
Straight to theQueue:
Fast Load-StoreQueue Allocation in Dataflow Circuits
Ayatallah Elakhras

EPFL, Lausanne, Switzerland
ayatallah.elakhras@epfl.ch

Riya Sawhney
EPFL, Lausanne, Switzerland

riya.sawhney@epfl.ch

Andrea Guerrieri
EPFL, Lausanne, Switzerland
andrea.guerrieri@epfl.ch

Lana Josipović
ETH Zurich, Zurich, Switzerland

ljosipovic@ethz.ch

Paolo Ienne
EPFL, Lausanne, Switzerland

paolo.ienne@epfl.ch

ABSTRACT
Dynamically scheduled high-level synthesis can exploit high levels
of parallelism in poorly-predictable control-dominated applications.
Yet, dataflow circuits are often generated by literal conversion of
basic blocks into circuits interconnected in such a way as to mimic
the program’s sequential execution. Although correct and quite
effective in many cases, this adherence to control flow still signif-
icantly limits exploitable parallelism. Recent research introduced
techniques to deliver data tokens directly from producers to con-
sumers and achieved tangible benefits both in circuit complexity
and execution time. Unfortunately, while this successfully addressed
ordinary data dependencies, the problem of potential dependencies
through memory remains open: When no technique can statically
disambiguate accesses, circuits must be built with load-store queues
(LSQs) which, to reorder accesses safely, need memory accesses to
be allocated in the queues in program order. Such in-order allocation
still demands control circuitry emulating sequential execution, with
its negative impact on parallelization. In this paper, we transform
potential memory dependencies into virtual data dependencies and
use the new direct token delivery strategy to allocate accesses se-
quentially into the LSQ. In other words, we exploit more parallelism
by constructing control circuitry to emulate exclusively those parts
of the control flow strictly necessary for in-order allocation. Our
results show that we can achieve up to a 74% reduction in execution
time compared to prior work, in some cases, at no area cost.

CCS CONCEPTS
• Hardware→ Circuit optimization; • Computer systems or-
ganization → Data flow architectures.

KEYWORDS
high-level synthesis, dataflow, load-store queue

ACM Reference Format:
Ayatallah Elakhras, Riya Sawhney, Andrea Guerrieri, Lana Josipović,
and Paolo Ienne. 2023. Straight to the Queue: Fast Load-Store Queue
Allocation in Dataflow Circuits. In Proceedings of the 2023 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA ’23),

This work is licensed under a Creative Commons Attribution
International 4.0 License.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9417-8/23/02.
https://doi.org/10.1145/3543622.3573050

February 12–14, 2023, Monterey, CA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3543622.3573050

1 INTRODUCTION
Recently, there has been some interest in dynamically scheduled
high-level synthesis (HLS) due to its flexibility in dealing with the
unpredictability of program control decisions and the variable la-
tency of some operations. For many typical software applications,
this results in performance gains and demands less code refactoring
at the cost of a reasonable hardware expense over classic HLS [16].
Generated circuits are referred to as dataflow circuits: synchronous
circuits with distributed control, obtained by accompanying every
piece of data with a pair of handshake signals. Dataflow circuit gen-
eration out of an imperative language such as C/C++ starts from
the compiler intermediate representation (IR) composed of data flow
graphs (DFGs) and a control flow graph (CFG). Nodes in the CFG are
blocks of code, or basic blocks (BBs); they are connected by control
flow arcs representing control decisions. Typically, circuit genera-
tion translates the DFGs of individual BBs into separate circuits and
then connects the live-out channels of each BB (i.e., signals carrying
data that may be used in a later BB) with the live-in channels of
the adjacent BBs (i.e., signals potentially requiring data generated
in earlier BBs) [4, 14]. This strategy, although correct, is very con-
servative: data moves along the control flow and, in many cases,
arrives late at their destination. Recently, we introduced a different
circuit generation strategy for fast token delivery that delivers data

for (i = 0; i < N; i++) {
index = A[i];
val = B[index];
if (val > max)

val = 0;
else

val = val * 2;
B[index] = val;

}

(a) (b)

(c)

(d)

LD A

Alloc. LD B

(val>max)? LD B val = … ST B

LD A LD B (val>max)?

Alloc. LD BAlloc. ST B

BB1 BB2 or
BB3

BB1

Best II = 5

LD A (val>max)? LD B val = … ST B

Best II = 2

LD A LD B (val>max)? val = … ST B

Alloc. LD B Alloc. ST B Alloc. LD B Alloc. ST B

BB4

BB0

BB1

BB2 BB3

BB4

BB5

Figure 1: Motivation. (a) A code example requiring an LSQ for B[].
(b) Its CFG. (c) Execution schedule of strictly sequential LSQ alloca-
tions with limited parallelism due to control dependencies. (d) Our
target schedule where LSQ allocations are issued as early as possible,
thus improving significantly execution time.

