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ABSTRACT
Commercial high-level synthesis tools typically produce statically
scheduled circuits. Yet, effective C-to-circuit conversion of arbi-
trary software applications calls for dataflow circuits, as they can
handle efficiently variable latencies (e.g., caches) and unpredictable
memory dependencies. Dataflow circuits exhibit an unconventional
property: registers (usually referred to as “buffers”) can be placed
anywhere in the circuit without changing its semantics, in strong
contrast to what happens in traditional datapaths. Yet, although
functionally irrelevant, this placement has a significant impact on
the circuit’s timing and throughput. In this work, we show how
to strategically place buffers into a dataflow circuit to optimize its
performance. Our approach extracts a set of choice-free critical
loops from arbitrary dataflow circuits and relies on the theory of
marked graphs to optimize the buffer placement and sizing. We
demonstrate the performance benefits of our approach on a set of
dataflow circuits obtained from imperative code.
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1 INTRODUCTION
High-level synthesis (HLS) tools which rely on static scheduling
face a fundamental issue when handling irregular applications: they
force worst-case assumptions on memory and control dependencies
which prevent them from creating high-throughput pipelines. In
contrast, dataflow circuits implement dynamic scheduling and can
resolve such dependencies as the circuit runs, thus achieving better
performance. Some HLS approaches build dataflow circuits out of
imperative code [2, 15], but they still rely on crude heuristics and
manual tuning to optimize performance.

If dataflow circuits are to play a significant role in the develop-
ment of HLS, they need to benefit from every optimization oppor-
tunity that standard HLS techniques regularly exploit. In this work,
we simultaneously tackle two aspects which are crucial for achiev-
ing high-performance circuits: constraining the critical path and
maximizing throughput. We discuss the difficulties of performing
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such optimizations in the context of dataflow designs and present
a performance optimization model based on marked graph theory
which achieves maximum design parallelism at the desired clock
frequency and with minimal resource cost.

2 BACKGROUND AND MOTIVATION
In this section, we discuss structural aspects of dataflow circuits
generated from imperative code and emphasize the importance
of buffer placement for obtaining high-performance designs. We
describe marked graphs, a particular class of Petri nets, which are
the basis for the performance model we introduce in Section 3.

2.1 Dataflow Circuits
Latency-insensitive protocols [6, 8] are a natural method to cre-
ate synchronous dataflow circuits, capable of taking decisions at
runtime. Such circuits are built out of units that implement latency-
insensitivity by communicating with their predecessors and suc-
cessors through channels composed of data lines and paired with
handshake control signals: a token of data is propagated from unit
to unit through a channel as soon as memory and control dependen-
cies allow it—otherwise, it is stalled by the handshake mechanism.

In this work, we rely on existing methodologies for generat-
ing dataflow circuits out of high-level code [9, 13, 15, 27]: our cir-
cuits consist of an interconnect of subcircuits obtained from basic
blocks (BBs), i.e., straight pieces of code separated by control flow
decisions. Each BB subcircuit is a directed acyclic graph of dataflow
units. The following units implement control flow statements [7, 12]:
(1) A merge propagates a token received from any of the predeces-
sor BBs into its BB body. (2) A branch propagates a token from its
input to any of the successor BBs based on a condition.

Figure 1a shows a dataflow circuit which calculates the sum of
the cubes of N elements of an array. The initial values of the iterator
i and the sum s are injected into the single basic block of the circuit
through their respective merges to trigger the computation start.
The iterator is forked to a memory port to access an element of
array a, which is sent to the pipelined multipliers to calculate the
cube. The result is then added up with s. At the same time, the
iterator value is incremented and compared to the loop bound. If
the iterator has not reached the bound, the updated values of i and
s are sent back to the merges to trigger the start of the next loop
iteration. Otherwise, the program terminates as the branch outputs
the final value of s and the iterator is discarded into a sink.

Dataflow circuits require buffers which serve as registers in stan-
dard synchronous designs. Buffers store either tokens (i.e., valid
data) or bubbles (i.e., invalid data). As in any circuit, all combina-
tional cycles of a dataflow circuit must contain at least one buffer, as
given in Figure 1a. Yet, in contrast to standard registers, buffers can
be placed on any channel of the dataflow circuit—this insertion will
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int i = 0, s = 0;
for (i = 0; i < N; i++)

s+=a[i]*a[i]*a[i];

(d)

Figure 1: A functionally correct, but non-optimized dataflow circuit (Figure 1a) implementing the code from Figure 1d contains buffers (i.e.,
registers) placed to break all combinational loops. The optimized circuit (Figure 1b) has buffers placed strategically to control the critical
paths. Moreover, the FIFOs in the paths with higher latency mitigate backpressure and allow achieving the ideal loop initiation interval. A
choice-free dataflow circuit (Figure 1c) and its representation as a marked graph. Circuits obtained out of high-level code (such as the ones in
Figure 1a and 1b) contain choices (i.e., control flow decisions through merges and branches) and cannot be represented as marked graphs.

not compromise the functionality of the circuit due to its latency-
insensitivity [3, 15], but may impact its timing and throughput.

2.2 Buffer Placement is Crucial for Achieving
High-Performance Dataflow Circuits

The circuit in Figure 1a is completely functional, as every combi-
national cycle contains a buffer to break the combinational loop.
However, this circuit fails to address two important performance
aspects: (1) Critical path: The buffers are placed without any con-
sideration for the combinational delays of the nodes (all non-zero
delays are indicated in the figure) and therefore do not control the
critical path in any way. The critical path of 5 ns is the sum of
the output delay of the pipelined multiplier with the delay of the
adder. (2) Throughput: A major performance limitation is caused by
backpressure: some paths through the circuit take a longer time to
process data and prevent the faster paths from consuming tokens
at a higher rate. In Figure 1a, the token carrying the array value a
is forked into two pipelined multipliers, but the lower multiplier
cannot accept the token until the upper multiplier is done comput-
ing (i.e., after 5 clock cycles). Similarly, the condition token is sent
to both branch nodes, but the right branch can accept the condition
token only after the two chained 5-stage multipliers produce a re-
sult. These stalls cause backpressure on their respective forks and
prevent the short iterator path on the left from executing quickly,
therefore effectively lowering the initiation interval of the loop.

