.com/ec2/instance-types/f1/.

[2] B. Barney. 2021. POSIX Threads Programming. Retrieved from https://computing.llnl.gov/tutorials/pthreads.

[3] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic polyhedral paral-

lelizer and locality optimizer. In 29th ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion (PLDI’08). Association for Computing Machinery, New York, NY, 101–113. DOI:https://doi.org/10.1145/1375581.

1375595

[4] David R. Butenhof. 1997. Programming with POSIX Threads. Addison-Wesley Professional.

[5] Daniel Cabrera, Xavier Martorell, Georgi Gaydadjiev, Eduard Ayguade, and Daniel Jiménez-González. 2009. OpenMP

extensions for FPGA accelerators. In International Symposium on Systems, Architectures, Modeling, and Simulation.

IEEE, 17–24.

[6] A. Canis, S. D. Brown, and J. H. Anderson. 2014. Modulo SDC scheduling with recurrence minimization in high-level

synthesis. In 24th International Conference on Field Programmable Logic and Applications (FPL’14). 1–8. DOI:https:

//doi.org/10.1109/FPL.2014.6927490

[7] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H. Anderson, Stephen Brown,

and Tomasz Czajkowski. 2011. LegUp: High-level synthesis for FPGA-based processor/accelerator systems. In 19th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA’11). ACM, 33–36.

[8] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. 2001. Theory of latency-insensitive design. IEEE Trans.

Comput.-aid. Des. Integ. Circ. Syst. 20, 9 (2001), 1059–1076. DOI:https://doi.org/10.1109/43.945302

[9] V. G. Castellana, A. Tumeo, and F. Ferrandi. 2014. High-level synthesis of memory bound and irregular parallel appli-

cations with Bambu. In IEEE Hot Chips 26 Symposium (HCS’14). IEEE.

[10] Catapult High-Level Synthesis. 2021. Retrieved from https://www.mentor.com/hls-lp/catapult-high-level-synthesis.

[11] Celoxica. 2005. Handel-C. Retrieved from http://www.celoxica.com.

[12] Yu Ting Chen and Jason H. Anderson. 2017. Automated generation of banked memory architectures in the high-level

synthesis of multi-threaded software. In 27th International Conference on Field Programmable Logic and Applications

(FPL’17). 1–8. DOI:https://doi.org/10.23919/FPL.2017.8056841

[13] J. Cheng, S. T. Fleming, Y. T. Chen, J. Anderson, J. Wickerson, and G. A. Constantinides. 2022. Efficient memory

arbitration in high-level synthesis from multi-threaded code. IEEE Trans. Comput. 71, 4 (2022), 933–946. DOI:https:

//doi.org/10.1109/TC.2021.3066466

[14] Jianyi Cheng, Lana Josipović, George A. Constantinides, Paolo Ienne, and John Wickerson. 2020. Combining dynamic

& static scheduling in high-level synthesis. In ACM/SIGDA International Symposium on Field-Programmable Gate Ar-

rays (FPGA’20). Association for Computing Machinery, New York, NY, 288–298. DOI:https://doi.org/10.1145/3373087.

3375297

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

https://aws.amazon.com/ec2/instance-types/f1/
https://computing.llnl.gov/tutorials/pthreads
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1109/FPL.2014.6927490
https://doi.org/10.1109/43.945302
https://www.mentor.com/hls-lp/catapult-high-level-synthesis
http://www.celoxica.com
https://doi.org/10.23919/FPL.2017.8056841
https://doi.org/10.1109/TC.2021.3066466
https://doi.org/10.1145/3373087.3375297

Parallelising Control Flow in Dynamic-Scheduling High-Level Synthesis 55:31

[15] Jianyi Cheng, Lana Josipović, George A. Constantinides, and John Wickerson. 2022. Dynamic inter-block scheduling

for HLS. In 32nd International Conference on Field-Programmable Logic and Applications (FPL’22).

[16] Jianyi Cheng, John Wickerson, and George A. Constantinides. 2021. Exploiting the correlation between dependence

distance and latency in loop pipelining for HLS. In 31st International Conference on Field-Programmable Logic and

Applications (FPL’21). 341–346. DOI:https://doi.org/10.1109/FPL53798.2021.00066

[17] Jianyi Cheng, John Wickerson, and George A. Constantinides. 2022. Dynamic C-slow pipelining for HLS. In IEEE 30th

Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM’22). 1–10. DOI:https://

doi.org/10.1109/FCCM53951.2022.9786096

[18] Jongsok Choi, Stephen Brown, and Jason Anderson. 2013. From software threads to parallel hardware in high-level

synthesis for FPGAs. In International Conference on Field-Programmable Technology (FPT’13). 270–277. DOI:https://doi.

org/10.1109/FPT.2013.6718365

[19] N. Y. S. Chong. 2014. Scalable Verification Techniques for Data-parallel Programs. Doctoral Thesis. Imperial College

London, London, UK.