39

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543622.3573050
https://doi.org/10.1145/3543622.3573050
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543622.3573050&domain=pdf&date_stamp=2023-02-12

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Ayatallah Elakhras, Riya Sawhney, Andrea Guerrieri, Lana Josipović, & Paolo Ienne

LSQ

BB1

BB2
BB3

BB4

GR1

GR2

GR3

GR4

LD1

ST1

LD2

LD3

ST2

LD4

ST3
ST4
LD5

LD6

ST5

Figure 2: LSQ Allocations. Every time a BB starts, the LSQ allocates
slots for the group of accesses (GR) thereby contained in the appro-
priate order. (Reproduced from Josipović et al. [13].)

as directly as possible from its producer to its consumer; each deliv-
ery path is affected only by the necessary control flow decisions [9].
The produced circuits do not imitate, anymore, global control flow,
resulting in faster and smaller circuits.

There is a big snag, though. As in any dynamically scheduled
computing system, memory accesses which cannot be statically dis-
ambiguated need an ordering decision at runtime: if the addresses
happen not to collide, program order can be ignored; otherwise, the
original order needs to be enforced. This job is typically delegated,
in dataflow circuits as in processors, to hardware load-store queues
(LSQs); they respond to accesses as quickly as possible but in a
semantically correct order. LSQs, to enforce proper ordering, need
to know the original program order of the accesses—or, equiva-
lently, LSQs need to allocate entries in the queues as in sequential
execution. Josipović et al. [13] used an existing control circuitry em-
ulating the sequential execution to trigger allocation into the LSQs.
The difficulty is that the work of fast token delivery [9] completely
removed such in-order control circuitry and ignored programs re-
quiring LSQs. While it is possible to reintroduce this circuitry for
LSQ allocation, this is undesirable since it could partially or com-
pletely nullify the advantage of the new circuit generation strategy.

1.1 Straight to the Queue
Consider, for instance, the code in Figure 1a, inspired by a CORDIC-
based hyperbolic tangent computation, and its CFG in Figure 1b.
The two accesses to B[] cannot be disambiguated statically and
need an LSQ. Conventional circuit generation [14] would enforce
sequential execution in two instances: data dependencies between
operations (for elementary correctness) and control dependencies
between BBs (to allocate entries into the LSQ in program order); the
LSQ would then enforce necessary ordering of memory accesses.
This would result, qualitatively, into the execution schedule of
Figure 1c, where the green arrows indicate data dependencies and
the blue arrows suggest the succession of BBs. Note that BBs are
essentially executed sequentially (as suggested below the timing
diagram) and this affects the earliest time when the allocation of
the store operation to B[] can happen: the best initiation interval
(II) of the loop would be five cycles, with the assumed latencies
and no memory conflicts. In substance, the blue BB transitions are
a form of loop-carried dependency and determine the initiation
interval. One can observe, though, that there is no need to wait
for the control flow to reach BB2 or BB3 to perform the allocation
of the store, since its eventual execution does not depend on the

control decision in BB1. Yet, note also that no compiler could move
the store above the if . . .else because the store is data dependent
on it. What we need is to keep the allocations in order but without
following literally the CFG. Figure 1d shows, again qualitatively,
what we want to achieve: by representing only the minimal control
dependencies across allocations, they can be performed much faster
and, in particular, there is no need to hold back the rest of the circuit.
The best initiation interval of the loop would now be two cycles
and nothing in the circuit would embed the notion of BB. Achieving
this execution schedule is the goal of this paper.

2 DATAFLOW CIRCUITS
The key characteristic of dataflow circuits is their distributed con-
trol mechanism: Execution of components is triggered by the avail-
ability of all input operands. Results are transmitted as soon as
recipient components are ready to consume them. Tokens, trans-
mitted through channels, abstract the exchanges of pieces of data
between components; they can be physically implemented through
two handshake control signals indicating, respectively, the validity
of the data emitted by the sender and the readiness of the recipient.
Conversion of imperative programs into circuits is, in principle,
not hard. Data dependencies within a DFG are straightforward to
implement: a variable becomes a channel and the token exchange
protocol ensures that the data consumer is not executed before
the data producer has made data available. Things get trickier be-
yond the BB: Who should get tokens corresponding to live-out
variables of BBs? Who can supply tokens corresponding to BB live-
in variables? Of course, it depends on the control flow path that
the program takes. Josipović et al. [14] simply had tokens follow
literally the control flow, connecting dynamically live-outs to live-
ins through a sequence of BRANCH nodes literally representing
every control flow decision as taken sequentially by the circuit.
More recently, our work on fast token delivery [9] have developed a
strategy to connect directly data producers to all of their potential
consumers, irrespective of the BBs they belong to. Essentially, we
place a single BRANCH component in-between every producer and
potential consumer, and compute the appropriate set of control flow
decisions that result in the execution of the consumer—when the
path is not active, because control flowed elsewhere, the token is
dropped. Therefore, while Josipović et al. explicitly modelled their
circuitry after the CFG and used it to deliver tokens across BBs,
our fast token delivery approach got rid of this circuitry and saved
resources and runtime [9].