Figure 1b shows a possible circuit configuration with optimal
throughput and the critical path constrained to 4 ns. The additional
buffer between the multiplier and the adder lowers the critical path.
Inserting FIFOs into the paths with longer latency corresponds to
slack matching [19] and increases effective parallelism, as accumu-
lating data in the FIFOs allows to trigger the faster paths at a higher
rate [15] and achieves the ideal loop initiation interval of 1.

2.3 Marked Graphs
Marked graphs are a class of Petri nets [20] which represent concur-
rent behavior, but never have any choices, i.e., conditional execution.
Figure 1c shows an example of a choice-free dataflow circuit and
its representation in the form of a marked graph. The buffer on
the back edge of the circuit contains a token which infinitely loops
through the combinational units: a token is forked from unit n1 into
both n2 and n4 concurrently, and the tokens from the two parallel
paths are joined into a single token in n5—the transitions n3 to n5
and n4 to n5 always occur simultaneously. This concurrency prop-
erty of marked graphs is the foundation of many linear algebraic
techniques for their structural and performance analysis [4, 24, 25];
some address explicitly optimal buffer placement [3].

It is immediately clear that circuits such as the one in Figure 1a
do not exhibit the choice-free behavior of marked graphs, as each
control flow edge between BBs represents a choice: the merges in
Figure 1a can accept the initial values of i and s from the starting
point of the program, or the updated values sent back from the loop
body; each branch can dispatch a value either through the back
edge into the loop, or to the end point of the program.

2.4 Key Intuition
The performance of dataflow circuits such as the ones described in
Section 2.1 critically depends on buffer placement and sizing, yet
little is known about such optimizations. On the other hand, the
timing properties of marked graphs have been extensively stud-
ied [3]. However, these techniques are not applicable in the context
of dataflow circuits obtained from high-level code, which inevitably
feature control flow. In this work, we combine the knowledge
from marked graph theory with dataflow circuits which implement
choices in order to optimize their performance: our work is based
on the observation that choice-free subgraphs with the properties
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Figure 2: Extracting CFG cycles. The leftmost graph is a control
flow graph of a nested loop with two cycles. We optimize choice-
free dataflow circuits (CFDFCs) which correspond to these cycles.

of marked graphs can be extracted out of generic dataflow graphs.
We describe an approach to perform this extraction and adapt an
existing performance optimization model for marked graphs [3]
to target dataflow circuits produced out of high-level code. We
extend this model to support pipelined computational units which
HLS techniques regularly employ. Finally, we discuss the optimiza-
tion of complex dataflow circuits as well as methods for ensuring
scalability of our approach. We evaluate our technique on a set of
benchmarks obtained out of C code.

3 OPTIMIZING PERFORMANCE
In this section, we describe our strategy for extracting probabilisti-
cally most significant choice-free subgraphs of a dataflow circuit.
We introduce our performance optimization model for obtaining
the optimal buffer placement and sizes such that (1) the required
cycle period is satisfied and (2) the throughput of the choice-free
circuits is maximized. We begin with the single most important
subgraph and then extend the approach to all subgraphs. Finally,
we discuss scalability and present some techniques to limit runtime.

3.1 Extracting Choice-Free Dataflow Circuits
In this section, we describe our methodology for extracting the most
significant choice-free dataflow circuit (CFDFC) from a dataflow
circuit. We define a CFDFC as a dataflow circuit obtained from a
cycle of the control-flow graph (CFG). A CFDFC can, therefore, be
represented as a marked graph which is (1) choice-free (i.e., the
CFDFC has no control flow decisions), and (2) strongly connected
(i.e., the CFDFC implements a loop of the program). Figure 2 shows
a control flow graph of a nested loop: it contains two cycles which,
internally, correspond to two CFDFCs.

The performance optimization which we will introduce in Sec-
tion 3.3 optimizes the most frequently executed CFDFC.We identify
this CFDFC by finding the most frequently executed CFG cycle us-
ing an integer linear programming (ILP) model.

The ILP we employ has the following constants and variables:
• Ne (constant). Execution frequency of control flow edge e,
i.e., the total number of times e executes.

• Se (variable, binary). Indicates whether the control flow edge
e belongs to the selected CFG cycle.

• SBB (variable, binary). Indicates whether a basic block be-
longs to the selected CFG cycle.
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Figure 3: Obtaining a choice-free dataflow circuit (CFDFC) from a
dataflow circuit. A CFDFC contains all dataflow units and channels
which belong to any of the BBs or edges of the extracted CFG cycle
(in this example, BB2 and edge e3 from Figure 2). Every merge and
branch in aCFDFChave a single input and output edge, respectively.

• N (variable). Total number of times the CFG cycle executes.
The following constraint states that the number of times the CFG

cycle executes (N ) corresponds to the minimum of the execution
frequencies of the control-flow edges that belong to it:

N ≤ Se · Ne + (1 − Se ) · Nmax,∀e ∈ CFG . (1)
Here, Nmax represents the upper bound on the number of execu-
tions (i.e., the execution count of the most frequently executed edge
of the CFG). It ensures that N is not constrained by the execution
frequencies of edges which do not belong to the loop.

If a BB is a part of the selected cyle, exactly one of its input and
one of its output edges belongs to the cycle as well:

SBB =
∑

e ∈In(BB)

Se =
∑

e ∈Out(BB)

Se ,∀e ∈ CFG . (2)

Here, In(BB) and Out(BB) denote the sets of input and output edges
of BB, respectively. We assume that BBs at the beginning and end
of the program have respectively no input and no output edge.