[20] Jason Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling algorithm based on SDC formulation. In

43rd Annual Design Automation Conference (DAC’06). Association for Computing Machinery, New York, NY, 433–438.

DOI:https://doi.org/10.1145/1146909.1147025

[21] CIRCT contributors. 2023. CIRCT-based HLS Compilation Flows, Debugging, and Cosimulation Tools. Retrieved from

https://github.com/circt-hls/circt-hls.

[22] Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andres Takach. 2009. An introduction to high-level synthe-

sis. IEEE De. Test Comput. 26, 4 (2009), 8–17. DOI:https://doi.org/10.1109/MDT.2009.69

[23] L. Dagum and R. Menon. 1998. OpenMP: An industry standard API for shared-memory programming. IEEE Computat.

Sci. Eng. 5, 1 (1998), 46–55. DOI:https://doi.org/10.1109/99.660313

[24] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction

and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin, 337–340.

[25] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Größlinger, and Louis-Noël Pouchet.

2011. Polly—Polyhedral optimization in LLVM. In 1st International Workshop on Polyhedral Compilation Techniques

(IMPACT’11).

[26] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. 2003. SPARK: A high-level synthesis framework for applying parallelizing

compiler transformations. In 16th International Conference on VLSI Design. 461–466. DOI:https://doi.org/10.1109/ICVD.

2003.1183177

[27] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii. 2008. CHStone: A benchmark

program suite for practical C-based high-level synthesis. In IEEE International Symposium on Circuits and Systems

(ISCAS’08). 1192–1195. DOI:https://doi.org/10.1109/ISCAS.2008.4541637

[28] Ian Page and Wayne Luk. 1991. Compiling occam into field-programmable gate arrays. In FPGAs, Oxford Workshop

on Field Programmable Logic and Applications, Vol. 15. Abingdon EE&CS Books, Abingdon, 271–283.

[29] Intel Compiler. 2022. Retrieved from https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-

compiler.html#gs.sa60u7.

[30] Intel FPGA SDK for OpenCL Software Technology. 2021. Retrieved from https://www.intel.co.uk/content/www/uk/

en/software/programmable/sdk-for-opencl/overview.html.

[31] Intel HLS Compiler. 2022. Retrieved from https://www.intel.co.uk/content/www/uk/en/software/programmable/

quartus-prime/hls-compiler.html.

[32] Lana Josipović, Philip Brisk, and Paolo Ienne. 2017. An out-of-order load-store queue for spatial computing. ACM

Trans. Embed. Comput. Syst. 16, 5s (Sept. 2017).

[33] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically scheduled high-level synthesis. In ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA’18). ACM, 127–136.

[34] Lana Josipović, Axel Marmet, Andrea Guerrieri, and Paolo Ienne. 2022. Resource sharing in dataflow circuits. In

IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM’22). 1–9. https:

//doi.org/10.1109/FCCM53951.2022.9786084

[35] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2022. From C/C++ code to high-performance dataflow circuits. IEEE

Trans. Comput.-aid Des. Integ. Circ. Syst. 41, 7 (2022), 2142–2155. DOI:https://doi.org/10.1109/TCAD.2021.3105574

[36] K. Rustan M. Leino. 2008. This is Boogie 2. Retrieved from https://www.microsoft.com/en-us/research/publication/

this-is-boogie-2-2/.

[37] Charles E. Leiserson, Flavio M. Rose, and James B. Saxe. 1983. Optimizing synchronous circuitry by retiming (prelim-

inary version). In Third Caltech Conference on Very Large Scale Integration. Springer, 87–116.

[38] Y. Y. Leow, C. Y. Ng, and W. F. Wong. 2006. Generating hardware from OpenMP programs. In IEEE International

Conference on Field Programmable Technology. 73–80. DOI:https://doi.org/10.1109/FPT.2006.270297

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

https://doi.org/10.1109/FPL53798.2021.00066
https://doi.org/10.1109/FCCM53951.2022.9786096
https://doi.org/10.1109/FPT.2013.6718365
https://doi.org/10.1145/1146909.1147025
https://github.com/circt-hls/circt-hls
https://doi.org/10.1109/MDT.2009.69
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/ICVD.2003.1183177
https://doi.org/10.1109/ISCAS.2008.4541637
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.sa60u7
https://www.intel.co.uk/content/www/uk/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.co.uk/content/www/uk/en/software/programmable/quartus-prime/hls-compiler.html
https://doi.org/10.1109/FCCM53951.2022.9786084
https://doi.org/10.1109/TCAD.2021.3105574
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1109/FPT.2006.270297

55:32 J. Cheng et al.

[39] Rui Li, Lincoln Berkley, Yihang Yang, and Rajit Manohar. 2021. Fluid: An asynchronous high-level synthesis tool for

complex program structures. In 27th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’21).

