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Abstract—Today’s high-level synthesis (HLS) tools rely on
static scheduling. When control and/or data dependencies that
cannot be resolved at compile time are present in program
code, HLS tools produce pessimistic schedules based on worst-
case assumptions, which may not be the common case or may
never even occur in practice. At present, the only alternative is
for circuit designers to eschew HLS, and to instead implement
dynamic scheduling, which stalls or slows execution when control
or data hazards manifest themselves at runtime, in hardware.
This paper examines these issues in detail using a histogram
kernel as a case-study. Starting with an inefficiently scheduled
implementation produced by Vivado HLS, we introduce a latency-
insensitive control mechanism that enables reaching a point in
the design space that Vivado HLS could not discover on its own.
We describe a step-by-step process by which a compiler could
infer a dynamically scheduled circuit, starting from a high-level
C language specification.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have recently
been integrated into datacenters [23], [6], [2], packaged with
processors [7], and introduced to new application domains;
however, their commercial success critically depends on
the issue of programmability, i.e., the ability of software
application developers with little to no hardware experience
to nonetheless be able to accelerate their applications [14],
[13], [22]. To ease the burden on the programmer, High-Level
Synthesis (HLS) tools can generate hardware designs from
high level programming languages, providing a higher level
of abstraction for accelerator design compared to traditional
design methodologies using VHDL or Verilog [26], [4].

Despite commercial adoption in the last decade, HLS
tools are limited in scope. For certain types of applications,
namely loop nests whose memory access patterns and control
dependencies can be resolved statically, HLS tools produce
accelerator architectures that are competitive with manual
hardware designs; however, achieving optimal design points
requires peculiar code restructuring, expert user interaction, and
extensive trial and error with configuration parameter settings.
Moreover, modern HLS tools cannot produce good quality
designs for irregular applications, whose control and data
dependencies cannot be resolved statically; they produce static
schedules and control mechanisms based on worst-case as-
sumptions regarding memory and control dependencies, which
significantly limits the throughput achievable by pipelining.

Using a histogram loop kernel as a case study, this paper
points towards a fundamentally different form of HLS for
irregular applications; a subsequent paper describes the tool
itself [18]. Specifically, we demonstrate how to transform
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Fig. 1: A static schedule produced by a standard high-level synthesis
tool, compared to a dynamic schedule generated by our approach. The
HLS tool conservatively assumes that a dependency exists between
each pair of loop iterations, whereas the dynamic design only stalls
when dependencies occur (in this case, between iterations 2 and 3).

arbitrarily-written high-level code into a dynamically scheduled
circuit. In doing so, we elucidate design points that traditional
HLS tools, which employ static scheduling, cannot discover
on their own. The ability of our approach to find these design
points without requiring significant code restructuring by the
programmer is likely to be extremely important in the future.

II. TOWARDS DYNAMIC SCHEDULING

Modern HLS tools build datapaths that are controlled using
a pre-planned, central controller. The controller relies on
a static schedule, fixed at compile time, to determine the
cycle at which each operation executes [12]. Figure 1 depicts
a simple histogram kernel that illustrates the limitations of
static scheduling. Within the loop, a data dependency may
exist between the memory read of hist [x[i+1]] and
the memory write to hist [x[1]] of the previous iteration,
depending on the contents of array x. A static schedule must
assume that the dependency occurs between each pair of
consecutive iterations, irrespective of the data values fetched
from memory. The resulting schedule requires the write from
the previous iteration to complete before the read from the
current iteration begins. This schedule is conservative, and is

Asilomar 2017



loop: ; preds = .loop, .start
l i.0=phi[i.1,.loop], [0, .start]
%1 = load *x, i.0
. %2 = load *weight, i.0
Basic %3 = load *hist, %1
block %4 = fadd %2, %3
store %4, *hist, %1
i.1=addi.0, 1
l %5 =icmp slti.l, N
br %5, label .loop, label .exit

Fig. 2: The histogram kernel from Figure 1, shown as a basic
block (left), with a simplified version of the LLVM intermediate
representation representing the code (right). This is the starting point
for translating the kernel into a dynamically-scheduled circuit.

guaranteed to be valid for all possible input values, but is far
from performance-optimal.

Figure 1 contrasts the static schedule with an example of
a dynamic schedule in which the dependency only occurs
between the second and third iterations. When the dependency
does not occur, the dynamic schedule initiates a new iteration
each cycle, yielding an improvement of 6x compared to the
static schedule; when the dependency does occur, the dynamic
schedule stalls the pipeline, allowing the write to complete
before the read begins. This paper describes a step-by-step
process to convert the histogram kernel from Figure 1 into a
dynamically scheduled circuit; a subsequent paper encapsulates
this process into a novel dynamically scheduled HLS tool [18].