To ensure that only a single cycle is selected, only a single back
edge of the CFG may belong to it:∑

e
Se = 1,∀e ∈ Back(CFG). (3)

Here, Back(CFG) denotes the set of all back edges of the CFG. Back
edges are typically defined as edges that point from a BB to another
BB which dominates it (i.e., from a BB inside a loop to the loop
header); they can be detected using classical dataflow analysis [1].

We formulate the cost function to obtain the most frequently
executed CFG cycle as follows:

max :
∑
e

N · Se . (4)

Once this cycle is identified, it is straightforward to find the corre-
sponding CFDFC with its dataflow units and channels. The follow-
ing properties hold for every unit of the CFDFC: (1) for every merge,
only one input channel belongs to the CFDFC (corresponding to
the chosen input control flow edge of its BB), (2) for every branch,
only one output channel belongs to the CFDFC (corresponding to
the chosen output control flow edge of its BB), and (3) for all other
units, all input and output channels belong to the CFDFC.

Figure 3 details the extraction of the most significant CFDFC
of the program in Figure 2. The ILP will identify the self-loop of
BB2 as the cycle with the highest execution frequency (i.e., the ILP
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Figure 4: Performance optimization of a choice-free dataflow cir-
cuit. Grey buffers are used for breaking combinational paths. The
white buffer is transparent and used for throughput optimization.

result will be SBB2 = 1, Se3 = 1, and S = 0 for all other BBs and
edges). Therefore, for each merge in BB2, we keep only the input
channel which originates from BB2 and belongs to edge e3; for each
branch, we keep only the output channel leading back to BB2. All
internal channels and units in BB2 belong the the CFDFC as well.

The approach that we have presented in this section will se-
lect one of the innermost loops of the circuit. We will extend our
optimization model on multiple CFDFCs in Section 3.5.

3.2 Optimizing Choice-Free Circuits
The mathematical model presented in this paper is based on the
theory for performance analysis of concurrent systems inherited
from timed Petri nets [3, 4, 24, 25]. We apply it to CFDFCs of the
dataflow system, which can be represented as marked graphs (with
functional units as nodes and channels as edges) to determine the
optimal buffer placement and sizes.

A buffer can hold a token or a bubble—each time a token moves
forward, a bubble moves in the opposite direction, similarly to
electrons and holes in semiconductors [11]. Every cycle of our
circuit will always contain at most one token [15], whereas bub-
bles can be freely allocated by adding buffers without affecting
functionality [3]. The buffers are located on the channels and char-
acterized with two properties: (1) transparency, which indicates
whether a buffer adds sequential delay onto a path (a nontranspar-
ent buffer is used to break the combinational delay and implies a
1-cycle latency, whereas a transparent buffer is implemented as a
pass-through element and does not increase cycle count), and (2) ca-
pacity (i.e., number of slots), which is used to regulate throughput.
A two-slot nontransparent buffer is what we have indicated as Buff
in Figure 1a—it is sometimes referred to as elastic buffer [15]. A
common FIFO of size N with a combinational path between input
and output is here an N-slot transparent buffer.

The buffer configuration of a CFDFC determines its through-
put Θ: every cycle of the circuit has a cycle ratio defined as the
inverse of the number of nontransparent buffers and the throughput
is limited by the cycle with minimum cycle ratio [25]. As every cy-
cle contains at least a single nontransparent buffer, the throughput
equals at most one (i.e., Θ ≤ 1).

Fig. 4 demonstrates the exploration space for performance op-
timization of a choice-free dataflow circuit. In this example, there
are two cycles that constrain the throughput. Every node (i.e., a
functional unit of the dataflow circuit) is labeled with its combina-
tional delay. Fig. 4(a) shows a solution with maximum throughput
(Θ = 1) by only putting 2-slot nontransparent buffers on the cycles.

The cycle period P is then 25 and a cycle iteration takes 25 time
units (Titer = P/Θ). Adding nontransparent buffers and moving
the existing buffers reduces the critical path while maintaining the
maximum throughput (Fig. 4(b)). To prevent the topmost loop to
stall due to backpressure, an extra buffer (in white) has been added
to one of the paths. Since it is not required to cut combinational
paths, it can be implemented without adding any sequential delay
(i.e., as a transparent buffer which acts as a FIFO). Constraining the
system to work with P ≤ 8 requires the addition of nontransparent
buffers on the cycles, thus degrading the throughput. Fig. 4(c) shows
a configuration with two buffers per cycle (Θ = 1/2) and optimal
period (P = 6) for this throughput, with Titer = 12. Surprisingly,
under the constraint P ≤ 8, there is a more efficient configuration
with lower throughput. The solution is shown in Fig. 4(d) with
Θ = 1/3 and P = 3, resulting in 9 time units per iteration.

Solution (a) is the optimum in terms of area. Solution (b) is the
optimum in terms of performance (Titer) that minimizes area. Finally,
solution (d) is the optimum in performance under the constraint
P ≤ 8. The example shows the richness of solutions that can be
explored in choice-free dataflow systems by changing exclusively
the buffer positions and sizing—we will rely on this property to
optimize the performance of our dataflow circuits.

3.3 MILP Model for Performance Optimization
We formulate our performance optimization model as a mixed-
integer linear programming (MILP) model which determines the
channels where buffers need to be placed as well as the buffer sizes.
The model is based on the work of Bufistov et al. [3] for optimizing
choice-free circuits—we here adapt it to generic dataflow graphs. In
Section 3.4, we extend the model to support sequential functional
units, and in Section 3.5, we generalize it to multiple CFDFCs.

We class constants and variables of the MILP model into three
groups: input constants, internal variables, and output variables.

Input constants of the model.

• P (integer). Target clock period of the circuit.
• Pmax (integer). Upper bound on the clock period of the circuit,
which has to be at least as large as any possible value of P.

• Bc (binary). Indicates whether channel c is a back edge (Bc =
1) of the dataflow graph.

• Du (real). Combinational delay of unit u.

Output variables of the model.

• Rc (binary). Indicates whether a sequential (nontransparent)
buffer is present on channel c .

