
Eliminating Excessive Dynamism of Dataflow Circuits
Using Model Checking

Jiahui Xu
ETH Zurich

Zurich, Switzerland

Emmet Murphy
ETH Zurich

Zurich, Switzerland

Jordi Cortadella
UPC Barcelona
Barcelona, Spain

Lana Josipović
ETH Zurich

Zurich, Switzerland

ABSTRACT
Recent HLS efforts explore the generation of dynamically sched-
uled, dataflow circuits from high-level code; their ability to adapt
the schedule at runtime to particular data and control outcomes
promises superior performance to standard, statically scheduled
HLS solutions. However, dataflow circuits are notoriously resource-
expensive: their distributed handshake mechanism brings perfor-
mance benefits in some cases, but causes an unneeded resource
overhead when general dynamism is not required. In this work,
we present a verification framework based on model checking to
systematically reduce the hardware complexity of dataflow circuits.
We devise a series of formal proofs that identify the absence of
particular behavioral scenarios and use this information to replace
the generic dataflow logic with simpler and cheaper control struc-
tures. On a set of benchmarks obtained from high-level code, we
demonstrate that our technique significantly reduces the resource
requirements of dataflow circuits (i.e., it results in LUT and FF re-
ductions of up to 51% and 53%, respectively), while still reaping all
performance benefits of dynamic scheduling.

CCS CONCEPTS
• Hardware → Model checking; Datapath optimization; •
Computer systems organization → Data flow architectures.

KEYWORDS
High-level synthesis, dataflow circuits, model checking

ACM Reference Format:
Jiahui Xu, Emmet Murphy, Jordi Cortadella, and Lana Josipović. 2023. Elimi-
nating Excessive Dynamism of Dataflow Circuits Using Model Checking. In
Proceedings of the 2023 ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA ’23), February 12–14, 2023, Monterey, CA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3543622.3573196

1 INTRODUCTION
Dataflow circuits [1, 2] have recently been explored as an alternative
to standard, statically scheduled HLS solutions due to their abil-
ity to achieve high throughput in irregular and control-dominated
programs. In contrast to the circuits produced by classic HLS tech-
niques (in which operations are triggered through a centralized,
preplanned controller), dataflow circuits are built out of units that
communicate using point-to-point pairs of handshake signals; data

This work is licensed under a Creative Commons Attribution
International 4.0 License.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9417-8/23/02.
https://doi.org/10.1145/3543622.3573196

is propagated from unit to unit as soon as memory and control
dependencies allow it and stalled by the handshaking mechanism
otherwise [3, 4]. This distributed control mechanism effectively
implements a dynamic schedule, adapted at run-time to particular
data and control outcomes; it enables dataflow circuits to support
new behaviors and achieve high parallelism in situations where
standard HLS produces conservative results [4–6].

The same distributed handshake mechanism that provides
dataflow circuits with the dynamism and scheduling flexibility
that various applications require also causes a notable resource
cost [5, 7]: the two-way communication network spans through the
entire circuit and introduces local synchronizing, steering, and repli-
cation logic practically among all neighboring dataflow operators.
While these individual constructs are fairly simple, they collectively
represent a significant portion of the circuit’s resources and may
even degrade the circuit’s critical path. In some cases, this overhead
is acceptable as it is the reason for the superiority of dynamic sched-
uling. However, there are many situations where the computational
paths never really profit from the flexibility of dataflow computa-
tion; the complete and generic dynamism becomes an expensive
overkill that reduces the advantages of dynamic scheduling and
limits the complexity and variety of programs that this paradigm
can support. In such situations, removing the expensive dynamism
would be profitable; yet, any such simplification must guarantee
that all relevant circuit behaviors and correctness are preserved.

In this work, we present a general strategy to rip off redundant
control logic from dataflow circuits. We build an HLS-based frame-
work to automatically translate dataflow circuits, obtained from
high-level programs, into models describing their sequential be-
havior. We develop an extensible set of formal properties, based
on model checking, to prove the presence or absence of particular
behaviors in all possible execution scenarios. We use the results of
these proofs to restrict the flexibility of generic dataflow control
logic while neither limiting the circuit’s behavior nor compromising
its correctness.We show that a small set of simple properties already
achieves significant circuit simplifications: the generic control logic
templates are only kept where they are actually required, whereas
the remaining logic is reduced to simpler and more performance-
efficient structures. We envision that our framework can serve as
a foundation to develop even more powerful circuit optimization
strategies based on formal verification.

The rest of this paper is organized as follows: Section 2 illus-
trates the expensiveness of dataflow computation and the need to
reduce this cost. In Section 3, we describe the dataflow circuits and
model checking techniques that our work relies on. In Section 4,
we present a formal description of dataflow circuit constructs and
characteristics. We use these insights in Section 5 to develop a set
of formal proofs that verify the presence of particular behavioral

27

https://doi.org/10.1145/3543622.3573196
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543622.3573196
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543622.3573196&domain=pdf&date_stamp=2023-02-12


FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jiahui Xu, Emmet Murphy, Jordi Cortadella, & Lana Josipović

Buff

Merge

Fork

+ LD a[i]
FIFO

*

c
Fork

1

<

N

Branch

i = 0

ST a[i]

No stall

FFFF

FF

FF FF

R D
'1'

V1 V2

V

stall
FF

V3

for (i = 0; i < N; i++) 
    a[i] = a[i] * c;

FF

join

fork

buff

DR1 R2 R3

V1 R1

R1 R2V1 V2

Figure 1: Expensive dataflow logic is not always needed. The
dataflow circuit on the left is built out of generic dataflow constructs
that communicate with a set of handshake signals; a detailed de-
scription of three of them is shown on the right (shaded logic), and
other units follow the same trends. However, in many situations, the
generality of this logic is unneeded: if one can prove the absence of
particular behaviors in every possible execution scenario, the logic
could be simplified accordingly. In this example, none of the units
except the FIFO ever experiences a stall from its successor and the
related logic can be omitted (e.g., the fork, buffer, and join on the
right can be reduced to much simpler logic, shown in black).

properties. We discuss the scalability of our approach in Section
6, present our complete verification framework in Section 7, and
evaluate it in Section 8.

2 DOWE ALWAYS NEED EXPENSIVE
DATAFLOW LOGIC?

The dataflow circuit on the left of Figure 1 implements the func-
tionality of the code in the figure (i.e., resizing the elements of a
vector). The initial value of the iterator i is injected into the circuit
through the merge to trigger the computation; it is incremented
while circulating through the loop. In every iteration, the iterator
is forked to memory to retrieve the value of a[i], which is then sent
to a pipelined multiplier to calculate the resized value of the vector
element and stored back into memory; the stored addresses are
accumulated in the FIFO during the long-latency multiplication, to
ensure the best possible throughput and performance [8].

Although not explicitly shown in the circuit, all dataflow units
are equipped with bidirectional handshake signals: a valid signal
indicates data validity and triggers the successor units, whereas a
ready signal indicates the availability of a unit to accept data from
its predecessors. The gate-level description of the fork, buffer, and
part of the branch (i.e., join) is shown on the right. Other units

contain similar logic constructs, which implement general latency-
insensitivity and can handle any data arrival and dispatch times.

Although all units are fully equipped with a latency-insensitive
interface, the only instance of a stall occurs between the store and
the FIFO (i.e., the store stalls the incoming addresses until the mul-
tiplier produces the matching data). All other dataflow units never
exploit their latency insensitivity and their implementation can be
simplified accordingly, as shown by the fork, buffer, and join in
the figure: as there is never any backpressure, the ready signals
and the logic to compute them can be entirely omitted; as the fork
dispatches data to all successors simultaneously, the valid computa-
tion can be reduced to a wire. Other units are amenable to similar
simplifications; the behavior of the simplified circuit is identical to
the original one, but at a significantly reduced size and complexity.
The intuition behind these simplifications is clear, however, any
attempt must guarantee that the simplified implementations are
correct for any possible circuit execution and for any subtle dy-
namic change. In the rest of this paper, we present a methodology
to prove such behavioral properties via model checking and use
this information to systematically simplify generic dataflow logic.

3 BACKGROUND
In this section, we describe the characteristics of the dataflow cir-
cuits generated from the high-level code. We discuss the concept of
model checking for verifying safety properties and understanding
if some circuit transformations can be performed without risk.