1–8. DOI:https://doi.org/10.1109/ASYNC48570.2021.00009

[40] J. Liu, J. Wickerson, and G. A. Constantinides. 2016. Loop splitting for efficient pipelining in high-level synthesis.

In IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM’16). 72–79.

DOI:urlhttps://doi.org/10.1109/FCCM.2016.27

[41] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung. 2007. Automatic on-chip memory minimization for

data reuse. In 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’07). IEEE,

251–260.

[42] Yury Markovskiy and Yatish Patel. 2002. Simple symmetric multithreading in xilinx FPGAs. (2002).

[43] Microsoft. 2022. Project Catapult. Retrieved from https://www.microsoft.com/en-us/research/project/project-

catapult/.

[44] Sayuri Ota and Nagisa Ishiura. 2019. Synthesis of distributed control circuits for dynamic scheduling across multiple

dataflow graphs. In 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-

CSCC’19). 1–4. DOI:https://doi.org/10.1109/ITC-CSCC.2019.8793453

[45] Louis-Noël Pouchet et al. 2012. PolyBench: The polyhedral benchmark suite. Retrieved from http://www.cs.ucla.edu/

pouchet/software/polybench.

[46] Stratus High-Level Synthesis. 2021. Retrieved from https://www.cadence.com/en_US/home/tools/digital-design-and-

signoff/synthesis/stratus-high-level-synthesis.html.

[47] Qiuyue Sun, Amir Taherin, Yawo Siatitse, and Yuhao Zhu. 2020. Energy-efficient 360-Degree video rendering on

FPGA via algorithm-architecture co-design. In ACM/SIGDA International Symposium on Field-Programmable Gate Ar-

rays (FPGA’20). Association for Computing Machinery, New York, NY, 97–103. DOI:https://doi.org/10.1145/3373087.

3375317

[48] Girish Venkataramani, Mihai Budiu, Tiberiu Chelcea, and Seth Copen Goldstein. 2004. C to asynchronous dataflow

circuits: An end-to-end toolflow. In IEEE 13th International Workshop on Logic Synthesis (IWLS’04).

[49] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A polyhedral compiler for high-performance systolic arrays

on FPGA. In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’21). Association for

Computing Machinery, New York, NY, 93–104. DOI:https://doi.org/10.1145/3431920.3439292

[50] Nicholas Weaver, Yury Markovskiy, Yatish Patel, and John Wawrzynek. 2003. Post-placement C-slow retiming for

the Xilinx Virtex FPGA. In ACM/SIGDA 11th International Symposium on Field Programmable Gate Arrays (FPGA’03).

Association for Computing Machinery, New York, NY, 185–194. DOI:https://doi.org/10.1145/611817.611845

[51] Xilinx Vivado HLS. 2022. Retrieved from https://www.xilinx.com/support/documentation-navigation/design-hubs/

dh0012-vivado-high-level-synthesis-hub.html.

[52] Tanner Young-Schultz, Lothar Lilge, Stephen Brown, and Vaughn Betz. 2020. Using OpenCL to enable software-like

development of an FPGA-accelerated biophotonic cancer treatment simulator. In ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays (FPGA’20). Association for Computing Machinery, New York, NY, 86–96.

DOI:https://doi.org/10.1145/3373087.3375300

[53] Z. Zhang and B. Liu. 2013. SDC-based modulo scheduling for pipeline synthesis. In IEEE/ACM International Conference

on Computer-Aided Design (ICCAD’13). 211–218. DOI:https://doi.org/10.1109/ICCAD.2013.6691121

[54] Yuan Zhou, Khalid Musa Al-Hawaj, and Zhiru Zhang. 2017. A new approach to automatic memory banking using

trace-based address mining. In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’17).

Association for Computing Machinery, New York, NY, 179–188. DOI:https://doi.org/10.1145/3020078.3021734

[55] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason Cong. 2013. Improving high level synthesis

optimization opportunity through polyhedral transformations. In ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays (FPGA’13). Association for Computing Machinery, New York, NY, 9–18. DOI:https://doi.org/

10.1145/2435264.2435271

Received 3 November 2022; revised 1 April 2023; accepted 10 May 2023

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 55. Pub. date: September 2023.

https://doi.org/10.1109/ASYNC48570.2021.00009
https://www.microsoft.com/en-us/research/project/project-catapult/
https://doi.org/10.1109/ITC-CSCC.2019.8793453
http://www.cs.ucla.edu/pouchet/software/polybench
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://doi.org/10.1145/3373087.3375317
https://doi.org/10.1145/3431920.3439292
https://doi.org/10.1145/611817.611845
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://doi.org/10.1145/3373087.3375300
https://doi.org/10.1109/ICCAD.2013.6691121
https://doi.org/10.1145/3020078.3021734
https://doi.org/10.1145/2435264.2435271