• Nc (integer). The number of slots of the buffer on channel
c . The presence of a buffer implies at least one slot (i.e.,
Rc ⇒ Nc > 0). However, Nc > 0 and Rc = 0 indicates that a
transparent buffer is present in the channel.

Internal variables of the model.

• Θ (real). Throughput of the CFDFC.
•

•
Θc (real). Average occupancy of channel c (token presence).

•
◦
Θc (real). Average emptiness of channel c (bubble presence).

• ru (real). Fluid retiming of tokens across unit u.
• t inc (real). Arrival time at the the input of channel c (i.e.,
output of unit x , where x c

→ y).
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Figure 5: The MILP model for performance optimization. Figure 5a shows the formulation of the path constraints. Figure 5b demonstrates
an optimization with throughput and path constraints for P ≤ 3. Figure 5c shows an abstract model of a sequential (pipelined) unit.

• toutc (real). Arrival time at the output of the channel c (i.e,
input of unit y, where x c

→ y).

We now describe the constraints of the MILP, grouped into path,
throughput, and buffer sizing constraints.

Path constraints. These constraints ensure that the entire circuit
meets the target clock period. They are therefore applied to the
complete dataflow graph. For every channel c:

toutc ≥ t inc − Pmax · Rc , (5)

with toutc ≥ 0. This constraint, depicted in Figure 5a, propagates the
combinational arrival time at each channel. In case of the presence
of a buffer (Rc = 1), the right term is guaranteed to be negative and
toutc becomes zero, essentially disabling the further accumulation
of delays through this channel. The constraint requires an upper
bound of the maximum cycle period (Pmax).

The following constraints model the propagation delay of a unit
u with a pair of input/output channels x c1

−→ u
c2
−→ y:

P ≥ t inc2 ≥ toutc1 + Du . (6)

The leftmost constraint enforces all delays to meet the cycle period
P. For simplicity, we assume that channels and buffers have zero
delays. Channel, buffer setup, and clock-to-q delays could be easily
incorporated into the model by adding the corresponding constants.

Throughput constraints. Our circuit construction guarantees that
there is a single token on each cycle. We initially consider that this
token is placed on the back edge—once the buffers are assigned to
the edges of the system, the throughput constraints will distribute
the token across the cycle edges accordingly. These constraints are
only applied to the choice-free circuit (CFDFC) obtained using the
methodology described in Section 3.1. For every channel u c

→ v :
•
Θc = Bc + rv − ru (7)

Θ ≤
•
Θc / Rc . (8)

The first constraint is analogous to the equations of classical
retiming [18]; in this case, the variables are real instead of integers
(i.e., fluid retiming) and

•
Θc represents the average number of to-

kens in the channel at the steady state of the system. The second
constraint indicates that the system throughput is determined by
the channel with a minimum average number of tokens among
all channels with a nontransparent buffer. This constraint can be
easily linearized taking into account that Rc is binary and Θ ≤ 1:

Θ ≤
•
Θc − Rc + 1. (9)

Figure 5b demonstrates fluid token retiming based on the through-
put and path constraints. The path constraints determine the buffer
placement to achieve the target period of P ≤ 3. The values next
to the buffers represent the token occupancies

•
Θc . They indicate

that every channel of the upper loop with a buffer will contain
a token every 1 out of 3 clock cycles, whereas the buffer in the
bottom left channel will contain a token 2 out of 3 clock cycles.
The values next to the units represent the retiming values r which
indicate how much of the token must be retimed from the initial
position (i.e., the middle channel) to achieve the average occupan-
cies

•
Θc . All values that are equal to zero are omitted from the figure.

Buffer sizing. Buffer sizing is essential for avoiding backpressure. It
corresponds to allocating bubbles (i.e., adding empty buffer slots),
which do not affect circuit functionality. The constraint for bubble
throughput is dual to that of token throughput:

◦
Θc ≥ Θ · Rc . (10)

The average occupancy of tokens and bubbles will determine the
number of buffer slots at every channel:

Nc =
•
Θc +

◦
Θc . (11)

Cost function. Subject to the path and the throughput constraints, we
maximize throughputΘ for a given clock period P , while accounting
for the minimization of the total number of buffer slots in the circuit:

max : Θ − λ ·
∑
c

Nc , (12)

where λ is a small coefficient that gives a lower priority to the mini-
mization of buffer sizes. As already mentioned, the path constraints
include the complete dataflow graph, whereas the throughput con-
straints apply to the most frequently executed CFDFC.

In this work, without loss of generality, we focus on maximizing
the throughput of the system. The model that we have presented in
this section could easily be employed with different cost functions
and optimization objectives (e.g., minimizing the clock period or
the buffer area cost under a throughput constraint [3]).

3.4 Modeling Pipelined Units
The model that we have presented so far (as well as the model by
Bufistov et al. [3] which our work is based on) only accounts for
combinational nodes connected via channels. To be able to handle
cases such as the one in Figure 1, our MILP model needs to account
for pipelined units. For this purpose, we characterize a pipelined
unit u using two parameters: latency Lu (for variable-latency units,
either the average or the worst-case latency can be considered) and
initiation interval IIu . Figure 5c depicts our model.
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Figure 6: ExtractingmultipleCFDFCs. The ILP fromSection 3.1 can
be iteratively applied while updating the execution frequencies of
the CFG edges to extract one CFDFC after another. In the figure, the
first extracted cycle (and theCFDFCwhich it represents) executes 60
times. After subtracting this value from the execution count of each
corresponding CFG edge, we extract the next cycle of 40 iterations.

The unit is modeled as a channel cu . It contains a nontransparent
buffer with Lu slots and has one combinational unit at the input (in,
with a delayDin ) and another at the output (out , with a delayDout ).
The delays Din and Dout participate in the path constraints of the
MILP (i.e., Equations 5 and 6), like any other unit. The initiation
interval of unitu puts a constraint on the average presence of tokens
in channel cu that cannot be greater than Lu/IIu . Thus, throughput
constraints for channel cu can be written as follows:

•
Θu = rout − rin , (13)

Θ · Lu ≤
•
Θu ≤ Lu/IIu , (14)

where rin and rout are the corresponding retiming variables for
the input and output combinational units, in and out .