3.1 Dataflow Circuits
Dataflow circuits are built out of units that are latency insensi-
tive and communicate with the predecessor and successors using
channels, composed out of handshake signals [1, 2]. As soon as the
relevant data and control dependencies allow, the data token is sent
across the channel (that is, data is exchanged).

Recent works have addressed generating dataflow circuits from
high-level programs [3, 4]; without loss of generality, we here con-
sider an approach that translates C/C++ code into synchronous
dataflow circuits [4]. What is relevant here is that this strategy or-
ganizes dataflow units into basic blocks (BBs), representing straight
pieces of code with no conditional execution; all control flow (i.e.,
conditional statements) form control flow edges that connect dif-
ferent BBs into a control-flow graph (CFG). Whenever a BB has
multiple successor BBs, a condition that is computed within it deter-
mines which successor (with all of its dataflow units) will execute.

Apart from standard computational blocks, dataflow circuits
require specialized units to appropriately steer data from their pro-
ducers to their consumers: (1) A join is used inside operators that
need to synchronize multiple operands (e.g., the adder, comparator,
and branch of Figure 1). (2) A fork replicates data to its multiple
outputs (as shown for the iterator in the same figure). (3) A branch
sends a data to one of its successors based on the condition com-
puted in its BB (in the previous example, it decides whether to start
a new iteration or exit the loop depending on the comparison of the
iterator with the loop bound). (4) A merge receives data from one
of its predecessors (i.e., that in the preceding active BB). All other
units are a composition or extension of these basic constructs.

28



Eliminating Excessive Dynamism of Dataflow Circuits Using Model Checking FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Se
nd

er

R
ec

ei
ve

rdon't care
not Valid

Se
nd

er

R
ec

ei
ve

rData
Valid

Ready

Se
nd

er

R
ec

ei
ve

rData
Valid

not Ready
Transfer (T) Idle (I) Stall (S)

don't care

Figure 2: A typical handshake communication protocol. A valid
signal indicates that the sender is sending a token to the receiver, and
the ready signal indicates the receiver’s availability to accept it. The
figure shows three possible states on the communication channel
between the sender and receiver, dictated by valid and ready values.

3.2 Handshake Communication Protocol
Latency-insensitive communication enables dataflow circuits to
make scheduling decisions during runtime. Figure 2 shows an ex-
ample of a typical latency-insensitive protocol [1] with its three
possible channel states, namely Transfer, Idle, and Stall. The state
of a channel can be identified from the value of the handshake
signals valid and ready. The channel is said to be in the Transfer
state when the sender has valid data and the receiver is ready to
receive it (valid ∧ ready), the Idle state when the sender does not
have valid data (¬valid), and the Stall state when the sender has
valid data but the receiver does not accept it (valid ∧ ¬ready).

All dataflow units are equipped with internal logic that produces
the appropriate valid and ready values so that they can communi-
cate with their predecessors and successors following this protocol;
the generic logic supports all three states as, in principle, each of
them could occur in every channel. Yet, as we have seen in Figure 1,
this is not always the case; there are many situations where some of
these states never occur and the generality of the dataflow logic that
supports them is not required. We explore this insight in this paper:
we aim to prove the presence or absence of particular behaviors
(i.e., particular communication states) and use this information to
simplify the dataflow circuit implementation.

3.3 Verifying Properties Using Model Checking
Model checking is the most widely used technique for the automatic
formal verification of finite transition systems [9, 10]. During the
model verification process, the design and specifications are usually
represented as finite automata, and the properties to check are
described using temporal logic. The reachable states of the system
are then explored to verify the properties. If a particular property
is not honored in the model, a counterexample trace is generated
in the form of a sequence of states.

Model checking can be performed using different algorithmic
techniques [9]: (1) explicit model checking, in which all reachable
states are enumerated, and (2) symbolic model checking, that uses
symbolic representations of the set of states rather than explicit
enumeration. In this work, we opt for symbolic model checking,
as it allows us to conveniently describe all possible channel states
and data transfers in a dynamically scheduled dataflow system.
Symbolic model checking is typically based on manipulating binary
decision diagrams (BDDs): when verifying safety properties, the
model checker explores the entire state space in a way similar to a
breadth-first search. Yet, this approach is unscalable and impractical
when verifying larger systems [9]. This issue can be mitigated via
compositional model checking [11, 12]: systems are decomposed into
subsystems that are individually verified, while the remainder of

MODULE join(pValid0, pValid1, nReady0)
DEFINE valid0 := pValid0 & pValid1;
DEFINE ready0 := nReady0 & pValid1;
DEFINE ready1 := nReady0 & pValid0;

ready1

ready0

pValid1
pValid0

nReady0

valid0

Figure 3: An SMV description of a join, obtained directly from its
gate-level description on the right. The unit is fully specified with a
predefined firing policy, latency, II, and capacity.

the system is appropriately abstracted away. We will exploit this
technique in our work to ensure the scalability of our approach.

4 MODELING AND ABSTRACTION OF
DATAFLOW CIRCUITS

Our goal is to identify the absence of particular dataflow circuit
behaviors in all execution scenarios and use this information to
restrict the generality of the dataflow logic. For this purpose, we
devise a circuit model that captures all behavioral and timing prop-
erties of the original dataflow circuit and allows us to reason about
its behavior irrespectively of particular data values.

4.1 Constructing Arbitrary Dataflow Units
We describe a dataflow graph as a system of transitions: all data is
abstracted away and all dataflow channels simply represent token
exchanges among neighboring dataflow units.

We characterize each dataflow unit with the following properties:
(1) Firing policy. Each dataflow unit produces one or multiple tokens
following a predefined rule, as described in Section 3.1. (2) Capacity.
This value indicates the maximal number of tokens that a dataflow
unit can hold [8]; it is determined by the number of register slots
of the unit (e.g., sequential computational stages or the number of
FIFO or buffer slots). (3) Initiation Interval (II). This value indicates
the rate with which each unit input can accept tokens from its
predecessor (i.e., the number of clock cycles between accepting
two consecutive tokens). (4) Latency. This value indicates the num-
ber of clock cycles that a unit requires to produce the output(s)
after receiving its input(s). Typically, it corresponds to the unit’s
sequential stage count. For most dataflow units, these properties
are known and predefined; we obtain them by directly translating
the dataflow unit RTL description into the corresponding transition
relations, while omitting the datapath computation. An example of
a join description in a typical verification modeling language [10]
is shown in Figure 3; it immediately derives from its gate-level
description shown in the figure.

Yet, in some cases, these properties depend on particular data
or control outcomes and may be variable or unknown: (1) The II
of some units may vary with the timing or data values of partic-
ular events (e.g., a memory interface may stall incoming memory
requests due to memory congestion or hazard detection). (2) Unit
latency may vary with the processed data (e.g., a memory interface
may hold a memory request longer due to a dependence; a variable-
latency computational unit may take a variable number of cycles
to compute the result depending on the input data [13]). (3) The
control flow decisions determine the firing of particular units, i.e., a
unit will fire only when the control flow determines the execution
of the BB it belongs to (see Section 3.1); they are typically statically
undeterminable and depend on the actual data values.

29



FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jiahui Xu, Emmet Murphy, Jordi Cortadella, & Lana Josipović

false
false

Sender NDW (R)
Data

Valid
Ready

Receiver Sender NDW (S)

*
Receiver

Running state: 
"Identical to a regular channel"

Sleeping state: 
"Nothing can be sent across"

Data

Valid
Ready

*
*

*

* = don't care

Figure 4: A non-deterministic wire (NDW). In its running state, an
NDW behaves like a regular channel and directly propagates the
valid and ready signal to the receiver and sender, respectively. In
its sleeping state, the NDW blocks its predecessor from sending any
tokens across the channel. We use this construct to model units with
variable or nondeterministic properties (e.g., an unknown initiation
interval of the receiver or an arbitrary delay of a sender).

We incorporate these behaviors in our model by representing
each variability with a nondeterministic construct that captures all
possible values of the unknown parameters: (1) A nondeterministic
wire (NDW) models an arbitrary stall on any dataflow channel. The
specification of an NDW is shown in Figure 4: it stalls for an arbi-
trary number of cycles but specifies that, at some point, the stall
will disappear, thus ensuring that the unit eventually consumes
the token. (2) A nondeterministic decider (NDD) produces a non-
deterministic boolean value (i.e., true or false); by producing any
sequence of boolean values, it models all possible control flow se-
quences. A decider is shown in Figure 5: whenever it receives its
dataless input token, it outputs a token with a randomly generated
boolean value.