2.1 Load-Store Queues for Dataflow Circuits
The discussion above covers only direct data dependencies but
ignores completely dependencies through memory. For instance,
when a store operation writes to a particular location and a subse-
quent load happens to read the same address, nothing in the circuit
designed as above would prevent, in general, the load to execute be-
fore the store—and this would result in incorrect execution. In many
cases, it might be possible to determine that two accesses can never
collide through alias analysis; yet, there are cases where accesses
are purely data dependent and thus impossible to disambiguate
statically. One could generate relatively complex circuitry to check
addresses and keep accesses in order only when addresses match.

40

Straight to theQueue: Fast Load-StoreQueue Allocation in Dataflow Circuits FPGA ’23, February 12–14, 2023, Monterey, CA, USA

done_ST_alloc = dummy;
for (i = 0; i < N; i++) {
index = A[i];
done_LD_alloc =
allocate_LD(done_ST_alloc);

val = B[index];
if (val > max)
val = 0;

else
val = val * 2;

done_ST_alloc =
allocate_ST(done_LD_alloc);

B[index] = val;
}

for (i = 0; i < N; i++) {
index = A[i];
val = B[index];
if (val > max)
val = 0;

else
val = val * 2;

B[index] = val;
}

(a) (b)

Figure 3:Memory Dependencies as Data Dependencies. (a) The orig-
inal code of Figure 1a. (b) The same code with pseudofunctions (i.e.,
LSQ allocations) and pseudovariables to guarantee correct ordering.

Josipović et al. [13] delegated these checks to the standard compo-
nent used for this purpose, namely, an LSQ. Such an LSQ would be
almost identical to a classic superscalar processor LSQ, except for
the allocation mechanism—that is, for the process used to inform
the LSQ of the original order of accesses in the program. While this
is trivially implemented by the in-order instruction decode stage of
a processor, dataflow circuits do not have anything like a decode
phase. To address the issue, the authors first observed that the order
of accesses within BBs is known statically and therefore all accesses
of a BB can be allocated at once. Next, they exploited the fact that
their dataflow circuits still followed closely the control flow of the
program; they could then connect the LSQ to existing signals ex-
plicitly indicating that a particular BB was reached. Figure 2, from
the original paper [13], illustrates the idea: every time the control
flows to a BB containing relevant memory accesses, a single control
token is sent to the LSQ to allocate a group of slots corresponding to
all accesses in the BB (GR in Figure 2), in program order. Although
this solution is perfectly correct, the in-order circuitry producing
such control tokens is quite inefficient and its removal is the key
performance advantage of the fast token delivery circuit generation
strategy [9]. Our goal is now to produce the correct in-order tokens
for LSQ allocations without the circuitry by Josipović et al.

3 KEEPING ALLOCATIONS IN ORDER
To summarize, our duty is to generate the specific allocation token
for the LSQ every time execution is known to reach one of the
critical memory accesses, exactly in the order sequential execution
would reach them. Our goal is to generate these tokens as quickly
as possible and without holding back the rest of the circuit. We ob-
serve two intuitive facts: (1) data dependent operations are always
executed in order, by construction and (2) the fast token delivery
strategy [9] honours these dependencies most efficiently. The idea
we use to achieve our goal is fairly simple: Model the potential
memory dependencies as ordinary data dependencies. The data
exchanged are irrelevant (i.e., the tokens are dataless) but the to-
ken exchange itself is essential to maintain order. The operations
receiving and producing these control tokens represent our LSQ
allocations. Figure 3 illustrates the idea on the code of Figure 1a:
Pseudofunctions (allocate_LD() and allocate_ST()), placed in
the BBs containing the memory accesses, represent allocations—
the arrival of an input argument is a proof that the memory access
will certainly be reached; thus, an allocation token is sent to the
LSQ. Pseudofunctions produce pseudovariables (done_ST_alloc

SEQ1

SEQ2

LSQ

in

cond

JOIN

FORK

BUFFER

in1..... inN

out1

out2

BRANCH

(a) (b)

Figure 4: The Sequentializer (SEQ). (a) The typical use of SEQs.
(b) Its implementation with dataflow components.

and done_ST_alloc) which bring tokens to the next pseudofunc-
tions and thus keep pseudofunctions executing strictly in order.
Essentially, (i) we construct, through data dependencies among
pseudovariables, the smallest necessary subset of the original in-
order control-flow network and (ii) we use the fast token delivery [9]
strategy to get an extremely efficient implementation of it, much
superior to the direct implementation that strictly follows the CFG.

4 INTERFACING CIRCUITS WITH THE LSQ
Based on the intuition of the previous section, we detail now our
methodology for interfacing dataflow circuits with LSQs.