3.5 Optimizing Multiple CFDFCs
The model that we have presented so far optimizes only the single,
most frequently executed CFDFC of the circuit. In this section, we
extend our methodology to multiple CFDFCs.

We apply the ILP from Section 3.1 iteratively to extract one
CFDFC after another based on their respective execution frequen-
cies. After finding the most frequently executed CFG cycle, we
update the execution frequencies by subtracting the execution val-
ues of the extracted CFG edges. Applying the ILP on the CFG while
considering only the remaining execution values extracts the next
cycle and its corresponding CFDFC based on its share in the runtime
of the program. We illustrate this approach in Figure 6.

It is important to note that our ILP extracts cycles in the order
of their importance (i.e., based on their fraction in the application
runtime). We could also employ any algorithm for finding cycles in
a directed graph [14], yet this approach would require extracting
all graph cycles and subsequently sorting them based on their exe-
cution frequencies (by repeatedly identifying the most significant
cycle and then updating the execution frequencies of all remaining
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Figure 7: Splitting the circuit into disjoint CFDFC sets to ensure
MILP scalability. This circuit represented by the CFG in the figure
consist of three CFDFCswhich can be grouped into two disjoint sets.
Applying the MILP on each set separately reduces the size of each
MILP and decreases overall runtime.

cycles). The fact that our ILP simultaneously orders and extracts
the cycles makes it possible to terminate the extraction as soon as
appropriate criteria have been met (e.g., no remaining edge has an
execution frequency above some threshold or the extracted cycles
collectively represent a sufficient fraction of the application run-
time). As we will discuss in Section 4, having such criteria is of great
importance to limit the MILP runtime; moreover, the optimization
of all CFDFCs is not always needed to maximize performance.

Optimizing multiple CFDFCs requires the extension of the MILP
from Section 3.3 to maximize throughputs of all CFDFCs. For every
additional CFDFC, the MILP includes an additional set of through-
put and buffer sizing constraints (i.e., Equations 7 to 11). The cost
function to maximize system throughput considers a weighted sum
of the individual throughputs Θ of all extracted CFDFCs:

max :
∑
i
wi · Θi − λ ·

∑
c

Nc , (15)

where the weight wi of each throughput is proportional to the
frequency of execution of each CFDFC (i.e., an approximation of
the runtime fraction of each CFDFC in the program profile).

3.6 Scalability
In this section, we discuss the runtime complexity of the MILP
model proposed in Section 3.3 and propose a technique to ensure
scalability when optimizing complex circuits.

The ILP for cycle extraction operates on the CFG of the program,
which usually covers a limited number of BBs and control-flow
edges. Hence, this ILP is typically of low complexity and size and
it does not impact the overall algorithm runtime—we confirm ex-
perimentally this intuition in Section 4. However, the MILP for
performance optimization operates on the dataflow graph of the
program. While the throughput is optimized locally by applying the
throughput constraints on subsets of the circuits (i.e., the frequently
executed CFDFCs), the relations for path constraints (i.e., Equa-
tions 5 and 6) extend on the entire dataflow graph—they need to

Session: High-Level Abstractions and Tools II  FPGA ’20, February 23–25, 2020, Seaside, CA, USA

191



Benchmark Sets CFDFCs Property

Sumi3 1 1 regular
Fir 1 1 regular

MatVec 1 2 regular
BiCG 1 2 regular
IIR 1 1 loop-carried dep.

Cordic 1 1 loop-carried dep.
Covar 3 7 regular

Covar (f) 3 7 loop-carried dep.
Gemver 4 7 regular
CDiv 1 2 conditional execution

Table 1: Benchmark characteristics, i.e., their set and CFDFC count
as well as main property of the loops which they contain.

ensure that the circuit as a whole meets the target period. The MILP
size and runtime is therefore dependent on the overall number of
channels and units of the dataflow circuit, which can result in large
runtimes when optimizing complex designs.

A possible method to limit theMILP runtime of large applications
is to split the dataflow graph into disjoint sets of CFDFCs (i.e., CFD-
FCs obtained from parts of the CFG which do not share any BBs or
edges among each other) and to optimize them separately using the
MILP. This procedure maximizes the throughput Θ and satisfies
the period constraint P within the CFDFCs of each disjoint set.
Afterwards, we need to ensure that the complete circuit satisfies the
period constraint. Hence, we apply the path constraints (i.e., Equa-
tions 5 and 6) on the channels and units which were not covered
by any of the CFDFC sets. The buffer placement solutions (i.e., the
values of Rc ) from the CFDFC set optimization are now set as con-
stants to ensure that the combinational paths across set boundaries
are appropriately handled. The channels optimized in this step do
not need to be subject to any throughput constraints as they are of
minimal importance for the overall performance (i.e., they usually
belong to paths executed only a single time as the circuit runs); the
sizes of all buffers correspondingly inserted can, therefore, be set
to 1 (i.e., Nc = 1). The cost function of this final step minimizes the
number of inserted buffers:

min :
∑
c

Rc , (16)

Figure 7 illustrates this approach. The dataflow circuit repre-
sented by this CFG contains three CFDFCs—two of them share BBs
and need to be optimized together. The third CFDFC (corresponding
to BB4 in the figure) can be optimized separately. After solving the
MILP for each of the two independent CFDFC sets, their throughput
Θ will be maximized and each set will meet the target period P. To
ensure that the complete circuit respects P, we subsequently need
to optimize the remaining parts of the dataflow circuit (in this case,
the channels within BB0 and BB5, as well as those corresponding
to edges e1, e6, and e8) using only the path constraints.

In summary, applying the MILP on disjoint CFDFC sets reduces
the problem complexity while satisfying the desired clock period
and achieving the same CFDFC throughput as the global MILP so-
lution. We will show the effectiveness of this approach in Section 4.