We employ these constructs as follows: (1) We place an NDW
at each unit input that may exhibit variable II; the NDW dictates
how long a unit will stall the data coming from the predecessor and,
thus, the rate with which the data will be consumed. Assuming
an unbounded NDW, it captures any possible stall time (i.e., any
possible II). (2) We place an NDW at the output of every variable
latency unit; it dictates the time a token will reside inside the unit
and determines the moment the unit will output the token. (3) We
insert an NDD at the output of each dataflow unit computing the
BB conditions; we rely on classic compiler analysis to identify these
places as condition operands of branch instructions [14]. The output
value of the NDD replaces the control flow condition computed in
the original circuit, is forked to all branches of the BB, and regulates
the firing of their outputs (thus determining the next BB to execute).

The nondeterministic constructs above model all possible values
of the property they describe; typically, this is a superset of the
behaviors that can actually occur in execution. This may lead to
overconservative assumptions when verifying properties (e.g., by
accounting for delays, IIs, or control flow sequences that never
happen in practice). Thus, we constrain these values whenever the
information to do so is available (e.g., if an II or latency of a unit
are within a predetermined interval, we assign the corresponding
bounds to the nondeterministic construct). This restricts the com-
plexity of our model while still capturing all achievable situations.

4.2 Use Case: Describing a Dynamic Memory
Interface

To give the reader an intuition of the usage of the non-deterministic
constructs above, we here describe our abstract model of a load-store

Join

"2" "1"

(<) Less than

false

Join

ND-Decider

After data abstraction:
non-deterministic

production of
decision tokens.

true/false

exact 
computation

data 
independent

Figure 5: A non-deterministic decider (NDD). This construct re-
ceives dataless tokens and produces a tokenwith a non-deterministic
boolean value; we provide it to units with conditional behavior (e.g.,
branch) and use it to model any possible control flow sequence.

Store Port
(LSQ)

Address

Data

NDW

Abstracted Memory Write Access

NDW

Load Port
(LSQ)

Address

Data

NDW

Abstracted Memory Read Access

(Arbitrary II)

(Arbitrary II)

(Arbitrary Latency)

(a)

(b)

NDW

SinkJoin

(Exact Capacity)

(Exact Capacity)

NDW

(Arbitrary Latency)

Capacity

Capacity

Capacity

Figure 6: Memory access abstraction for dataflow circuits. A mem-
ory access may have variable latency or create circuit stalls, depend-
ing on the memory access patterns and possible memory collisions.
We use the nondeterministic constructs of Section 4.1 to capture
these variabilities and model all possible memory behaviors.

queue (LSQ) [15]. An LSQ is a typical constituent of the dataflow
circuit memory interface: it resolves memory dependencies at run-
time, allows independent accesses to execute out-of-order, and stalls
requests only when there is an address collision; this flexibility is
one of the main reasons for the performance superiority of dataflow
circuits over the corresponding static designs [8].

Although the exact LSQ functionality is irrelevant here, it is
important to understand its mechanism for handling load and store
requests. A load request (i.e., address) is sent by the circuit to the
LSQ as soon as it has an empty queue slot to hold it; when all
memory dependencies are resolved, the request is issued to memory.
Eventually, the memory returns the data which is then sent back
to the circuit. Similarly, a store address and data are sent from the
circuit into the queue when a slot is empty; possibly, at different
times. Once they are both available and all address collisions are
resolved, the store request is issued to memory.

The firing principle of the load and store access is fairly simple
(i.e., return a data token for each address token; send a pair of
address-data tokens to memory). However, it is important to note
that the timing of these firings is data-dependent: (1) If the LSQ is
full of pending requests (arriving from, possibly, various loads and
stores in the circuit), all incoming tokens are temporarily stalled
(i.e., the II of accepting requests may vary with the LSQ occupancy),
(2) The duration of a request’s residence in the LSQ differs based
on its dependencies on other requests (i.e., the latency changes
with actual load-store address collisions). (3) In case of loads, the

30



Eliminating Excessive Dynamism of Dataflow Circuits Using Model Checking FPGA ’23, February 12–14, 2023, Monterey, CA, USA

memory hierarchy may return data in a variable time (depending
on the memory organization and data availability). Our memory
model must capture all these behaviors and variabilities to allow
us to reason about the circuit’s behavior in any possible case.

To this end, we model the load and store LSQ access as shown
in Figure 6: A load LSQ access contains an NDW representing its
variable II; it is followed by a FIFO of the LSQ capacity, indicating the
maximal number of memory requests that the circuit can deposit
into the LSQ before receiving back any data; the output NDW
captures the latency variability due to hazards and memory latency.
The store consists of similar constructs: the NDWs at the address
and data input port, as well as the FIFOs of the LSQ capacity, serve
the same purpose as in the load; the internal join indicates that the
address and data must be available prior to issuing them to memory.
The output NDW models the latency variability; once the request
is accepted by memory, the token is discarded into a sink. Note that
this model allows us to describe every load and store separately
and in a composable manner, even though they might insist on the
same LSQ, as all variabilities due to various load/store interactions
are captured by the constructs above.

This example illustrates the richness of our model in describing
a variety of behaviors that may occur in a dynamically scheduled
dataflow circuit; it helps us to reason about all reachable circuit
behaviors independently of the actual data values and enables us
to perform provably safe and correct circuit transformations.

5 PROPERTIES FOR SIMPLIFYING DATAFLOW
CIRCUITS

Our dataflow circuit model from the previous section accurately
describes all possible circuit behaviors (i.e., it captures all states that
the circuit can achieve for any possible data and control outcome).
We can use this model to prove that particular circuit properties
always hold and simplify the dataflow logic accordingly. In this
section, we describe our definition of two simple but powerful
formal properties that we aim to verify.

5.1 Proving the Absence of Backpressure
The backpressure mechanism of a latency-insensitive protocol is
one of the key enablers of dynamic scheduling, as it supports ar-
bitrary computation stalls which never compromise correctness.
Yet, this generic mechanism is also expensive, as each dataflow
unit needs to appropriately handle backpressure arriving from its
successors and produce the appropriate backpressure signal for its
predecessors; we already observed these overheads in Section 2 and
Figure 1. As discussed in that example, in practice, only channels
where stalling events occur need to be equipped with the backpres-
sure mechanism; if we can prove that backpressure never occurs in
a particular channel, we can safely remove this redundant logic.

According to Figure 2, if we can show that Stall (valid ∧ ¬ready)
is an unreachable state for a particular channel, then only theTrans-
fer (valid ∧ ready) and Idle (¬valid) states need to be considered
when constructing the sender and receiver dataflow units that the
channel connects. To determine whether the stall state is reach-
able in a channel formed by a pair of valid and ready signals, we
formulate a simple safety property using temporal logic:

G (valid → ready). (1)

This property indicates that, for a given channel, it should always
be the case (i.e., it globally holds) that whenever the sender has
a valid token, the successor is able to receive it; in other words,
a stall never occurs. If this property holds, the value of the ready
signal is either true in the case of transfer state or don’t care in the
case of the idle state; thus, the predecessor can simply ignore the
actual ready signal value and assume that it is always true. We can
therefore remove the logic associated with producing the ready
signal in the receiver (and, possibly, simplify the ready computation
in the sender, as it now receives a constant true value).

We simplify the circuit by identifying the absence of backpres-
sure as follows: we traverse all dataflow channels and check the
validity of the property above. In case it is true, the ready signal
entering the data sender from the receiver can be disconnected and
replaced with a constant value of 1; the logic to compute the ready
signal in the receiver can be removed accordingly. This property
can be checked in all channels and in any order, as the channel
transformation will never change the circuit’s behavior and, thus,
never compromise the result of any other property check.

5.2 Proving Trigger Equivalence
The valid signal in a latency insensitive protocol represents the
movement of the tokens; it triggers the execution of a dataflow unit
so, in contrast to the ready signal, it cannot be entirely removed (as
the unit would never trigger) nor replaced with a constant (as the
unit would trigger continuously and at incorrect times). However,
its generation and distribution to the unit can be simplified: if we
can prove that multiple valid signals are equivalent, we can remove
the logic associated with their production or synchronization [16].