III. ELASTIC CONTROL

Latency-insensitive circuit design techniques can implement
dynamic schedules by replacing the pre-planned controller with
a distributed control system that makes local dynamic schedul-
ing decisions [5], [16], [8], [25]: each dynamic dependence
is converted to a Boolean condition, and each operation can
execute once all of its triggering conditions are satisfied.

We use elastic circuits [8] to implement synchronous
dynamic scheduling in hardware. Each elastic component [15],
[8] communicates with its predecessor(s) and successor(s)
through a pair of handshake control signals: a valid signals
informs the successor that the component is ready to transmit
a valid piece of data, whereas the ready signal indicates to the
predecessor that the component can now accept a new piece
of data. Transferring a piece of data from one component to
another is referred to as an abstract token transfer [21].

Figure 2 shows the LLVM compiler representation of the
histogram kernel, which, essentially, consists of a single basic
block. Prior to the first iteration, the iterator ¢ is set to zero;
otherwise, the loop uses the value of 7 calculated by the previous
iteration. Within the loop body, the values of x, weight, and
hist are loaded from memory and used to compute the new
hist value. The iterator ¢ is incremented by 1 and compared
to the loop bound to decide the loop termination condition.

We describe a systematic process to convert a loop kernel to
an elastic circuit: (1) Each loop body is a dataflow graph: we
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Fig. 3: The histogram kernel translated to an elastic circuit. The basic
block body is converted to a dataflow circuit consisting of elastic
components. The basic block inputs and outputs employ Merge and
Branch nodes to propagate data across basic block boundaries, in
accordance with the control flow of the kernel. Fork nodes distribute
tokens from one node to multiple successors.

translate each operator into an equivalent elastic component
and each dataflow edge into bidirectional handshake signals
to connect dependent components. (2) For each variable that
enters the loop, we allocate a Merge node to propagate the
variable into the loop body. (3) For each variable that exits a
the loop, we allocate a Branch node to transmit the variable
to a designated successor basic block outside the loop body,
triggered by the loop control condition. (4) Components that
have multiple successors within the loop body require a Fork to
distribute copies of its data to all of its successor components.

This strategy can convert the histogram kernel shown in
Figure 2 into an elastic circuit shown in Figure 3. The iteration
variable ¢ requires Merge and Branch nodes: the Branch at
the output either transmits the updated value of ¢ back to
the Merge or to the loop exit, depending on the triggering
condition (i.e., the comparison of ¢ with the loop bound N); if
7 is not used outside the loop, then the value can be discarded
when the loop terminates.

The elastic circuit shown in Figure 3 contains two combi-
national cycles. We break these cycles by inserting an elastic
buffer (Buff) in a portion of the circuit that is common to both
cycles, as shown in Figure 4. Buffs can be inserted on any
wire without affecting circuit functionality, since elastic control
signals implicitly synchronize data communication [9].

IV. FIFO BUFFERS: INCREASING THROUGHPUT

The cycle-free elastic circuit shown in Figure 4 is correct
and fully functional, but does not offer particularly high
performance. Specifically, long paths take a long time to
process tokens; when a Fork distributes a data value to several
independent pipelines, a slow path that cannot rapidly consume
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Fig. 4: Elastic buffer insertion to break combinational loops.

tokens may cause backpressure on one of the Fork outputs.
This prevents the Fork from generating new tokens and starves
its other successor pipelines, each of which may be ready to
consume additional tokens.

In Figure 4, the store component cannot accept a token
from the load operation until it receives a token from the
multi-cycle floating-point adder, which will eventually create
backpressure on the upper Fork. Similarly, the floating-point
adder must synchronize its two input values, which may not
arrive simultaneously. Consequently, the floating-point adder
must stall the earlier-arriving input (i.e., the weight value),
while waiting for the other. The backpressure imposed on the
left and the middle outputs of the upper Fork prevent it from
generating a token allowing the update of value ¢ on the right-
hand side of the circuit. The Fork must hold the value of 4
for the current iteration until all three outgoing branches have
consumed their respective tokens, which significantly lowers
the loop initiation interval. Absent backpressure, the updated
value of ¢ (i.e., i++) could be computed every clock cycle.

