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Abstract—Dataflow circuits implement dynamic scheduling
and have recently been explored as an alternative to standard,
statically scheduled high-level synthesis (HLS) solutions. In con-
trast to static HLS, dataflow circuits resolve memory dependen-
cies during runtime by employing load-store queues (LSQs) at
the memory interface. However, LSQs are extremely resource-
expensive to implement in a spatial system and may cause
notable frequency degradation. Therefore, there is a clear need to
minimize their size and complexity, while still allowing the circuit
to achieve a high computational rate. So far, designers resorted
to manually tuning the LSQ depth (i.e., number of queue entries)
to trade off area and performance; yet, this approach is evidently
time-consuming and unfeasible for complex designs. In this
work, we develop a strategy to automatically determine the most
affordable LSQ depths in dataflow circuits while maintaining the
best possible circuit throughput. We demonstrate our technique
on benchmarks obtained from C code with different memory
access patterns and show that it can effectively produce the
desired Pareto-optimal design points.

I. INTRODUCTION

In contrast to statically scheduled circuits produced by
classic high-level synthesis (HLS) tools [31], [5], dataflow cir-
cuits [6], [11] implement high-throughput pipelines that adapt
their execution dynamically, at runtime, to particular data and
control outcomes. Recent HLS efforts explore this flexibility
and generate dataflow circuits from high-level code [17], [3];
they achieve significant performance improvements in pro-
grams where memory dependencies and control flow cannot
be determined at compile time.

One of the key features that makes dynamic scheduling
superior to static is its ability to aggressively reorder memory
accesses, even when they cannot be statically disambiguated:
In cases where memory access patterns are not known at
compile time (e.g., because the addresses are unknown or
memory dependencies are imposed by statically unpredictable
control flow), static HLS must make conservative scheduling
assumptions and sequentialize potentially dependent accesses.
In contrast, dynamic HLS uses load-store queues (LSQs) [16]
to resolve memory access collisions at runtime, once the actual
memory addresses and control flow decisions become known.
This approach ensures that only the accesses that have an
actual read-after-write (RAW), write-after-write (WAW), or
write-after-read (WAR) dependency are ordered before being
issued to memory; all those that are determined independent
by the LSQ may execute out of order for high performance.

Although the LSQ is the key component to implement-
ing dynamic out-of-order pipelines, it incurs significant re-
source costs and clock degradation when implemented on an
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Fig. 1: A portion of a dataflow circuit and its memory interface that
contains a load-store queue (LSQ). An LSQ needs a particular depth
(i.e., number of queue entries) to sustain the rate of memory requests
incoming from the circuit; yet, the LSQ resource requirements and
critical path rapidly increase with its depth. Our goal is to systemati-
cally determine a resource-affordable LSQ depth that allows dataflow
circuits to reap all performance benefits of dynamic scheduling.

FPGA [30]. These detrimental effects are directly dependent
on the depth of the LSQ: the number of pending memory
requests that the LSQ can hold impacts the storage element
requirements, but also the complexity of the comparison
logic used for identifying dependencies among the pending
addresses. Thus, there is a clear need to make the LSQs as
small and simple as possible [14], while still reaping all the
performance benefits of dynamic scheduling.

In this work, we present a complete strategy to determine
the minimal LSQ depth that sustains the maximal throughput
of a dataflow circuit and, consequently, achieves the best
performance with a minimal resource overhead. Our strategy
accounts for a variety of unpredictable behaviors that can occur
in dynamically scheduled systems, such as irregular control
flow and memory access patterns. On a set of benchmarks ob-
tained from C code, we show that our technique automatically
produces Pareto-optimal points that previous HLS solutions
could only achieve through extensive manual exploration.

II. THE NEED FOR AFFORDABLE LSQs

The code in Figure 1 represents a typical case where
dynamic scheduling is known to be superior to static schedul-
ing [17], [15]. Notice that the code has an indirect memory

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on January 30,2023 at 17:05:44 UTC from IEEE Xplore. Restrictions apply.



access to array hist; thus, there is a possible, but uncertain
memory dependency between a store and any of the consec-
utive loads to this array. In contrast to static HLS, where
each load is conservatively postponed until the previous store
executes (thus resulting in low throughput), a dataflow circuit
can dynamically adapt the pipeline and resolve memory de-
pendencies at runtime, therefore achieving better performance.