Consider again the example in Figure 1: the branch in the bottom
of the figure contains an internal join whose ready computation
logic can be optimized by proving the absence of backpressure, as
discussed in the previous section; after this optimization, the and
gate to produce its valid signal remains intact. If one can prove that
the two input valid signals always have the same value, the and gate
can be omitted, one of the input valid signals disconnected (thus
also simplifying the logic of the producer, not visible in the figure),
and the other propagated directly to the join output. Ultimately,
the join is reduced to a single wire shown in black.

We formulate the temporal logic expression stating that two
signals valid0 and valid1 are equivalent in all reachable states as:

G (valid0 ↔ valid1). (2)

If this property holds, one of the equivalent valid signals can be
used to trigger both of the receivers and the logic associated with
the production of the other can be omitted.

We simplify the circuit via trigger equivalence proving as fol-
lows: for each pair of channels of each BB, we verify the property
above; if it holds, we connect a single valid signal to the concerned
pair of receivers. Note that there is no formal requirement to per-
form this check per BB—intuitively, units of different BBs execute
at different times as they are triggered by different control flow
decisions, thus they are rarely equivalent and their comparison
would be futile. In Section 8, we also explore the effect of reducing
the equivalence checking only to channels which have the same
source or destination dataflow node.

31



FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jiahui Xu, Emmet Murphy, Jordi Cortadella, & Lana Josipović

5.3 Extending the Set of Proofs
The properties we discussed in this section are rather straightfor-
ward, but extremely effective, as they target the main sources of
resource overheads that dataflow circuits exhibit [4]; as we will
demonstrate in Section 8, verifying these properties can lead to sig-
nificant logic simplifications and resource savings. It is important
to note that our model and verification framework are in no way
limited to the properties we presented here; one could easily build
upon them to formulate advanced proofs and reason about more
complex behavioral and timing patterns.

For instance, one could perform an even more aggressive inves-
tigation of the timing relations of particular non-equivalent valid
signals. This information could be used to reconstruct their behav-
ior using a single and cheaper control structure (e.g., a shift register
or finite-state machine) that would replace the distributed valid
signal producers and centrally control an entire circuit portion [17].
Although beyond the scope of this work, the insights presented in
this section as well as our easily extensible verification framework
(which we will detail in Section 7) can serve as a foundation for
such explorations and optimizations.

6 ENSURING SCALABILITY
The fine-grain dataflowmodel can become very complex for circuits
describing larger programs, and the reachable state space grows
exponentially with the model size—as we will later see, this may
have a detrimental effect on the model checking runtime. We here
discuss our strategy to ensure the scalability of our approach.

Many of the states that the dataflow circuit exhibits are irrelevant
for proving a particular property (e.g., many reachable behaviors
inside one loop are invisible to and thus independent of the opti-
mization of another loop). This is the intuition behind compositional
model checking (see Section 3), which decomposes the model into
parts that can be checked independently; removed parts are ab-
stracted into an equivalent or slightly more general model.

We apply this insight in our work: we collapse a portion of the
dataflow circuit into a single supernode, characterized with the prop-
erties of Section 3, where each property is derived or generalized
from the properties of the encapsulated dataflow units. This su-
pernode will accurately represent the behavior of the encapsulated
circuit but at a significantly reduced model complexity, therefore
enabling us to quickly model check other circuit portions. In the
rest of this section, we detail our decomposition strategy.

6.1 Decoupling Circuit Regions
Dataflow circuits obtained from software programs group dataflow
units into a CFG (see Section 3.1). This organization suggests intu-
itive ways to organize the circuit into regions whose properties can
be verified in isolation: (1) The CFG can be decoupled into indepen-
dent loop nests (i.e., strongly connected components of the CFG); as
they execute sequentially, their properties are largely independent
and can be verified separately. (2) Each loop nest can be decoupled
based on nesting levels (e.g., innermost loop and outer loop); as the
units of the same loop typically exhibit similar properties (e.g., have
the same computing rate), it is sensible to group them in a single
region. (3) Within each loop BB, larger straight computational paths
can be declared as independent regions; as above, units in a long

Merge

Buff

Fork

j = i

true

Branch Branch

Fork

Merge Merge

Buff Buff

ForkFork

< N

g(i, j)

Branch
Fork

Branch

++

Fork

Merge

++

Fork

Branch < N

i Abstract inner loop, 
keep outer loop

NDW NDW

NDW

Fork Fork

Join

BR BR

MG
BR

MG MG

Abstract outer loop, 
keep inner loop

NDW

NDW NDW

Fork

(Abstracted
BB1, BB3)

Checked

Abstracted

Checked

Abstracted

Checked

Abstracted

(BB1)

(BB2)

(BB3)

for (i = 0;i < N;i++) 
    for (j = i;j < N;j++) 
        g(i, j);

(b) (c)

BB1

BB2

BB3

BR

MG
....

(as original BB1)

.... 
(as original BB3)

....
(as original BB2)

(Abstracted
BB2)

JoinJoin

(a)
Figure 7: Ensuring scalability by compositional circuit verification.
We decompose the circuit into regions whose properties can be ver-
ified independently of others; we abstract the complexity of other
regions into simpler supernodes that have the same properties as
the circuit section they encapsulate.

chain of operators typically have many behavioral similarities, so
it is desirable to verify them together.

Figure 7a shows a dataflow circuit describing a nested loop,
with units organized into BBs, decoupled into two regions (top of
Figure 7b and c): One region will contain the inner loop (i.e., the
units and channels of BB2, as well as the channels sending data from
BB2 back to itself through the inner back edge). The other region
will contain all nodes and channels of BB1 and BB3, corresponding
to the outer loop. Depending on the complexity of function g in
BB2, it may be decoupled into a separate region; we here assume
that it remains in the same region as the remainder of BB2.

The regions obtained with this strategy receive inputs from at
most one BB and send outputs to at most one BB (either equivalent
to the sender, e.g., in case of a single computational path of a BB,
or to a different BB, in case of a loop or loop nest). This implies
that either all or no region inputs will be triggered (as the data
is transferred through a straight datapath or following a single
control flow edge); similarly, the region will either produce all of
its outputs or none of them. Consider the region of BB2: as long
as the loop repeats, all data remains within the region; once the
condition to exit the loop is met, both data items exit the loop
through their respective branch nodes. We will exploit this feature
when abstracting regions into supernodes, as we will discuss next.

6.2 Abstracting Regions into Supernodes
The main challenge of decomposition is to ensure that the supern-
ode representing the abstracted region maintains all relevant prop-
erties of the circuit portion it encapsulates. To this end, we model

32



Eliminating Excessive Dynamism of Dataflow Circuits Using Model Checking FPGA ’23, February 12–14, 2023, Monterey, CA, USA

each supernode with the same (or a superset of) properties as those
of dataflow units, as discussed in Section 4.1.

(1) Firing: To maintain producer-consumer relations among re-
gion inputs and outputs, we connect with a dataflow channel all
data-dependent region live-ins and live-outs; this indicates that
the input must arrive before the region can produce the dependent
output. Consistently with standard dataflow circuit construction
policies, whenever a live-in connects to multiple live-outs, we em-
ploy a fork to distribute it appropriately; if a live-out receives values
from multiple live-ins, we synchronize them with a join.

(2) Latency: As a supernode can encapsulate complex behaviors,
the exact latency may be difficult to determine (e.g., a loop with
a statically unknown number of iterations). Analogously to the
procedure with variable-latency units, we model the latency of our
supernode with NDWs at the region outputs, thus capturing any
possible latency values within the region.

(3) II : Similarly to the case above, we place NDWs at the region
inputs to model any possible II. In more trivial cases, the II can be
calculated based on the individual IIs of the encapsulated units (e.g.,
in a straight datapath, the unit with the highest II is the one that
constrains the II of the entire region [8]).