4.1 The Sequentializer (SEQ)
To deliver control allocation tokens in the desired order, we in-
troduce a dataflow component which we call sequentializer or, in
short, SEQ (see Figure 4). In reference to our intuitive presentation
of the solution, the SEQ instances are the implementation of the
pseudofunctions allocate_LD() and allocate_ST() in Figure 3:
A SEQ has an arbitrary number of input ports (but at least one) and
executes only when tokens arrive on all ports; each input token
represents the confirmation that a particular allocation preceding
the current one in program order has been carried out. A SEQ has
two output ports; one is used to pass an allocation token to the LSQ
and the other to inform successors once the allocation takes place.
We will see that SEQs are typically connected in chains or cycles,
as suggested in Figure 4a—where appropriate BRANCHes deliver
or remove tokens based on control flow. Note that all SEQ ports
are dataless and consists only of handshake signals. In general, a
SEQ is responsible for allocating a group of accesses.

To reason about the functionality of the SEQ component, con-
sider an example of two groups of accesses 𝑔𝑟𝑜𝑢𝑝𝑖 and 𝑔𝑟𝑜𝑢𝑝 𝑗 (e.g.,
two sets of accesses belonging to two BBs). Suppose that the control
flow determines that 𝑔𝑟𝑜𝑢𝑝𝑖 should be allocated first. We would
need two SEQs connected as shown in Figure 4a. Functionally,
we need SEQ to respect a number of constraints: (a) SEQ must
trigger only when all input tokens arrive. (b) Each SEQ must pass
the control token to the next one only once the LSQ has accepted
the allocation token. If the LSQ applies backpressure, SEQ cannot
trigger further allocations through successive SEQs, as these may
then be accepted earlier by the LSQ—and thus out of program order.
(c) If the LSQ accepts immediately the allocation of both 𝑔𝑟𝑜𝑢𝑝𝑖
and 𝑔𝑟𝑜𝑢𝑝 𝑗 , SEQ must enforce that 𝑔𝑟𝑜𝑢𝑝𝑖 happens before 𝑔𝑟𝑜𝑢𝑝 𝑗 .
This would not be necessarily granted, if SEQ had a combinational
path from the input ports to the output to successive SEQs.

41

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Ayatallah Elakhras, Riya Sawhney, Andrea Guerrieri, Lana Josipović, & Paolo Ienne

for (i = 0; i < M; i++)
sum += A[addr[i]]; // LD1

for (j = 0; j < N; j++) {
for (k = 0; k < N; k++)

B[k] = A[addr[k]]; // LD2
A[j] = C[j] * 2; // ST

}

BB0

BB1

BB2

BB3

BB4

BB5

(a)

(b)

LD1

LD2

ST

S = {LD1, LD2, ST}

S’ = {BB1, BB3, BB4}

BB1 BB3

BB4

G

(c)

allocate_LD1()

Start

(d)

SSA Φ

allocate_LD2()

allocate_ST()

Figure 5: Steps in the Construction of the Allocation Network. (a) A
sample code. (b) Its CFG. (c) The sets S and S′, and the graph G.
(d) The elements added to the HLS tool IR.

MUXINIT

FORK

c4

INITc1

BRANCH SEQ
(BB1)

c1

MUX

FORK

c1

INITc4

BRANCH

SEQ
(BB4)

c4

MUX

FORK

c4

BRANCH

INITc3

BRANCH SEQ
(BB3)

c3

MUX

FORK

c3

BRANCH

BRANCH LSQ

allocate_LD1
allocate_LD2

allocate_ST

Start

c0 BRANCH

CMERGE

c1 BRANCH

Start

CMERGE

FORK

c2 BRANCH

CMERGE

c3 BRANCH

CMERGE

c4

CMERGE

BRANCH

LSQ

allocate_LD1
allocate_LD2

allocate_ST

FORK

FORK
(a)

(b)

Figure 6: Circuits of the Example in Figure 5. (a) Circuit produced
by our approach (shaded in red are the components added for fast
token delivery [9]: connections between the INIT components and
the Start signal are omitted).𝐶𝑖 is the condition of 𝐵𝐵𝑖 . (b) Circuit
mimicking the in-order network of Josipović et al. [14].

We implement SEQ using common elastic components [14], as
shown in Figure 4b. The three components are immediately dictated
by the constraints above: (a) The first constraint determines the
JOIN at the input. (b) The second constraint imposes the type
of FORK needed to give the token both to the LSQ and to the
successors; such FORK must be lazy, which implies that the output
tokens are valid only when both successors are ready to consume
them. (c) The output path towards other SEQs must be sequential
or, in other words, the output must be delayed by a cycle though
a nontransparent elastic buffer BUFFER. The final circuitry is not
fundamentally different from prior work [14], but the use of SEQ
helps us build the allocation network.

4.2 Construction of the Allocation Network
Figure 5 shows all steps in the construction of the allocation cir-
cuitry for the accesses to A[] in the code of Figure 5a. Figure 6
contrasts our circuit to the circuit mimicking the sequential control
flow. We will refer to this example throughout the section.