Figure 1 shows the datapath of the dataflow circuit im-
plementing the code above, with its memory interface. The
key component to implement the desired dynamic dependency
resolution is the LSQ at the memory interface: it receives load
and store requests to array hist out of order, but ensures that
those that are dependent execute in the same order as in the
original program. Irrespectively of the implementation details,
any LSQ must contain the following: (1) storage elements to
hold memory requests that have been sent from the circuit, but
not yet issued to memory (indicated as load and store queue
in the figure), and (2) logic to compare the load and store
addresses and ensure the absence of data hazards (i.e., every
green line in the figure represents a comparator for one load-
store address pair). It is immediately clear that the resource
requirements of the LSQ depend on its depth: in the implemen-
tation in the figure, the storage requirements increase linearly,
and the comparison logic quadratically with the number of
entries of the internal load and store queues [16]. Thus, there
is a clear advantage in minimizing this value. On the other
hand, employing a depth that is too small may compromise
the pipelining capabilities of the dataflow circuit, as the LSQ
would not be able to sustain the rate of incoming memory
requests. Determining a depth that provides an acceptable area-
performance tradeoff is nontrivial, as it depends on a variety
of circuit properties (e.g., operation and memory latencies,
circuit throughput) as well as its statically undeterminable
behaviors (e.g., control flow, memory collisions). In the rest
of this paper, we formalize this problem and present a strategy
that accounts for all of these factors to automatically determine
a performance- and resource-acceptable LSQ depth.

III. BACKGROUND AND RELATED WORK

In this section, we describe dataflow circuits and introduce
their relevant properties. We outline the role and typical
operating principle of load-store queues in dataflow systems.

A. Dataflow Circuits

Dataflow circuits are built out of units that communicate
using a latency-insensitive handshake protocol [6], [11]; the
exchange of data (i.e., tokens) and the start of each operation
are determined at runtime. Several works described how to
translate imperative code into a high-throughput dataflow cir-
cuit [3], [17] and we follow one of these methodologies [17].

The circuits we consider group dataflow units into basic
blocks (BBs), straight pieces of code with no conditionals; all
control flow decisions are determined on the edges between the
BBs, forming a control-flow graph (CFG) [23]. Our circuits
respect the following properties [14]: (1) all BBs must start in
program order (e.g., in Figure 1, the first execution of BB; must
start before the second, in this case, identical, BB; execution)

and (2) each individual dataflow unit processes its tokens in
order (e.g., the load to hist of iteration 1 must complete
before the same load of iteration 2). Yet, different dataflow
units may execute out of order for high parallelism (e.g., load
to hist of iteration 2 might execute before the store to hist
of iteration 1); thus, the memory interface requires an LSQ to
correctly handle potentially out-of-order memory requests.

B. Load-Store Queues in Dataflow Circuits

Standard HLS relies on techniques such as modulo schedul-
ing [33], [10], [4] to overlap loop iterations and determine
the exact clock cycle in which each operation executes. Since
all memory dependencies are (sometimes, conservatively) en-
forced by the static schedule, an LSQ is not required.

Dynamically scheduled HLS borrows the concept of LSQs
from out-of-order processors [25] to dynamically resolve
memory dependencies during circuit runtime. To reduce its
resource expensiveness, existing approaches rely on vari-
ous memory analyses to disambiguate memory accesses and
optimize the memory interface, from classic alias [2] and
polyhedral analysis [26], [13], to custom data dependency
analysis for dataflow circuits [14]. Yet, whenever an LSQ
cannot be completely removed using these techniques, all these
efforts resort to manual LSQ size tuning [17] or choosing
an overconservative LSQ size at a resource penalty [8]. The
problem of LSQ sizing is remarkably similar to queue sizing
problems in networking [22], [12] or FIFO sizing in dataflow
circuits [21]; yet, its operating principle is more complex than
that of a typical FIFO and its behavior cannot be fully captured
using existing queueing models and sizing strategies.

C. Operating Principle of an LSQ

Regardless of its structural details and the exact operating
mechanism, any LSQ for a dataflow circuit needs to implement
the following functional steps [16]: (1) Entry allocation. As
soon as a BB starts, entries corresponding to all memory
accesses of this BB are allocated into the LSQ in the original
program order (e.g., in Figure 1, whenever BB; starts, the
load and store to hist are allocated to the LSQ; the LSQ
in the figure shows the state after three BB; allocations).
Since the BBs start in order and the memory accesses of
each BB are statically known, this allocation mechanism
conveys the complete in-order memory access sequence of
the program to the LSQ and enables it to correctly resolve
memory dependencies. (2) Argument supply. As the operations
in the dataflow circuit execute (possibly, out of order), tokens
corresponding to the memory addresses (and data, in case
of stores) will eventually be produced and supplied to the
LSQ, which adds them to the corresponding entry reserved
in the previous step. (3) Execution. The LSQ executes the
memory operation as soon as the memory port is available, all
arguments are supplied, and there are no conflicts with any of
the preceding (i.e., older) LSQ entries. (4) Memory response.
The memory returns to the LSQ the load data or a store
completion signal; the LSQ then sends this information to the
dataflow circuit. (5) Entry deallocation. The LSQ deallocates
the entry and makes it available for future requests.
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Fig. 2: Schedule of a single datapath execution, indicating the
allocation and deallocation times of four loads in the datapath. The
table below calculates the number of memory requests that the LSQ
needs to hold at each point in time (i.e., N(t), calculated based on the
number of allocated and deallocated requests). The largest number
of items to hold (in this case, 3) corresponds to the minimal depth
that the LSQ requires to never stall incoming requests.