(4) Capacity: The capacity of the region depends on the number
of tokens that the region can hold. Unlike latency and II, assuming
unbounded capacity is not feasible; instead, we can determine the
maximal number of tokens that a region can hold: it is determined
by the longest number of sequential stages (i.e., buffers or sequential
computational units) from any of the region inputs to any of its
outputs. We place FIFOs of this capacity on all input-output paths
of the region (i.e., on every channel connecting a fork and a join),
thus ensuring that all paths can sustain this maximal capacity.

Figures 7b and 7c show the supernodes representing the identi-
fied regions. In Figure 7b, the NDWs at the BB2 supernode input
represent any stall and the NDW at its output any latency caused
by the repetition of BB2 (i.e., the inner loop). The forks and joins
maintain all data connections through the supernode (e.g., the paths
from both branches of BB1 to the merge of BB3). The FIFOs are sized
according to the maximal number of tokens BB2 can hold; in this
example, the capacity of the buffers in BB2. The supernode of the
outer loop (Figure 7c) is constructed following the same strategy.

It is interesting to note that all conditional execution within
regions constructed as above can be abstracted away, as it never
determines the triggering of the constructs of another region; all
variability caused by the region’s internal control flow is captured
by its latency, II, and capacity constructs. In the example of Figure 7,
the exit condition of BB2 does not impact the verification results of
the outer region: the variable latency of the BB supernode captures
any possible number of BB2 loop iterations and any possible time
of triggering the outer region. Similarly, when verifying the inner
region, the NDW constructs of the abstracted outer loop capture
any possible reentry scenario into the inner loop, including the one
in which a reentry never occurs (i.e., BB3 terminates the execution
by sending tokens to the exit point). Other region organizations
may require a placement of NDDs in places where control flow di-
verges (e.g., a condition of one region determines which of multiple
succeeding regions should be triggered next). For simplicity, our
strategy avoids the placement of NDD constructs; as we will later

demonstrate, our approach is very effective in reducing the model
checking times of larger circuits.

6.3 Checking Individual Regions
Once the regions and their supernode abstractions are defined, we
can verify any property (e.g., the ones from Section 5) within each
individual region while abstracting all other regions into supern-
odes; we repeat this procedure for every region. Of course, as the
supernodes are more general than the exact circuit model, some
properties that are provable in a complete model may no longer
hold and the resulting circuit simplifications may be more conser-
vative; this is a typical tradeoff of compositional model checking
and we will explore it in Section 8. What is important to note is that
our compositional approach will never introduce false positives, as
it still accurately models all states that are reachable in the original
circuit; thus, the resulting circuit transformations will always be
correct and its final behavior unmodified.

7 PUTTING IT ALL TOGETHER
The flow of our optimization framework is illustrated in Figure 8.
The research artifact is publicly available [18].

The frontend to our flow is a dataflow circuit description that
we obtain from Dynamatic [19], an open-source HLS compiler that
translates C/C++ programs into dataflow circuits. Although we
demonstrate our strategy on Dynamatic, as it is most recent and
readily available, our work is in no way limited to this HLS strategy
and can be directly applied to any dataflow approach [3–5].

Dynamatic produces an intermediate representation of the
dataflow circuit in the form of a netlist that describes the intercon-
nect of the employed dataflow units; its generic unit implementa-
tions are predefined in a unit library. Ourmodel generator translates
these units into the corresponding SMV [10] module while omit-
ting all datapath computations and representing all data-dependent
behaviors with nondeterministic constructs (Section 4). It translates
the dataflow netlist directly into the corresponding SMV netlist
to perform full circuit verification or decomposes larger circuits
with multiple independent or nested loops (Section 6). Based on
the dataflow netlist, the property generator automatically generates
a list of properties that we are interested in checking. We currently
aim to prove the absence of backpressure and the equivalence of
trigger signals, as detailed in Sections 5.1 and 5.2, respectively, yet
our generator can be easily extended to incorporate other prop-
erty checks as well. Apart from equivalence checking within the
entire BB, we explore the reduction of checking to channels with a
single source or destination node (Section 5.2). We provide the com-
plete SMV circuit description and the property list to the NuXmv
model checker [20], a standard tool for analyzing synchronous
finite-state and infinite-state transition systems. NuXmv verifies
the specified properties and informs us of their validity. We utilize
the BDD backend in NuXmv to perform reachability analysis. Our
circuit optimizer uses this information to simplify the circuit prior
to transforming it to its optimized RTL description.

The circuit simplifications that our current property checks im-
ply require only signal modifications in the dataflow circuit netlist:
(1) If the backpressure among a sender and a receiver is proven ab-
sent, we disconnect the ready signal between them and provide the

33



FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jiahui Xu, Emmet Murphy, Jordi Cortadella, & Lana Josipović

Dynamatic 
HLS

Model 
generator

Property 
generator

Model checker 
(nuXmv)

Circuit 
optimizer

RTL 
generator

Dataflow IR

DF Unit Lib.
SMV

Model
Verified

Properties

Property List

Opt. DF IR

DF Unit Lib.
C/C++

Verifiying properties for the circuit in the Figure 1

Figure 8: Our optimization framework based on model checking. The input to our framework is a dataflow circuit obtained from C/C++ code;
we automatically create its symbolic model and a set of properties to verify using model checking (see the code snippet on the right). The
output of our flow is a simplified and smaller dataflow circuit, equivalent in performance and functionality to the original one.

sender with a constant value of 1. (2) When multiple valid signals
are proven equivalent, we connect one of the equivalent signals to
all receivers and disconnect their original senders. The dataflow
unit library remains intact by our framework; it is up to the logic
optimizer of a standard FPGA flow [21] to use our netlist transfor-
mations to simplify the dataflow units during logic synthesis (e.g.,
by optimizing out the disconnected dataflow logic). Enhancing our
framework with more complex properties may require particular
unit modifications as well; in such cases, one could simply extend
the input unit library with multiple customized unit implementa-
tions and allow the circuit optimizer to choose the most appropriate
one based on the verification results.

8 EVALUATION
In this section, we describe the effectiveness of our strategy in
eliminating redundant dynamism and reducing the resource re-
quirements of dataflow circuits.

8.1 Benchmarks and Methodology
Our benchmarks are a collection of kernels that others have em-
ployed to evaluate dynamic scheduling in HLS [4, 5, 22]; some have
been devised specifically to show the benefits of dynamic sched-
uling, whereas others originate from standard HLS suites [23, 24]:
(1) histogram and matrix power are typical examples where dy-
namic HLS outperforms static thanks to a load-store queue [15]
that resolves memory dependencies at runtime, (2) if loop mul and
if loop add contain irregular and unpredictable control flow that
prevents static HLS from achieving high throughput; in contrast,
dataflow circuits adapt their execution dynamically to particular
control flow outcomes. (3) fir, iir, sumi3mem, matvec, 2mm, 3mm are
regular kernels that can be equally pipelined by static and dynamic
HLS; despite equivalent performance, general dataflow circuits are
significantly more resource expensive than the corresponding static
designs (especially 2mm and 3mm, which use an LSQ, as we will
later discuss). Our benchmarks are publicly available [18].

We synthesize the benchmarks with the standard Dynamatic
flow [19] and optimize with our framework described in Section 7.
We perform functional verification of all designs in ModelSim [25]
and use it to obtain the clock cycle count; we present our area and
timing results post-place-and-route with Vivado [21], targeting a
Kintex-7 Xilinx FPGA. We measure the model checking runtime of
nuXmv on an AMD Ryzen 7 PRO 5850U CPU at 1.90 GHz.

8.2 Comparison with Generic Dataflow Circuits
In this section, we compare our circuits with the generic and com-
plete dataflow designs obtained by Dynamatic. We are interested in

evaluating the resource reductions thanks to our ability to remove
redundant dynamism, as well as ensuring that our methodology
maintained the correctness and performance of the original circuits.

Table 1 compares the resources and performance of the original
dataflow designs (No Opt.), designs we obtain by model checking
the entire circuit (Full Model), and designs obtained through compo-
sitional and reduced model checking (Reduced Model). We discuss
the Reduced Model in Section 8.4. As expected, the clock cycle count
of our designs is identical to that of Dynamatic, as our transforma-
tions guarantee that the circuit’s behavior and timing remain intact.
Yet, our designs are significantly smaller, as they retain the generic
handshake communication only where it is beneficial. The same
reduction typically also causes a critical path (CP) reduction, as
many combinational paths are removed or shortened; this leads to
a reduction in total execution time. All our designs require fewer re-
sources than the No Opt. designs; our savings are, naturally, larger
in benchmarks where dynamism is unneeded (e.g., fir, matvec).
When latency sensitivity is beneficial (e.g., if loop add), we maintain
some of it for performance benefits, but reduce its total cost.