Any classic memory dependence analysis must provide us with
two elements: (1) The setS of memory operations whose access pat-
terns cannot be disambiguated and thus require an LSQ to prevent
potential data hazards. (2) The potential dependencies between the

individual memory operations in the setS. We impose no particular
requirements on this memory analysis and it can be implemented in
any way (e.g., polyhedral analysis); simply, all potentially colliding
accesses must be included in S. The amount of parallelism the cir-
cuit will be able to exploit will depend on how conservative (that is,
how unable to disambiguate accesses) this memory analysis is. Note
that, in general, there will be, for a single program, multiple sets
of mutually potentially dependent access—that is, multiple sets S,
each associated with a different LSQ. Without loss of generality, we
will refer in the sequel to a single setS and a single LSQ; everything
described here must be repeated, independently, for each S. In our
example, simply S = {𝐿𝐷1, 𝐿𝐷2, 𝑆𝑇 }. From this information, we
progressively build our minimal allocation network in four steps.

Clustering.We cluster the different elements of the set S into
groups where all operations within one group will be allocated to
the LSQ at once. Like Josipović et al. [13], we consider as a group
all operations of S belonging to the same BB because (1) the order
of accesses within one BB can be statically determined and (2)
the conditions of execution of all operations within one BB are
the same by definition (i.e., every time one operation executes, all
of the other operations are guaranteed to execute as well). This
results in a set S′ whose elements are essentially those BBs of
the program that contain any of the accesses in S. In our simple
example, S′ = {𝐵𝐵1, 𝐵𝐵3, 𝐵𝐵4}.

Building a dependence graph.We build a directed graph G
whose nodes are the elements of S′. There is an arc between two
nodes 𝑢 and 𝑣 of G if the memory analysis reports a possible de-
pendency from any of the S nodes corresponding to 𝑢 to any of
the S nodes corresponding to 𝑣 . Figure 5c shows G in our example.

Implementing the dependence graph. In the compiler’s inter-
mediate representation (IR) of the input program, we add a pseudo-
function (representing a SEQ) in each DFG corresponding to the
nodes of graph G. For each arc of graph G, we add a pseudovariable
(in the format used in the IR); this variable is assigned the value re-
turned by the pseudofunction at the source of the arc and becomes
one of the arguments of the pseudofunction at the target of the arc.
Obviously, every pseudofunction will have as many arguments as
predecessors of the corresponding node in G. If a node in G has
multiple successors, a FORK needs to be inserted, as it is normally
the case in dataflow circuits.

Adding initial triggers and final sinks. Some nodes in G may
have no predecessors (i.e., the corresponding accesses are not po-
tentially dependent on any preceding access); since we need a token
to ever trigger the corresponding SEQ component, we initialize a
pseudovariable at the beginning of the program and we make it an
argument of the corresponding pseudofunction (which would have
no arguments otherwise). This is equivalent, in circuit terms, to
connecting the Start signal (a signal that is triggered once at begin-
ning of the circuit’s execution) to SEQ through an appropriately
conditioned path. Similarly, nodes in G may not have successors
if no further access depends on the corresponding accesses: we
simply assign the value returned from the corresponding pseudo-
function to a new pseudovariable which wemake a live-out variable
of the program. In circuit terms, we connect this port to a SINK
(and SEQ–SINK pairs will be replaced with simple JOINs). Finally,
there are often cases of cyclic dependencies in G: in this case, every
node has a predecessor but the corresponding circuit will never

42

Straight to theQueue: Fast Load-StoreQueue Allocation in Dataflow Circuits FPGA ’23, February 12–14, 2023, Monterey, CA, USA

LLVM IR Memory
Analysis

Our work

Circuit
Generation

Buffer
Insertion

HDLDOT

C/C++ Clang LLVM IR LLVM IR

DOT Write HDL

Figure 7: Our methodology inside Dynamatic [15]. Nothing is
changed but the generation of the allocation circuitry (“Our work”).

trigger because the cycle does not contain any token. Such a token
should be introduced in the cycle by triggering the SEQ which is
reached first in the cycle. A straightforward way to implement this
is to initialize all pseudovariables at the beginning of the program
and let a standard static single-assignment (SSA) [7] transformation
pass take care of this: essentially, many of the initial assignments
will be considered dead code but one or more will carry the initial
value to the corresponding pseudofunctions through SSA 𝜙 ’s (and,
thus, bring an initial token into the cycle). Figure 5d shows the
implementation of the dependence graph G in the compiler IR,
including the connections to Start, both directly and via an SSA 𝜙 .