4 EVALUATION
In this section, we demonstrate the ability of our optimization
technique to maximize throughput under a given clock period
constraint. We compare our optimization approach with a naive
buffer placement strategy, discuss the runtime of our algorithm
and methods to improve it, and investigate the effectiveness of the
period constraint. Recent papers have directly compared dataflow
circuits to commercial statically-scheduled HLS results [15, 16] and
this comparison is, therefore, outside of the scope of this paper.

4.1 Methodology
The synchronous dataflow circuits we analyze are obtained from C
code using an existing methodology [15]. We profile the intermedi-
ate representation of the code to obtain the execution frequencies
of the CFG edges—we insert counters into the IR code to count
the control-flow decisions taken in each executed BB. We use this
information to identify the CFDFCs using the ILP from Section 3.1.
We then apply the MILP from Section 3.3 to determine the buffer
placement and sizes which satisfy the target clock period and max-
imize the loop throughputs—we employ the cost function from
Equation 15. The weights of each throughput term are proportional
to the runtime fraction of the corresponding CFDFC in the pro-
gram profile and the number of units it contains (i.e., for CFDFC
i , wi = unitsi · freqi/freqtot ). We choose the constant value of
λ = 10−5 to account for the minimization of buffer sizes. The MILP
relies on static timing information about the unit delays—we con-
sider exclusively the datapath of each unit. We present our results
for two target periods: 4 ns and 3 ns—in the rest of this section, we
denote the corresponding results as MILP 4 and MILP 3.

To evaluate our technique, we use ModelSim to measure through-
put (represented as the average loop initiation interval, I I = 1/Θ)
and to verify functional correctness. We target a Xilinx Kintex-7
FPGA and we use Vivado to measure the delays of the units. We
obtain the clock period (CP) and the resource usage after place-
ment and routing. We use the CBC mixed-integer programming
solver [10] and measure its runtime on an Intel® Core™ i7-8550U
CPU (i.e., a standard consumer laptop) at 1.80 GHz.

4.2 Benchmarks
We explore various kernels obtained from literature [17, 23] and
the PolyBench suite [22]. The benchmarks we consider contain
pipelined computational units and exhibit different loop properties
and organizations, as listed in Table 1: (1) Sumi3 is the example ker-
nel from Figure 1d. FIR (Finite Impulse Response), MatVec (Matrix-
Vector Multiplication), and BiCG (BiCGStab Linear Solver) are reg-
ular kernels implemented as a single loop or loop nest. IIR (Infinite
Impulse Response) and Cordic (Coordinate Rotation DIgital Com-
puter) have loop-carried dependencies which take multiple cycles
to compute and therefore limit the achievable loop initiation in-
terval. Covar and Covar (f) implement the integer and floating
point version of the covariance computation, with and without
multiple-cycle loop-carried dependencies, respectively. These two
benchmarks as well as Gemver contain multiple loop nests (i.e.,
multiple CFDFC sets), as indicated in the table. Finally, CDiv calcu-
lates a complex quotient of complex numbers—the loop contains a
noninlined if-else condition (i.e., it is implemented as two CFDFCs,
similar to the example in Figure 4); we assume a data distribution
where the if-condition is taken in 55% of the total loop iterations.
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Bench-
mark

Method
CP
(ns)

II= 1/Θ
Execution
Time (µs)

Speedup LUTs FFs DSPs Buffers
Run-

time (s)

Sumi3
Naive 4.3 10 43.0 − 287 331 6 3 N2 −

MILP 4 4 1 4.1 10.6× 402 (+40%) 403 (+22%) 6 8 N1-2, T4, 2 T9 0.1
MILP 3 3.5 2 7.1 6.1× 413 (+44%) 522 (+58%) 6 10 N1-2, 2 T1-2, 2 T5 1.2

FIR
Naive 4.3 6 25.8 − 380 384 3 3 N2 −

MILP 4 3.9 1 4.0 6.5× 428 (+13%) 504 (+31%) 3 5 N1-2, 2 T6-7 0.1
MILP 3 3.5 2 7.0 3.7× 628 (+65%) 688 (+79%) 3 7 N1-2, 2 T4-5 0.8

MatVec
Naive 5.9 6 31.9 − 626 517 3 6 N2 −

MILP 4 4.8 1 4.5 7.1× 808 (+29%) 724 (+40%) 3 11 N1-2, 5 T3-8 15.7
MILP 3 3.9 2 7.3 4.4× 947 (+51%) 849 (+64%) 3 16 N1-2, N4, 6 T1-3 25.0

BiCG
Naive 6.0 6 32.4 − 831 758 6 6 N2 −

MILP 4 5.9 1 6.4 5.0× 1144 (+38%) 1157 (+53%) 6 16 N1-3, 7 T1-3, 4 T5-7 1328.4
MILP 3 4.1 2 7.7 4.2× 1140 (+37%) 1255 (+66%) 6 14 N1-2, 2 N4-5, 8 T1-3 2195.5

IIR
Naive 5.9 6 35.4 − 648 663 6 5 N2 −

MILP 4 3.9 5 19.5 1.8× 745 (+15%) 1096 (+65%) 6 10 N1-2, 6 T1-2 1.1
MILP 3 3.4 5 17.0 2.1× 772 (+19%) 1094 (+65%) 6 12 N1-2, 5 T1-2 20.1

Cordic
Naive 5.8 20 116.1 − 1950 2754 24 7 N2 −

MILP 4 4.5 20 87.8 1.3× 2075 (+6%) 3086 (+12%) 24 16 N1-2, 9 T1-2 8.1
MILP 3 5 20 97.6 1.2× 2145 (+10%) 3016 (+10%) 24 17 N1-2, 9 T1-2 8.1

Covar
Naive 6.8 2, 4, 4 698.5 − 2347 1801 3 23 N2 −

MILP 4 6.5 1, 1, 1 197.5 3.5× 3882 (+65%) 3024 (+68%) 3 44 N1-3, 16 T1-3, 6 T4-19 3600
MILP 3 5.6 2, 2, 2 182.9 3.8× 3953 (+68%) 3388 (+88%) 3 54 N1-3, 20 T1-3, 3 N4-9 3600