To increase throughput, we insert elastic FIFOs into the
paths with long latencies. The tokens can accumulate in the
FIFOs, which mitigates the backpressure issue, allowing the
faster paths to consume Fork-generated tokens at a higher
rate. Figure 5 shows the histogram circuit from Figure 4, with
FIFOs selectively inserted after Forks. After FIFO insertion, a
new loop iteration can start as soon as the next value of iterator
1 is computed, and the loop condition has been evaluated. New
tokens can then be injected to all operations downstream from
the Fork, effectively pipelining the design.

V. OUT-OF-ORDER MEMORY INTERFACE

Thus far, we have ignored the issue of memory dependencies
and the possibility of memory access reordering. In Figure 1, it
is desirable to read hist before the write from the preceding
iteration completes, if both the read and write target different
memory addresses. These memory accesses should only be
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Fig. 5: Inserting FIFOs on Fork outputs can reduce backpressure
caused by slow paths, resulting in increased throughput.

serialized if a dependency exists. Such behavior requires a
memory interface that can correctly handle memory accesses
that arrive in arbitrary order, while respecting data dependencies
and ensuring appropriate ordering for semantic correctness.
We have previously demonstrated a load-store queue (LSQ)
tailored for spatial computing architectures with dynamically
scheduled circuits [17]. The novelty lies in an allocation policy
that allows the LSQ to correctly handle out-of-order memory
requests in a dataflow-like context. The allocation is organized
into groups corresponding to the basic blocks of a high-level
language program: whenever a basic block starts to execute,
all of the memory accesses belonging to that basic block
are allocated in a predetermined sequential order; within the
dynamic execution, the memory accesses may be issued to
the LSQ in any order. The allocation policy allows the basic
block control circuitry to know precisely which allocated LSQ
entry corresponds to each memory access. Accesses to provably
disjoint regions of memory can be disambiguated at compile-
time, and distinct LSQs can be allocated for each region.
Each iteration of the histogram application features a load
and a store operation which target a data structure hist,
stored in a unique memory; separate memories are allocated to
provide accesses to weight and x, as these accesses provably
do not conflict with one another or accesses to hist; as
their access patterns are deterministic, they do not require
an LSQ. Thus, a single LSQ is allocated for hist which
features one load and one store port, corresponding to the
basic block. Once the execution of the next loop iteration has
been determined, a dedicated signal triggers the allocation
of the read and write accesses into the LSQ (Figure 6). The
LSQ exploits this information to handle out-of-order memory
requests arriving from the dynamically scheduled circuit.
Figure 7 depicts our dynamically scheduled elastic histogram
(left-hand-side) circuit with LSQ interface (right-hand side).
The memory interface ensures that LSQ allocation is performed
in the correct sequential order. The LSQ, not shown in Figure 7,
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Fig. 6: An LSQ with an allocation policy designed for dynamically
scheduled circuits [17]. When the program transfers control from one
group (i.e., basic block) to another, the LSQ allocates all memory
accesses that the group will generate. In the example from Figure 1,
group allocation includes one read and one write per iteration, enabling
the LSQ to handle out-of-order memory requests.

honors memory dependencies, and postpones reads of hist
that are dependent on any not-yet-completed writes. This design
realizes the dynamic schedule shown in Figure 1.

VI. EXPERIMENTAL RESULTS

We compare FPGA implementations of the histogram
kernel (Figure 1) using state-of-the-art static scheduling (Vivado
HLS [26]) and three designs based on dynamic scheduling. The
first dynamic scheduler (Huang et al. [15]) is similar in principle
to elastic control, but features memory serialization (no
LSQ), and employs a single Branch node [15]; the second
dynamic scheduler [Elastic (LSQ)] employs elastic scheduling
as described in this paper, and features an LSQ, but does not
include FIFO buffers. The third dynamic scheduler [Elastic
(FIFO+LSQ)] features FIFO buffers in addition to the LSQ.
All four designs use identical arithmetic units and memory
interfaces. Table I reports the timing (i.e., loop initiation
interval, clock period, and latency), and resource requirements
(i.e., FPGA slices) of these experiments.

A. Static Scheduling (Vivado HLS)

Memory dependencies between the reads and writes of
hist cannot be disambiguated at compile time. Consequently,
the static scheduler constructs a conservative and inefficient
schedule, assuming that each read is dependent on the previous
write. In its favor, the static schedule features the lowest critical
path delay and consumes the smallest number of FPGA slices.