The cost of the memory interface is notable in benchmarks that
require an LSQ (see four benchmarks in Table 1, where we report
the LSQ resources next to those of the respective kernel). This ex-
pensiveness has been observed by others [15, 26] and is orthogonal
to our approach. Although this expensive LSQ makes our total re-
source savings small (e.g., negligible total LUT reduction in 2mm),
it is important to note the computational kernel savings follow the
same trends as in all other benchmarks (e.g., 18% for 2mm). Our tar-
get here was to apply model checking to simplify the computational
kernels, which we have consistently and successfully achieved.

8.3 Effectiveness of Simplification Properties
In this section, we compare the effectiveness of the two properties
that we employ to simplify our circuits (see Section 5). In Figure 9,
we plot the computational kernel resources obtained by trigger
equivalence (orange) and backpressure (blue) in isolation, as well
as their combination (i.e., the green bars are the Full Model from
Table 1), relative to the Dynamatic resources. Our results show
that trigger equivalence is less effective in reducing the area than
backpressure absence. This is likely due to the fact that some of
the same optimization opportunities are already identified by the
logic synthesizer [21] in all design points; yet, the fact that we
achieve further reductions from our baseline indicates that formal
verification is more powerful. Naturally, verifying both properties
simultaneously achieves the best results; including more proper-
ties in our framework (see Section 5.3) could further increase the
benefits of using formal verification for circuit optimization.

34



Eliminating Excessive Dynamism of Dataflow Circuits Using Model Checking FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Benchmark Method LUTs (Kernel
+ LSQ)

LUT
Red.

FFs (Kernel
+ LSQ)

FF
Red. DSPs Cycles CP

(ns)
Exec

Time (us)†
Exec
Red.

Check
Time(s) Checks§ State Vars§

No Opt. 513 - 508 - 3 1017 3.7 3.7 - - 0 109
Full 281 -45% 267 -47% 3 1017 3.4 3.5 -5% 134 1026 109fir

Reduced 286 -44% 268 -47% 3 1017 3.5 3.5 -5% 15 109 109
No Opt. 885 - 1104 - 6 5008 3.5 17.7 - - 0 132
Full 438 -51% 638 -42% 6 5008 3.1 15.4 -13% 154 2132 132iir

Reduced 505 -43% 674 -39% 6 5008 3.4 16.9 -5% 10 168 132
No Opt. 910 - 1057 - 5 3522 5.4 19.2 - - 0 154
Full 757 -17% 892 -16% 5 3522 4.8 16.9 -12% 1248 1283 154if loop mul

Reduced 758 -17% 893 -16% 5 3522 4.9 17.3 -10% 186 120 154
No Opt. 1042 - 1248 - 4 5522 5.4 30 - - 0 158
Full 855 -18% 1084 -13% 4 5522 4.5 24.9 -17% 1454 1284 158if loop add

Reduced 824 -21% 1084 -13% 4 5522 4.7 26 -13% 327 120 158
No Opt. 537 - 462 - 6 1021 4.1 4.1 - - 0 125
Full 307 -43% 266 -42% 6 1021 3.4 3.5 -15% 313 1022 125sumi3 mem

Reduced 311 -42% 267 -42% 6 1021 3.5 3.6 -12% 36 106 125
No Opt. 820 + 10511 - 996 + 2485 - 2 1167 6.5 7.6 - - 0 106
Full 668 + 10513 -19% (-1%∗) 810 + 2485 -19% (-5%∗) 2 1167 6.5 7.6 0% 42 949 106histogram

Reduced 677 + 10662 -17% (0%∗) 808 + 2485 -19% (-5%∗) 2 1167 6.3 7.3 -4% 6 125 106
No Opt. 781 - 587 - 3 946 4.7 4.5 - - 0 166
Full 380 -51% 278 -53% 3 946 3.6 3.4 -24% 3779 2034 166matvec

Reduced 382 -51% 282 -52% 3 946 3.6 3.4 -24% 603 211 166
No Opt. 934 + 6640 - 914 + 1974 - 5 1549 6.5 10.1 - - 0 153
Full 820 + 6650 -12% (-1%∗) 866 + 1975 -5% (-2%∗) 5 1549 6.2 9.6 -5% 2375 2211 153matrix power

Reduced 835 + 6636 -11% (-1%∗) 866 + 1977 -5% (-2%∗) 5 1549 6.1 9.4 -7% 5 186 93/67
No Opt. 3375 + 33526 - 2351 + 5782 - 12 5608 7.7 43.2 - - 0 542
Full‡ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 11240 5422mm

Reduced 2764 + 34249 -18% (0%∗) 1807 + 5791 -23% (-7%∗) 12 5608 7.9 44.1 2% 4921 725 275/204
No Opt. 3549 + 46492 - 1464 + 8432 - 9 8400 6.9 57.7 - - 0 583
Full‡ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 11149 5833mm

Reduced 3288 + 46005 -7% (-1%∗) 1276 + 8431 -13% (-2%∗) 9 8400 6.8 56.9 -1% 442 845 182/185/170
∗total red. (with LSQ included); †Exec Time = CP × Cycles; ‡Timed out after 10h; §Model checking scales linearily with Checks and exponentially with State Vars

Table 1: Resources and timing of dataflow circuits optimized with our strategy (Full and Reduced), compared with standard dataflow circuits
(No Opt.). The Full designs are obtained by model checking the entire circuit. In the Reduced designs, we decompose benchmarks with multiple
loops and reduce the number of equivalence checks. In all benchmarks, our strategy significantly reduces the resource requirements of the
computational kernel without a performance penalty. Four benchmarks use an LSQ at the memory interface, which makes up a significant
portion of the circuit’s resources; this overhead is orthogonal to our strategy, which optimizes handshake logic in the computational kernel.
The model checking time of the Full designs is extensive (in the final two benchmarks, the checker times out after 10 hrs without concluding a
single property). The Reduced model successfully reduces the checking time, without significantly degrading the optimization quality.

8.4 Scalability Analysis
An exhaustive optimization is not feasible for more complex circuits
(for the final two benchmarks, our model checker times out after 10
hours). We here evaluate techniques to make our approach scalable.

The final row of each benchmark in Table 1 (i.e., Reduced Model)
shows the area and performance values of the circuits optimized
with our approach while applying decomposition (Section 6) on
benchmarks with multiple loops and reducing the number of equiv-
alence checks to signals of the same source or destination in all
benchmarks (Section 5.2); the resource results are also plotted in
Figure 9 (rightmost bars). Table 1 reports the total number of checks
(Checks) and number of state variables (State Vars, reported for ev-
ery decomposed region); model checking complexity scales linearly
with Checks and exponentially with State Vars.

Our strategy significantly improved the checking time and made
it feasible for all explored benchmarks without notably reducing
the design quality. The results of the final benchmarks indicate that
our decomposition approach is effective in decoupling indepen-
dent regions and our supernodes accurately describe the abstracted
circuit portions, without over-generalizing their behaviors.

8.5 Comparison with Static HLS Circuits
Dynamically scheduled circuits typically require significantly more
resources than their static counterparts [5, 7]; we here explore the
effectiveness of our strategy in reducing this resource gap.

Figure 10 visualizes the datapath resources (LUTs, FFs) and total
execution time (product of clock cycles and CP) of the complete
and optimized dataflow solutions, normalized to the corresponding
Vivado HLS designs [27] (all in red dashed line at value of 1). In
all benchmarks, our strategy brings the dataflow designs closer in
resources to static designs; the reduction is most notable in bench-
marks where dynamic scheduling is not useful and our strategy
removes dataflow logic more aggressively. In most cases, the per-
formance improves as well, as our designs typically have a lower
critical path; this increases the performance benefits of dynamic
scheduling in irregular benchmarks (e.g., if loop mul) and reduces
the performance gap between static and dynamic designs other-
wise. Despite the significant area savings thanks to our strategy,
dataflow circuits are still more expensive than their static coun-
terparts, mainly due to the following: (1) Dataflow circuits require
expensive LSQs, as discussed before; (2) Our current framework
uses Dynamatic as its frontend; the intermediate representation of
the circuits produced by this tool is known to be more conservative
and complex than that of Vivado HLS [28], which gives the static
circuits an immediate advantage. These effects are orthogonal to our
work and could be improved by advanced memory optimizations
and compiler analyses. We here made a significant advancement in
making dynamic scheduling more competitive with static HLS in
both area and execution time and demonstrated the relevance of
applying formal methods in hardware design and optimization.