Once we have added all this to the compiler IR, the pseudovari-
ables and pseudofunctions appear as any other element of the orig-
inal code and can be converted into a circuit with the very same
strategy adopted for the rest of the original code elements. Fast
token delivery [9] is particularly suitable to implement an efficient
circuit and can be used. The only differences, compared to the rest
of the circuit, are (i) that the implementation of the pseudofunctions
will be SEQ components and (ii) that the datapath should be zero
bits wide (i.e., control only). Of course, the SEQ nodes will also
need to be connected to the appropriate ports of the LSQ. Figure 6a
is the resulting circuit (slightly simplified by omitting the self-loop
on BB4 for simplicity). One can still recognize the topology of G
but now the components added for fast token delivery (shaded in
red) are responsible for steering tokens as the execution flow de-
mands. Finally, Figure 6b is the circuit that the method of Josipović
et al. [14] would produce that serializes the allocations of LD1 and
LD2, while they can happen in parallel with our scheme.

5 EXPERIMENTAL SETUP
We implement our methodology inside Dynamatic [15], an open-
source C-to-dataflow circuits HLS tool based on LLVM [18], as a new
LLVM pass. We use the memory analysis of Dynamatic [12] that is
based on polyhedral analysis to select the minimum set of memory
operations that needs to be interfaced with an LSQ. Dynamatic
implements both the original circuit generation by Josipović et
al. [14] as well the more recent fast token delivery strategy [9]; the
latter is used to implement the circuits described in Section 4.2. We
also use the unmodified backend to insert buffers in the resulting
dataflow circuit and generate the RTL description.We interface with
the standard LSQs used in Dynamatic. Yet, this LSQ design supports
only a single allocation per cycle whereas now multiple allocations
can be requested at once (for instance, if two groups contain only
load operations); therefore, we add round-robin arbiters to pass a
single allocation token at a time to the LSQs. As already observed
by Cheng et al. [6], such an arbiter could induce deadlock in some
peculiar situations; we size the LSQs sufficiently large to avert the
problem. Figure 7 shows our work inside Dynamatic. We synthesize
the generated VHDL netlists with Vivado 2019.2.1 [23] with a clock

sum = 0;
for (int i = 0 -> M)

sum++;
for (j = 0 -> N){

for (k = 0 -> L)
ST A;

LD A;
}

(a)

(c)

Alloc. ST

i = 0 i = 1

j = 0 j = 1

k = 0 k = 1 k = 0 k = 1

Alloc. ST Alloc. LD Alloc. ST Alloc. ST Alloc. LD

(b)

i = 0 i = 1

j = 0 j = 1

k = 0 k = 1 k = 0 k = 1

Alloc. ST Alloc. ST Alloc. LD Alloc. ST Alloc. ST Alloc. LD

Figure 8: Explanation of Our Performance Gains. (a) A sample code.
(b) Schedule using the in-order network [14] that serializes iterations
of independent loops. (c) Schedule using our approach for allocating
as early as possible by overlapping different loop iterations.

period constraint of 4 ns, targeting a Kintex-7 Xilinx FPGA. We
simulate the designs with ModelSim 10.5c [19] for verification. We
measure (1) the cycle count obtained from simulation, (2) the clock
period (CP) from the postrouting timing analysis, and (3) resource
usage from Vivado after placement and routing. We report the
number of DSPs but they are unaffected by our approach.

We collect results for eight kernels with different control struc-
tures and memory access patterns, mostly adapted from the Poly-
Bench suite [21]. We benchmark our methodology against two
references: (1) The original circuit generation by Dynamatic, with
its in-order control network that mimics the global control flow.
(2) The fast token delivery circuit generation [9] that, alone, cannot
handle circuits needing LSQs; therefore, we add ourselves the same
in-order control network used by Dynamatic for LSQ interfacing.

6 EXPERIMENTAL RESULTS
Our implementation is publicly available [8]. Table 1 reports our
measurements and Figure 9 contrasts graphically our results and
those of the second baseline [9] normalized to the original Dyna-
matic [15]. In the majority of cases, our results Pareto-dominate
both baselines. In general, our gains are more on the performance
side reflecting the fact that the in-order network that we replace is,
in many cases, very detrimental to the speed of execution (in terms
of cycles) and is relatively simple (in terms of hardware resources)—
especially when compared to the size of the LSQs; thus, the area is
unaffected in most cases. Wall time is reduced by more than 70%
in one case and the geomean of reductions is around 20%, over
both baselines. Figure 8 explains our performance gains by con-
trasting the allocation time of the strictly in-order memory accesses
(Figure 8b) to our approach (Figure 8c) in loop-dominated kernels,
which model the structure of our benchmarks, as discussed next.

getTanh is adapted from a CORDIC-based hyperbolic tangent
computation. It inspired the motivational example of Section 1.1
and our methodology is essential to achieve a lower loop initiation
interval, which in turn shortens significantly wall time execution.

2mm, 3mm and covariance perform multiplication and addi-
tion of matrices in complicated nested loop structures. atax and
jacobi_1d have simpler control structures with a single outer loop
enclosing two separate inner loops. The in-order control network
limits the pipelining of loop-nests and forces the sequential execu-
tion of separate loops, as shown in Figure 8b. In removing it, we
gain by overlapping the outer and inner loops iterations, as well
as parallelizing the separate consecutive loops. This enables faster
LSQ allocations, where possible, as shown in Figure 8c.