A memory access occupies an LSQ entry during the entire
process outlined above (i.e., from the time it has been allocated
to the LSQ, to the time when it is deallocated). The LSQ will
not be a performance-limiting factor of the dataflow circuit
execution only if it has sufficient entries empty and available
whenever the circuit requests a new allocation; otherwise, the
LSQ will create stalls that will propagate through the circuit,
postpone the execution of some operations, and degrade per-
formance. Yet, as illustrated in Section II, this entry number
directly and substantially impacts the resource requirements
of the LSQ. In the rest of this paper, we describe how to
systematically determine an LSQ depth that appropriately
balances these conflicting requirements and results in circuits
that exhibit both area and performance efficiency.

IV. DETERMINING THE LSQ DEPTH

In the previous sections, we highlighted the need to auto-
matically determine the minimal LSQ depth that sustains the
desired circuit performance. In this section, we formalize this
problem and present a mathematical formulation that allows
us to systematically determine an adequate LSQ depth.

A. LSQ Sizing in a Single Datapath

We first consider an execution of a single datapath of
operations (i.e., a straight piece of code or a single loop
iteration); we will generalize our formulation to situations
where datapaths overlap (i.e., loop pipelining) in Section IV-B.

To reason about the timing relations of memory accesses,
we define the following metrics for a datapath d, all expressed
in discrete time units (e.g., clock cycles):

o Tiioe,a(m): allocation time of memory access m.
Titeatioe,a (m): deallocation time of memory access m.
Tarq: datapath execution start time.

Tenaq: datapath execution end time.

A load-store queue can be characterized as follows:
o N(t): number of enqueued memory requests that the LSQ
holds in time ¢
o D: depth of the queue (i.e., number of LSQ entries).

The LSQ will never be a performance-limiting factor if its
depth is such that, at any point in time and regardless of the

number of requests that it already holds, it can allocate all
incoming memory requests. Otherwise, the circuit will stall
and its performance will degrade. Thus, the minimal depth of
the LSQ is bound by the maximal number of memory requests
that the LSQ needs to hold at any time ¢ during the execution:

D = max N(t), vVt € [ﬂtart,daTend,d]' (1)

Here, N(t) corresponds to the number of requests that have
been allocated into the LSQ before or in time ¢, but have not
yet been deallocated:

N(t) = Nalloc(t) - Ndealloc(t)a (2)

where N,.(t) is the number of memory requests that have
been allocated into the LSQ before or during ¢, whereas
Nueaioc(t) is the number of memory requests that have been
deallocated from the LSQ before or during ¢ (thus, in time ¢,
they no longer reserve an LSQ slot and we can deduct them
from the current number of items in the LSQ).

The value of Nyj,(t) can be expressed as the sum of all
memory requests m of datapath d for which Tyy,c.q(m) < ¢:

Nalloc(t) = Z -F(Talloc,d(m); t) (3)
med

Here, F(a, b) corresponds to the following function:

1, a<b
f(a’b):{o a>b

which returns 1 when T 4(m) < t and O otherwise, thus

effectively summing up all currently allocated items.
Similarly, we express the number of deallocated requests at

time ¢ (i.e., the sum of accesses m with Tyeqiioe,a(m) < t) as:

Ndealloc(t) = Z ]:( Tdealloc,d(m)7 t) (5)

med

“4)

These expressions allow us to calculate N(t), as expressed
by Equation 2; the largest value of N(t) that is required during
the entire datapath execution is the LSQ depth that guarantees
maximal performance (see Equation 1).

Figure 2 shows an execution schedule of a datapath contain-
ing four loads: ld; and ld, are allocated in ¢ = 1, and Id 5 and
ld are allocated in ¢t = 4. Therefore, Nyj,c(t) = 2 for t < 4
and N, (t) = 4 for ¢ > 4. Similarly, Ngeauoc(t) increases by
1 when each load is deallocated, i.e.,int =3,¢t=5,t =6,
and ¢t = 8. The largest number of requests that the LSQ has to
hold during the datapath execution is N(4) = 3 (as, in t = 4,
the LSQ still holds Id2 and must have space to allocate Id 3
and Id,); thus, the LSQ requires a depth of D = 3 to allow
all operations to execute as shown in the schedule.