35



FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jiahui Xu, Emmet Murphy, Jordi Cortadella, & Lana Josipović

fir iir if loop mul if loop add sumi3 mem histogram
(wo LSQ)

matvec matrix power
(wo LSQ)

2mm
(wo LSQ)

3mm
(wo LSQ)

0%

20%

40%

60%

80%

100%

LU
Ts

48
5

87
5

90
8

10
07

50
1

87
9

73
3

91
3

N.
D.

N.
D.

27
6

51
3

75
9

85
7

31
3

67
4

37
3

83
6

N.
D.

N.
D.

28
1

43
8

75
7

85
5

30
7

66
8

38
0

82
0

N.
D.

N.
D.

28
6

50
5

75
8

82
4

31
1

67
7

38
2

83
5

27
64

32
88

fir iir if loop mul if loop add sumi3 mem histogram
(wo LSQ)

matvec matrix power
(wo LSQ)

2mm
(wo LSQ)

3mm
(wo LSQ)

0%

20%

40%

60%

80%

100%

FF
s

50
8

11
04

10
57

12
48

46
2

99
6

58
6

91
4

N.
D.

N.
D.

26
7

67
8

89
2

10
84

26
6

81
1

28
0

86
7

N.
D.

N.
D.

26
7

63
8

89
2

10
84

26
6

81
0

27
8

86
6

N.
D.

N.
D.

26
8

67
4

89
3

10
84

26
7

80
8

28
2

86
6

18
07

12
76

No Optimization Trigger Equivalence (full) Backpressure Absence (full) Full Model Reduced Model

Figure 9: Resource of optimized dataflow circuits produced by Dynamatic using our strategy. All designs are normalized with respect to the
design generated by Dynamatic without modification. To demonstrate the effectiveness of our approach to simplify the datapath, we have
excluded from the synthesis reports the hierarchy that Vivado identifies as part of LSQ.

fir iir if loop mul if loop add sumi3 mem histogram
(wo LSQ)

matvec matrix power
(wo LSQ)

2mm
(wo LSQ)

3mm
(wo LSQ)

0

2

4

6

8

10

12

LU
Ts

 R
at

io
 

Static Scheduling

fir iir if loop mul if loop add sumi3 mem histogram
(wo LSQ)

matvec matrix power
(wo LSQ)

2mm
(wo LSQ)

3mm
(wo LSQ)

0

1

2

3

4

Re
gs

 R
at

io
 

Static Scheduling

fir iir if loop mul if loop add sumi3 mem histogram
(wo LSQ)

matvec matrix power
(wo LSQ)

2mm
(wo LSQ)

3mm
(wo LSQ)

0

1

Ex
ec

 R
at

io
 

Static Scheduling

Static Scheduling No Opt. Our Solution

Figure 10: Resources (LUTs, FFs) and execution time (product CP ×
clock cycles) of the original (No Opt) and optimized (Our Solution)
dataflow circuits, normalized to the corresponding staticHLS designs.
Our work makes all dataflow circuits more competitive in both area
and execution time to static HLS. In iir, if loop mul, if loop add,
histogram, and matrix power, our solutions are Pareto-optimal (best
performance overall at smaller area than prior dataflow work).

9 RELATEDWORK
Different latency-insensitive protocols [1, 29, 30] have been ex-
plored for constructing synchronous and asynchronous dataflow
circuits and many efforts investigated their generation from high-
level programs [3, 4, 31, 32]. The expensiveness of dataflow compu-
tation has often been discussed in the HLS context: recent works
develop buffering schemes for frequency regulation [8, 22], share
functional units for area savings [7], and reduce the complexity
of the memory interface [26]. We profit from all of these tech-
niques in this work to obtain state-of-the-art dataflow circuits from
high-level code. Yet, the resulting circuits still implement generic
latency-insensitivity and suffer from its overheads; thus, they can
be directly improved by our approach. Cheng et al. [5] observed this
problem and replaced sections of HLS-produced dataflow circuits
with the corresponding static designs; this approach is effective at
a coarse grain, but it fails to identify fine-grain logic-level optimiza-
tion opportunities in the dynamically scheduled circuit regions.
Our work seizes this opportunity: we construct formal proofs to

systematically restrict the generality of the fine-grain dataflow logic
and simplify the circuits accordingly.

Recent efforts aim to formally verify the HLS process [33, 34].
Others employ formal methods to optimize HLS-produced circuits:
Cheng et al. use an SMT-based solver to improve the memory ar-
bitration in HLS [35] and employ Petri nets to determine pipeline
initiation intervals [36]. Multiple works employ various forms of
Petri nets to model and optimize the performance of dataflow
pipelines [8, 37, 38], whereas Geilen et al. employ model checking
for buffering coarse-grain dataflow graphs [39]. Our work comple-
ments these efforts: we aim to prove particular behavioral properties
of HLS-produced dataflow circuits and use them to improve their
hardware implementation. State-exploration techniques such as
sequential logic synthesis [40] could be used to prove some of the
properties we explore in this work. Yet, they typically target ex-
act gate-level descriptions; model checking allows us to abstract
and generalize circuit behaviors (e.g., by employing nondetermin-
istic constructs when critical data or control decisions are unde-
terminable), thus allowing us to reason about a wider variety of
behavioral properties in HLS-produced dataflow circuits.

10 CONCLUSION
Despite an increased interest in generating dataflow circuits from
high-level code, this HLS paradigm is still largely unpopular due to
its resource expensiveness. In certain cases, this overhead is justi-
fied, as it is the reason for the superiority of dataflow circuits over
their statically scheduled counterparts; however, there are many
cases where their dynamism is just an unnecessary overhead. In this
work, we propose an optimization framework that discovers and
proves particular behavioral scenarios in HLS-produced dataflow
circuits via model checking. Ascertaining that particular situations
never occur allows us to restrict the generality of dataflow logic
only to relevant and reachable behaviors and, thus, to reduce its
complexity. In programs that require dynamic scheduling, our strat-
egy maintains all performance benefits at a significantly reduced
area overhead; otherwise, it makes dataflow circuits resource- and
timing competitive with those produced by static HLS. This new
avenue of using formal verification to optimize HLS-produced cir-
cuits is a promising step in making dataflow circuits obtained from
software programs practical and widely usable.

36



Eliminating Excessive Dynamism of Dataflow Circuits Using Model Checking FPGA ’23, February 12–14, 2023, Monterey, CA, USA

REFERENCES
[1] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of synchronous

elastic architectures,” in Proceedings of the 43rd Design Automation Conference,
San Francisco, CA, Jul. 2006, pp. 657–62.

[2] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis and op-
timization of latency insensitive systems,” in Proceedings of the 37th Design Au-
tomation Conference, Los Angeles, CA, Jun. 2000, pp. 361–67.

[3] M. Budiu, P. V. Artigas, and S. C. Goldstein, “Dataflow: A complement to su-
perscalar,” in Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software, Austin, TX, Mar. 2005, pp. 177–86.

[4] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-level syn-
thesis,” in Proceedings of the 26th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, CA, Feb. 2018, pp. 127–36.

[5] J. Cheng, L. Josipović, G. A. Constantinides, P. Ienne, and J. Wickerson, “Combin-
ing dynamic & static scheduling in high-level synthesis,” in Proceedings of the
28th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Seaside, CA, Feb. 2020, pp. 288–98.

[6] L. Josipović, A. Guerrieri, and P. Ienne, “Speculative dataflow circuits,” in Pro-
ceedings of the 27th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, Seaside, CA, Feb. 2019, pp. 162–71.

[7] L. Josipović, A. Marmet, A. Guerrieri, and P. Ienne, “Resource sharing in dataflow
circuits,” in Proceedings of the 30th IEEE Symposium on Field-Programmable Custom
Computing Machines, New York, May 2022, pp. 1–9.