43

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Ayatallah Elakhras, Riya Sawhney, Andrea Guerrieri, Lana Josipović, & Paolo Ienne

Table 1: Our circuits contrasted to those produced by the circuit generation methodologies of Dynamatic [15] and fast token delivery [9], both
interfacing LSQs using the in-order control network mimicking the global control flow.

Bench-
mark

Cycle count CP (ns) Execution time (𝜇s) LUT FF DSP
[15] [9] Ours [15] [9] Ours [15] [9] Ours vs. [15] vs. [9] [15] [9] Ours [15] [9] Ours

getTanh 7,053 6,006 2,009 9.11 8.82 8.44 64.25 52.99 16.95 -74% -68% 19,008 19,460 18,994 4,379 4,087 4,058 9
2mm 3,231 2,711 2,498 7.80 8.10 7.77 25.20 21.96 19.41 -23% -12% 23,444 22,505 22,190 7,696 6,770 6,715 12
3mm 4,382 4,213 2,498 8.29 8.29 7.87 36.34 34.93 19.66 -46% -44% 41,691 40,337 39,742 11,481 10,882 10,667 9
covariance 37,499 36,335 36,307 8.07 7.68 7.08 302.77 279.09 257.13 -15% -8% 21,468 21,333 21,345 6,236 5,671 5,694 3
jacobi_1d 1,474 1,320 1,173 6.86 7.22 7.24 10.11 9.54 8.49 -16% -11% 20,054 19,120 18,911 4,756 4,335 4,338 3
atax 1,149 991 840 6.80 7.39 6.76 7.81 7.32 5.68 -27% -22% 20,559 20,154 20,256 5,424 4,924 4,903 6
triangular 9,895 9,892 9,892 9.18 7.51 7.36 90.79 74.25 72.82 -20% -2% 20,581 19,689 20,046 5,082 4,592 4,573 3
histogram 1,015 1,016 1,016 6.92 6.88 6.45 7.02 6.99 6.55 -7% -6% 18,916 18,912 19,437 4,236 4,214 4,198 0
geomean -27% -20%

0.75

0.8

0.85

0.9

0.95

1

1.05

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

FF

EXECUTION TIME

Fast Token Delivery [9] Our Work Dynamatic [15]

getTanh

2mm

3mm

covariance

jacobi_1d

atax

triangular

histogram

geomean

Figure 9: Execution time and FFs in circuits generated by the fast token delivery strategy [9] using the strictly in-order network for LSQ
allocations once and using our work another time. The results are normalized to those of Dynamatic and Pareto-dominate them [15].

histogram computes the histogram of an array and triangular
computes matrix multiplication of a triangular matrix. Both kernels
result in smaller performance gains in comparison to other kernels
mainly because they have simpler control structures. We use them
to show that in simple control structures our control network will
be the same as the classic in-order control network.

7 RELATEDWORK
Several authors explored the generation of dataflow circuits from
imperative code [4, 10, 14, 17], but the only work interfacing with
LSQs is Dynamatic [13], our baseline. Cheng et al. [6] proposed a
solution to Dynamatic’s sequential LSQ allocation through a static
analysis which identifies independent loops that can execute in
parallel and built a custom, fast allocation scheme for that particular
case. Our strategy is not customized to a particular situation and
guarantees fast allocation for any control structure. Other works
either serialize conservatively all memory accesses [10, 11, 17], or
only those whose dependencies cannot be resolved statically [5].

There is a huge resemblance between our dataflow circuits and
the dataflow architectures explored in the past decades [1, 20]; they,
similarly, had no mechanism to ensure the in-order execution of
memory operations. To guarantee correct execution, they chose
to support only memory operations with constrained semantics
and provided special memory structures for them. One example
is the write-once I-structures [2] which are initialized to empty
and block any read requests when empty; thus, they eliminate the

read-after-write data hazards. Another example is the mutable M-
structures [3] that become empty after a read and can be rewritten
only when empty. Our approach is better suited for themore generic
memory semantics of imperative languages. Swanson et al. [22]
providedWaveScalar, an instruction set architecture for dataflow
machines that encodes information about memory dependencies
within instructions. Their instruction encodings are similar to our
virtual data dependencies; however, to resolve potential ambigu-
ities that arise in complicated control structures, they introduce
MEMORY-NOP instructions which add overhead and unnecessarily
consume the memory bandwidth, whereas we benefit from the
standard SSA algorithm and the generic fast token delivery [9] to
resolve such ambiguities without imposing overheads.

8 CONCLUSIONS
Dynamically scheduled HLS has some qualitative advantages when
it comes to compiling arbitrary, software-oriented applications. This
work represents the latest realization showing that even modest
improvements in dataflow circuit generation can have a tangible
effect on the quality of the results. With little implementation effort,
we have shown a novel strategy to allocate slots in the LSQs of
dataflow circuits whose speedup gains are considerable (up to 3.8×
in one case) at no cost in resources.