Covar (f)
Naive 7.1 11, 11, 17 1833.6 − 3493 3795 9 23 N2 −

MILP 4 7.2 11, 1, 11 1057.2 1.7× 4298 (+23%) 4727 (+25%) 9 43 N1-3, 18 T1-3, 3 N6-10, 4 T6-20 3600
MILP 3 5.4 11, 2, 11 865.7 2.1× 4558 (+30%) 5196 (+37%) 9 46 N1-3, 24 T1-3, 2 N5-6, 6 T4-13 3600

Gemver
Naive 7.7 6, 10, 2, 10 180.7 − 3098 2903 18 30 N2 −

MILP 4 7.4 1, 1, 1, 1 23.5 7.7× 4076 (+32%) 3990 (+37%) 18 60 N1-3, 7 T1-3, 8 N5-12, 5 T4-10 3600
MILP 3 5.5 2, 2, 2, 2 31.3 5.8× 4066 (+31%) 4353 (+50%) 18 58 N1-3, 29 T1-3, 3 T4-7, 2 N5-7 3600

CDiv
Naive 10.5 40, 40 787.9 − 14461 14081 18 6 N2 −

MILP 4 7.5 3, 3 23.3 33.8× 15197 (+5%) 14780 (+5%) 18 11 N1, 6 T1-2, 8 T11-26, 8 N13-26 25.4
MILP 3 7.2 5, 5 36.8 21.4× 15164 (+5%) 14946 (+6%) 18 12 N1, 8 T1, 16 T6-16 153.9

Table 2: Timing and resources of dataflow circuits optimized with our strategy (MILP 4 and MILP 3, with a target CP of 4ns and 3 ns, re-
spectively) compared to a naive buffer placement (Naive). Under II, we indicate the initiation intervals of the innermost loops. The types of
instantiated buffers are shown under Buffers (e.g., 3 N2-4 indicates the usage of 3 nontransparent buffers with two to four slots). Although the
MILP always finds a solution, the achieved CP is often larger than the target CP, due to the unavoidable approximation of the pre-synthesis
and pre-place-and-route timing model. The rightmost column indicates the MILP runtime (the value of 3600 indicates a timeout of 1 hour).

4.3 Comparison with Naive Buffer Placement
We demonstrate the performance superiority of our optimized cir-
cuits over equivalent designs with buffers placed naively, based
on an existing heuristic [15] which cuts every combinational cycle
with a single buffer and does not place any FIFOs into the designs.

Table 2 summarizes our results. The circuits produced using the
naive strategy (i.e., Naive) qualitatively correspond to the circuit
in Figure 1a: they contain the minimal number of buffers to create
functional circuits (i.e., circuits with no combinational loops), but
there is no way to control the critical path and backpressure signif-
icantly lowers throughput. In contrast, the designs optimized using
our technique (i.e.,MILP 4 andMILP 3) are able to achieve maximum
throughput (i.e., the best possible loop II) of the innermost loops.
The resource increase is due to the additional buffers which our
technique employs, as indicated under Buffers. The designs with

high throughput require transparent buffers of larger sizes (i.e., FI-
FOs) to maintain the token rate; those with a lower target CP need
more nontransparent buffers to cut the combinational paths but
use smaller buffer sizes due to the lowered throughput (consider,
for instance, the buffer sizes in the MILP 4 and MILP 3 solutions of
Sumi3). Setting a low target CP degrades throughput (as it requires
the insertion of multiple nontransparent buffers on cyclic paths)
and, consequently, performance, in all applications but the IIR, Co-
var and Covar (f). In these applications, the throughput is dictated
by the pipelined units on the cyclic paths and not influenced by
the additional buffers, so the total execution time benefits from the
lowered CP. The discrepancies between the target and achieved
CP are largely due to the timing variations caused by FPGA place-
and-route. Our timing model could be further refined for greater
accuracy without any qualitative change (e.g., by including setup
delays of the buffers and considering the impact of control paths).
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(a) Full MILP (i.e., single MILP for entire application).
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(c) MILP in CFDFC sets, single CFDFC per set.

Figure 8: Runtime comparison of the full MILP with the MILP ap-
plied on individual CFDFC sets, described in Section 3.6.

4.4 MILP Runtime Analysis
The rightmost column of Table 2 reports the runtime of the MILP
for performance optimization. In all our benchmarks, the runtime
of the ILP for extracting the CFDFC was negligible (i.e., less than
0.1 s) in comparison to the MILP runtime. It is evident from the
table that the MILP runtime significantly depends on the size and
complexity of the application—larger applications need a prolonged
MILP runtime because the MILP covers the units and channels of
the entire dataflow graph, as discussed in Section 3.6.

MILP solvers tend to find an acceptable solution (i.e., a near-
optimal cost function value) early on and then spend a long time
attempting to improve it. This effect is evident from Figure 8a, which
shows the obtained cost function value (i.e., the sum of the weighted
CFDFC throughputs, as given in Equation 15), relative to the optimal
cost function value for a given target CP. The graph depicts only the

results of the benchmarks which take longer than 1 s to converge
to the optimum value of 1. While it is clear that the convergence
time is lower than the overall MILP runtime reported in Table 2, it
is still nonnegligible in certain cases (e.g., Gemver requires at least
30 minutes of MILP runtime to find a good solution).

We investigate the effectiveness of the heuristic from Section 3.6
to reduce the MILP runtime. We organize the CFDFCs into indepen-
dent sets and employ the MILP on each set separately. The results
we obtain are plotted in Figure 8b which compares the obtained
cost function result to the optimal result, exactly as in the previ-
ous graph. Contrasting the two graphs indicates that this method
successfully lowers the time needed for the MILP to converge.