[8] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella, “Buffer place-
ment and sizing for high-performance dataflow circuits,” in Proceedings of the
28th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Seaside, CA, Feb. 2020, pp. 186–96.

[9] C. Kern and M. R. Greenstreet, “Formal verification in hardware design: a survey,”
ACM Transactions on Design Automation of Electronic Systems, vol. 4, no. 2, pp.
123–93, Apr. 1999.

[10] C. Edmund, K. McMillan, S. Campos, and V. Hartonas-Garmhausen, “Symbolic
model checking,” in Computer Aided Verification, Berlin, Heidelberg, Jun. 1996,
pp. 419–22.

[11] E. Clarke, D. Long, and K. McMillan, “Compositional model checking,” in Pro-
ceedings of the Fourth Annual Symposium on Logic in computer science, Pacific
Grove, California, USA, Jun. 1989, pp. 353–362.

[12] S. Berezin, S. Campos, and E. M. Clarke, “Compositional reasoning in model
checking,” in Compositionality: The Significant Difference, May 1998, pp. 81–102.

[13] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addition: A new
paradigm for arithmetic circuit design,” in Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, Munich, Mar. 2008, pp. 1250–55.

[14] The LLVM Compiler Infrastructure, 2018. [Online]. Available: http://www.llvm.
org

[15] L. Josipović, P. Brisk, and P. Ienne, “An out-of-order load-store queue for spatial
computing,” ACM Transactions on Embedded Computing Systems, vol. 16, no. 5s,
pp. 125:1–125:19, Sep. 2017.

[16] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verifica-
tion tool,” in Computer Aided Verification, Berlin, Heidelberg, 2010, pp. 24–40.

[17] L. Josipović, A. Guerrieri, and P. Ienne, “Synthesizing general-purpose code into
dynamically scheduled circuits,” IEEE Circuits and Systems Magazine, vol. 21,
no. 1, pp. 97–118, May 2021.

[18] J. Xu, Research Artifact for ISFPGA’23: Eliminating Excessive Dynamism of
Dataflow Circuits Using Model Checking, Dec. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.7458595

[19] L. Josipović, A. Guerrieri, and P. Ienne, “Dynamatic: From C/C++ to dynami-
cally scheduled circuits,” in Proceedings of the 28th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Seaside, CA, Feb. 2020, pp. 1–10.

[20] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta, “The nuXmv symbolic model checker,” in Computer
Aided Verification, Vienna, Austria, Jul. 2014, pp. 334–42.

[21] Vivado Design Suite, Xilinx Inc., 2020. [Online]. Available: https://docs.xilinx.
com/v/u/2019.2-English/ug901-vivado-synthesis

[22] C. Rizzi, A. Guerrieri, P. Ienne, and L. Josipović, “A comprehensive timing model
for accurate frequency tuning in dataflow circuits,” in Proceedings of the 22nd
International Conference on Field-Programmable Logic and Applications, Belfast,
UK, Aug. 2022, pp. 375–83.

[23] L.-N. Pouchet, Polybench: The polyhedral benchmark suite, 2012. [Online].
Available: http://www.cs.ucla.edu/pouchet/software/polybench

[24] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “MachSuite: Benchmarks
for accelerator design and customized architectures,” in Proceedings of the IEEE
International Symposium on Workload Characterization, Raleigh, NC, October
2014.

[25] Mentor Graphics, “ModelSim,” 2016. [Online]. Available: https://www.mentor.
com/products/fv/modelsim/

[26] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne, “Shrink it or shed
it! Minimize the use of LSQs in dataflow designs,” in Proceedings of the IEEE
International Conference on Field Programmable Technology, Tianjin, Dec. 2019,
pp. 197–205.

[27] Vivado Design Suite User Guide: High-Level Synthesis, Xilinx Inc., 2018. [On-
line]. Available: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2017_4/ug902-vivado-high-level-synthesis.pdf

[28] A. Elakhras, A. Guerrieri, L. Josipović, and P. Ienne, “Unleashing parallelism in
elastic circuits with faster token delivery,” in Proceedings of the 22nd International
Conference on Field-Programmable Logic and Applications, Belfast, UK, Aug. 2022,
pp. 253–61.

[29] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Theory of
latency-insensitive design,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 20, no. 9, pp. 1059–76, Sep. 2001.

[30] S. A. Edwards, R. Townsend, and M. A. Kim, “Compositional dataflow circuits,”
in Proceedings of the 15th ACM-IEEE International Conference on Formal Methods
and Models for System Design, Vienna, Sep. 2017, pp. 175–84.

[31] R. Townsend, M. A. Kim, and S. A. Edwards, “From functional programs to
pipelined dataflow circuits,” in Proceedings of the 26th International Conference on
Compiler Construction, Austin, TX, Feb. 2017, pp. 76–86.

[32] J. Sparsø, “Current trends in high-level synthesis of asynchronous circuits,” in
Proceedings of the 16th IEEE International Conference on Electronics, Circuits, and
Systems, Yasmine Hammamet, Dec. 2009, pp. 347–50.

[33] Y. Herklotz, Z. Du, N. Ramanathan, and J. Wickerson, “An empirical study of the
reliability of high-level synthesis tools,” in 2021 IEEE 29th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), May
2021, pp. 219–23.

[34] F. Faissole, G. A. Constantinides, and D. Thomas, “Formalizing loop-carried de-
pendencies in Coq for high-level synthesis,” in 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines, Apr. 2019, pp.
315–15.

[35] J. Cheng, S. T. Fleming, Y. T. Chen, J. Anderson, J. Wickerson, and G. A. Constan-
tinides, “Efficient memory arbitration in high-level synthesis frommulti-threaded
code,” IEEE Transactions on Computers, vol. 71, no. 4, pp. 933–46, Apr. 2022, con-
ference Name: IEEE Transactions on Computers.

[36] J. Cheng, J. Wickerson, and G. A. Constantinides, “Probabilistic scheduling in
high-level synthesis,” in 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines, May 2021, pp. 195–203.

[37] M. Najibi and P. A. Beerel, “Slack matching mode-based asynchronous circuits
for average-case performance,” in Proceedings of the 32nd International Conference
on Computer-Aided Design, San Jose, CA, Nov. 2013, pp. 219–25.

[38] D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar, “A general model
for performance optimization of sequential systems,” in Proceedings of the In-
ternational Conference on Computer-Aided Design, San Jose, CA, Nov. 2007, pp.
362–69.

[39] M. Geilen, T. Basten, and S. Stuijk, “Minimising buffer requirements of syn-
chronous dataflow graphs with model checking,” in Proceedings. 42nd Design
Automation Conference, 2005., Jun. 2005, pp. 819–824.

[40] R. Brayton and A. Mishchenko, “Scalably-verifiable sequential synthesis,” ERl
Technical Report, 2007.

37

http://www.llvm.org
http://www.llvm.org
https://doi.org/10.5281/zenodo.7458595
https://docs.xilinx.com/v/u/2019.2-English/ug901-vivado-synthesis
https://docs.xilinx.com/v/u/2019.2-English/ug901-vivado-synthesis
http://www. cs. ucla. edu/pouchet/software/polybench
https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf

	Abstract
	1 Introduction
	2 Do We Always Need Expensive Dataflow Logic?
	3 Background
	3.1 Dataflow Circuits
	3.2 Handshake Communication Protocol
	3.3 Verifying Properties Using Model Checking

	4 Modeling and Abstraction of Dataflow Circuits
	4.1 Constructing Arbitrary Dataflow Units
	4.2 Use Case: Describing a Dynamic Memory Interface

	5 Properties for Simplifying Dataflow Circuits
	5.1 Proving the Absence of Backpressure
	5.2 Proving Trigger Equivalence
	5.3 Extending the Set of Proofs

	6 Ensuring Scalability
	6.1 Decoupling Circuit Regions
	6.2 Abstracting Regions into Supernodes
	6.3 Checking Individual Regions

	7 Putting it All Together
	8 Evaluation
	8.1 Benchmarks and Methodology
	8.2 Comparison with Generic Dataflow Circuits
	8.3 Effectiveness of Simplification Properties
	8.4 Scalability Analysis
	8.5 Comparison with Static HLS Circuits

	9 Related Work
	10 Conclusion
	References