ACKNOWLEDGMENTS
This research is partially supported by Huawei.

44

Straight to theQueue: Fast Load-StoreQueue Allocation in Dataflow Circuits FPGA ’23, February 12–14, 2023, Monterey, CA, USA

REFERENCES
[1] Arvind and R. S. Nikhil. Executing a program on the MIT Tagged-Token dataflow

architecture. IEEE Trans. Computers, 39:300–318, 1990.
[2] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallel

computing. ACM Trans. Program. Lang. Syst., 11(4):598–632, Oct. 1989.
[3] P. S. Barth and R. S. Nikhil. M-structures: Extending a parallel, non-strict,

functional language with state. In J. Hughes, editor, Functional Programming
Languages and Computer Architecture, pages 538–568, Berlin, Heidelberg, 1991.
Springer Berlin Heidelberg.

[4] M. Budiu, P. V. Artigas, and S. C. Goldstein. Dataflow: A complement to su-
perscalar. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software, pages 177–86, Austin, Tex., Mar. 2005.

[5] M. Budiu and S. C. Goldstein. Pegasus: An efficient intermediate representation.
Technical Report CMU-CS-02-107, Carnegie Mellon University, May 2002.

[6] J. Cheng, L. Josipović, G. A. Constantinides, and J. Wickerson. Dynamic inter-
block scheduling for HLS. In Proceedings of the 32nd International Conference on
Field-Programmable Logic and Applications, Belfast, UK, Aug. 2022.

[7] R. G. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An
efficient method of computing static single assignment form. In Proceedings of
the 16th Symposium on the Principles of Programming Languages, pages 25–35,
Austin, TX, Jan. 1989.

[8] A. Elakhras. Straight LSQ interface. https://doi.org/10.5281/zenodo.7406581,
2022.

[9] A. Elakhras, A. Guerrieri, L. Josipović, and P. Ienne. Unleashing parallelism in
elastic circuits with faster token delivery. In Proceedings of the 32nd International
Conference on Field-Programmable Logic and Applications, pages 253–61, Belfast,
UK, Aug. 2022.

[10] N. Gädke-Lütjens. Dynamic Scheduling in High-Level Compilation for Adaptive
Computers. Ph.D. thesis, Technischen Universität Braunschweig, Braunschweig,
Germany, Apr. 2011.

[11] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu. Elastic CGRAs. In Proceedings
of the 21st ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pages 171–80, Monterey, Calif., Feb. 2013.

[12] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne. Shrink it or shed it!
Minimize the use of LSQs in dataflow designs. In Proceedings of the IEEE Interna-
tional Conference on Field Programmable Technology, pages 197–205, Tianjin, Dec.
2019.

[13] L. Josipović, P. Brisk, and P. Ienne. An out-of-order load-store queue for spatial
computing. ACM Transactions on Embedded Computing Systems, 16(5s):125:1–
125:19, Sept. 2017.

[14] L. Josipović, R. Ghosal, and P. Ienne. Dynamically scheduled high-level syn-
thesis. In Proceedings of the 26th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 127–36, Monterey, Calif., Feb. 2018.

[15] L. Josipović, A. Guerrieri, and P. Ienne. Dynamatic: From C/C++ to dynamically
scheduled circuits. In Proceedings of the 28th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pages 1–10, Seaside, Calif., Feb. 2020.

[16] L. Josipović, A. Guerrieri, and P. Ienne. Synthesizing general-purpose code into
dynamically scheduled circuits. IEEE Circuits and Systems Magazine, 21(2):97–118,
Second quarter 2021.

[17] N. Kasprzyk. COMRADE—Ein Hochsprachen-Compiler für Adaptive Computer-
systeme. Ph.D. thesis, Technischen Universität Braunschweig, Braunschweig,
Germany, 2005.

[18] The LLVM Compiler Infrastructure. http://www.llvm.org, 2018.
[19] Mentor Graphics. ModelSim, 2016.
[20] G. M. Papadopoulos. Implementation of a General-Purpose DataflowMultiprocessor.

PhD thesis, Massachusetts Institute of Technology, Laboratory for Computer
Science, 1998.

[21] L.-N. Pouchet. Polybench: The polyhedral benchmark suite, 2012.
[22] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam, K. Michelson,

M. Oskin, and S. J. Eggers. The WaveScalar architecture. ACM Trans. Comput.
Syst., 25(2), May 2007.

[23] Xilinx Inc. Vivado Design Suite, 2019.

45

https://doi.org/10.5281/zenodo.7406581

	Abstract
	1 Introduction
	1.1 Straight to the Queue

	2 Dataflow Circuits
	2.1 Load-Store Queues for Dataflow Circuits

	3 Keeping Allocations in Order
	4 Interfacing Circuits with the LSQ
	4.1 The Sequentializer (SEQ)
	4.2 Construction of the Allocation Network

	5 Experimental Setup
	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