The two versions of the MILP which we have considered so far
optimized all CFDFCs of the program. Our next experiment is based
on the intuition that some CFDFCs do not contribute significantly
to the execution time of the application (e.g., the outermost loop
of a nested loop)—they can be removed from the cost function
without a notable performance penalty. We demonstrate this effect
in Figure 8c, where we compare the cost value of the MILP which
optimizes the throughput of a single, most important CFDFC per set,
with the optimal MILP cost value, as in the previous graphs. This
MILP converges rapidly and, in most cases, obtains a near-optimal
value, as the removed CFDFCs contributed to the cost function with
a negligible weight factor. However, some applications such as CDiv
suffer from this simplification: this application has two CFDFCs
with similar contributions (i.e., 55% and 45%) to execution time;
optimizing the throughput of only one CFDFC lowers the obtainable
cost function value and, consequently, application performance.

The results of our runtime analysis can, therefore, be summarized
as follows: (1) it seems possible to rely on timeouts to find good
solutions in reasonable runtime, (2) the heuristic from Section 3.6
helps in further reducing the MILP runtime, and (3) not all CFDFCs
play an important role in achievable application performance; it is
possible to simplify the MILP to account for this fact and to further
reduce its runtime at a negligible penalty.

4.5 Comparison of MILP Solutions
To complement our runtime analysis from the previous section, we
evaluate the quality of solutions obtained in the following manner:
(1) we choose a timeout of 1 minute to terminate the MILP, (2) we
split the CFDFCs into sets to employ the heuristic from Section 3.6,
and (3) in the cost function of each set, we include all CFDFCs,
starting from the one with the highest weight, until there is at least
an order of magnitude difference in the cost term weight between
the last one included and the first one not included. This ensures
that the most relevant CFDFCs of each set are optimized (e.g., the
innermost loops of our benchmarks; in CDiv, this approach includes
the throughput optimization of both the if and the else branch).

Figure 9 shows the cycle count, total execution time, and resource
consumption of the solutions obtained in such a manner, relative
to the optimal MILP solutions from Table 2. In applications which
have a single CFDFC per set, the obtained cycle count is equal to
the optimal because our heuristic covers the entire application;
in others (i.e., applications with nested loops) the count slightly
increases because the throughput of the outer loops is not optimized.
The total execution time varies due to the changes in obtained
frequency (largely caused by FPGA place-and-route, as discussed
earlier). In most cases, these solutions require fewer resources than
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Figure 9: Comparison of solutions obtained by applying the MILP on individual CFDFC sets with the optimal MILP solutions (i.e., solutions
obtained by employing the MILP on the entire circuits).

Target
CP (ns)

Achieved
CP (ns)

II = 1/Θ
Execution
Time (µs)

LUTs FFs

− 9.1 2 15.7 1578 1665
8 7.7 1 7.7 1632 1742
6 5.7 1 5.7 1661 1810
4 4.1 1 4.1 1853 2084
3 3.6 2 7.2 2188 2696

Table 3: Exploration of the effectiveness of the clock period (CP)
constraint on a tree of combinational adders.

the optimal MILP solutions—as the throughputs of certain loops are
not optimized, fewer FIFOs are instantiated. All these variabilities
are expected and in an acceptable range for the significant MILP
runtime reduction which this heuristic approach offers.

4.6 Effectiveness of the CP Constraint
In this section, we further explore the capabilities of our model to
control the critical path. We analyze the effects of the CP constraint
on an unrolled accumulator, implemented as a binary tree of adders
with 16 inputs; this example gives more room for CP exploration
than the benchmarks from the previous section. We present the
results in Table 3. The naively obtained CP corresponds to the
combinational path through the entire adder tree. Lowering the
constraint inserts buffers between different tree stages. Although
the achieved CP tracks well the constraint in most cases, the maxi-
mum frequency cannot be reached. This effect is most likely due
to the control paths which are not included in our timing model
and become dominant with tighter CP constraints. Our future work
will refine the timing model to account for these effects as well.

5 RELATEDWORK
In high-level synthesis, timing optimizations are crucial for achiev-
ing high-performance circuits. In standard, statically scheduledHLS,
such optimizations are typically performed in conjunction with
modulo scheduling [5, 26, 29]: the aim is to create pipelines with
the best possible loop initiation intervals under the given clock and
resource constraints. Dataflow circuits [2, 15] are fundamentally
different—their schedules are not predetermined at compile time

but devised as the circuit runs. Yet, as in standard HLS, the ultimate
goal is to create timing-efficient, high-throughput pipelines—we
investigate this objective in this work.

Latency-insensitive protocols [6, 8] have been extensively used to
create synchronous and asynchronous dataflow circuits; their tim-
ing properties can be analyzed using Petri net theory [3, 4, 24, 25].
Several approaches in asynchronous dataflow design have ex-
plored slack matching, i.e., adding pipeline buffers to prevent stalls.
Venkataramani et al. [28] present a heuristic to avoid performance
bottlenecks by inserting buffers to balance reconverging paths in
asynchronous circuits. Najibi et al. [21] describe slack matching
for asynchronous circuits with conditional computation and com-
munication, where the conditions correspond to different circuit
operation modes. In contrast to these works, our model considers
retiming and slack matching simultaneously—we target synchro-
nous dataflow circuits, so the clock period must be optimized in
conjunction with the throughput. Furthermore, our method accepts
generic control flow schemes that commonly appear in high-level
languages (e.g., nested loops) and accounts for typical HLS features
(e.g., pipelined computational units).

6 CONCLUSIONS
In this work, we present a performance optimization model for
dataflow circuits obtained out of C code. Our MILP model is based
on the theory of marked graphs and allows for resource-optimal
buffer placement and sizing, with the purpose of maximizing
throughput at the desired clock frequency. In addition to the exact
model formulation, we propose a computationally-efficient heuris-
tic which achieves near-optimal results. On benchmarks obtained
out of C code, we demonstrate the ability of our approach to achieve
high-throughput, pipelined dataflow circuits. We believe that opti-
mization techniques such as this one are the key to making dynamic
scheduling truly competitive with existing HLS techniques.
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