B. Dynamic Scheduling (Huang et al. [15])

The dynamic scheduling approach introduced by Huang et
al. [15] originally targeted an elastic coarse-grained reconfig-
urable array—we adapt their approach for an FPGA. Huang et
al. use the same elastic components as described here, but take a
slightly different approach to synthesizing elastic circuits. Most
importantly, they employ a single Branch node for all signals
that exit a basic block, which synchronizes all output values,
thereby preventing pipelining across basic block boundaries
(and thus, notably, of loops); in contrast, we allocate a separate
Branch node for each basic block output, which allows us to
decouple the fast outputs from the slower ones. Secondly,
Huang et al. do not employ an LSQ, and therefore must
serialize memory accesses that cannot be disambiguated at
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Dynamically scheduled circuit Interface to the LSQ

Fig. 7: A dynamically-scheduled elastic implementation of the
histogram kernel (left). The LSQ interface (right) notifies the LSQ to
allocate entries when control is transferred to a new basic block. The
LSQ uses this information to correctly handle memory dependencies.

compile-time, which is similar to how a static scheduler would
generate a modulo schedule. As shown in Table I, Huang et al.
achieve a conservative initiation interval, despite the flexibility
provided by dynamic scheduling, and their results are uniformly
worse than Vivado HLS. Dynamic scheduling in isolation is
insufficient to achieve high throughput.

C. Dynamic Scheduling [Elastic (LSQ)]

Replacing the single Branch node with multiple Branch
nodes and providing an LSQ overcomes many of the bottle-
necks of Huang et al.’s dynamic scheduler. Although the critical
path delay increases by a factor of 1.2x, the /I and latency are
reduced by respective factors of 3.2x and 2.9x. This timing
overhead is non-negligible and is due to the critical path of the
LSQ [17]; however, the increase in cycle time is conspicuously
small compared to the potential improvement in I/, leading
to higher overall throughput. The area of the datapath is only
slightly increased, but the overall area is 7.8 larger due to
the cost of the LSQ and its interface; this is simply the price
that one must pay to benefit from memory access reordering.

D. Dynamic Scheduling [Elastic (FIFO+LSQ)]

Adding FIFOs to the design reduces both the I and latency
by 1.6x without increasing the critical path delay; the FIFO
buffers increase the datapath area by an additional 40%.

In both of our elastic designs, the pipeline throughput
dynamically varies based on the input data; when there are
no dependencies, the dynamic schedule achieves the optimal
II; otherwise, the pipeline stalls. In contrast, Vivado HLS
and Huang et al.’s dynamic scheduler stall the pipeline for all
memory accesses that the compiler cannot disambiguate.

VII. RELATED WORK

Prior work has explored construction of dynamically-
scheduled circuits using latency-insensitive control [5], [16],
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Design IIavg CP (ns) Time (us) Slices LSQ Slices
Vivado HLS 11 33 36.3 130 0
Huang et al. [15] 12 49 59.3 134 0
Elastic (LSQ) 3.7 5.7 20.8 145 901
Elastic (FIFO+LSQ) 2.3 5.7 13.3 200 901

TABLE I: Experimental results for the histogram kernel: static
scheduling (Vivado HLS); dynamic scheduling, limited by memory
serialization and a single Branch node (Huang et al. [15]); dynamic
scheduling featuring elastic control and an LSQ to provide memory
access reordering [Elastic (LSQ)]; and dynamic scheduling featuring
elastic control with FIFO buffers and LSQ [Elastic (FIFO+LSQ)].

[8], [25], [19]; however, they lack generic transformations
to derive such circuits from high-level language specifica-
tions. Compilers from high-level language specifications to
asynchronous circuits have been investigated [11], [3]; the
techniques summarized here share principle similarities, but
target a perfectly synchronous implementation which eschews
many of the fundamental difficulties that have historically
plagued asynchronous design styles. Recent HLS advances
extended static scheduling [1], [20], [24], [10] to handle
specific types of dynamic events, which limits the achievable
performance improvements to specific cases; in contrast, the
case study presented here is more general and resulted in a
100% dynamically-scheduled circuit.

VIII. CONCLUSION

Dynamic scheduling is key to accelerate irregular applica-
tions using FPGAs but is insufficient on its own. Using a simple
histogram kernel, we demonstrate that dynamic memory access
disambiguation and mitigating the effects of backpressure
among concurrent arithmetic pipelines are key to throughput
maximization. Although we generated our histogram circuits
manually, opportunities to automate these transformations are
clear. Future work will develop a compiler that can convert a
high-level language program specification into an elastic circuit
that features the additional optimizations evaluated here.
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