An LSQ can consist of either a single, monolithic queue
that holds both loads and stores, or of distinct load and
store queues, as shown in Figure 1. The former requires a
single depth calculation, where the set of considered memory
accesses m includes both loads and stores; in the latter, the
same calculation is performed separately for the load and
store queue and includes only the load and store accesses,
respectively. Consistently with the architecture we use, we
calculate the load and store queue depths separately; we will
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Fig. 3: Datapath of Figure 2, overlapping with an II of 4 cycles. As
shown in the table, memory accesses of two iterations overlap; the
LSQ now requires 4 entries to hold all pending memory requests.

demonstrate this in Section VI. Yet, our calculation is perfectly
general and applies to any LSQ architecture and organization.

B. LSQ Sizing in Overlapping Datapaths

Our previous formulation describes noncyclic datapaths and
nonpipelined loops (as their iterations execute sequentially
and form a sequence of independent datapaths whose LSQ
requirements can be calculated as above); we here generalize
our approach to pipelined loops, where multiple datapaths (i.e.,
loop iterations) overlap in execution.

We employ the timing relations of Section IV-A to describe
a single execution d of a loop iteration. As in the previous
formulations, all values are expressed relative to the iteration
start time 7,4, Which avoids the need to calculate absolute
execution times (which may be impractical or impossible, e.g.,
when the loop iteration count is unknown) and allows us to
effectively reason about the steady state of the loop (e.g., in
Figure 3, Tyeaoc.a(ld ;) = 3 for every iteration d).

The main difference with respect to the previous discussion
is that, now, multiple iterations (i.e., datapaths) overlap in
execution; we thus define the following metrics:

o lter,,: number of overlapping loop iterations in the
steady state of the loop (i.e., the number of in-flight loop
iterations during a pipelined execution).

e II: loop initiation interval (i.e., the number of clock
cycles between the starts of two consecutive iterations).

The datapath latency and loop II determine the number of
overlapping executions in the steady state of the pipeline:

Tend, d
I |

Itery = { (6)

Figure 3 repeats the datapath of Figure 2, yet it now executes
in a pipelined fashion with an initiation interval II = 4.
Every two consecutive datapath iterations overlap in execution
(i.e., Itery,; = 2), so their memory accesses might overlap as
well—we must account for this effect when sizing the LSQ.

To calculate the sum of requests that the LSQ holds in time
t, we need to account for the accesses of prior iterations that
might not have been deallocated yet; this is the main difference
with respect to our previous formulation. Considering that,
at a given time, the LSQ can contain requests from at most
Iter,,,, iterations (as all earlier iterations and their memory
accesses have already completed), we extend the calculation

of allocated and deallocated items as follows:

Iterya—1
Natoe(t) = D > F(Tutoc.a(m) — i - 11, 1), (1)
i=0 med
Iterpa—1
Ndeallac(t) = Z Z ]:( Tdeulloc,d(m) — -1, t) (3)
i=0 med

As Tuoea(m) and Tyeanoeqa(m) of each memory access
are expressed relative to the start of the corresponding loop
iteration, the term ¢ - II offsets the times of the memory
accesses from prior iterations based on the iteration distance
(the smallest i corresponds to the latest iteration). This method
resembles the modulo scheduling formulations [33]. We can
then calculate N(t), as specified by Equation 2.

Consider the second iteration in Figure 3, representing
the pipeline’s steady state. In its first execution cycle (i.e.,
t = 1 with respect to this iteration start), two accesses of
the prior iteration (¢ = 1) remain allocated in the LSQ (e.g.,
Ta[[,,c,d(ldg) —¢-II=4—4<1 and Tdealloc,d(lds’) —¢- I =
6 —4 > 1), resulting in an LSQ depth requirement of D = 4.

Notice that, in a regular pipeline, the execution repeats
every II cycles—the behavior of the loop in Ty g + I is
identical to Ty, q (e.g., in Figure 3, the pipeline repeats the
same behavior every /I = 4). Therefore, the search for the
maximal number of enqueued items (and, thus, the LSQ depth
calculation) can be reduced to that time interval only:

D = max N(t), vVt € [Tsmrt,da Txtart,d +1I - 1]- &)

This formulation allows us to reason about the LSQ depth in
any dataflow circuit: the entire execution can be decoupled into
multiple overlapping and nonoverlapping datapaths analyzed
independently using Equations 7 and 8. These equations natu-
rally capture the behavior of a single, straight datapath as well:
for Itery,, = 1 and II = T,,,4, they reduce to Equations 3
and 5. Different execution portions may have different LSQ
requirements; defining the LSQ depth as the largest among
all required depths guarantees the best performance during
the entire circuit execution. One could tune the depth by
omitting the depth calculation on execution portions that do
not significantly contribute to performance. Similarly, one
could trade off area and performance differently by modifying
the desired II value in the equations above (e.g., increasing the
IT would lower the performance, but require a smaller LSQ,
as fewer loop iterations and memory accesses would overlap).

Our formulation naturally captures situations where the
loop II changes due to memory collisions (i.e., the LSQ
might stall the pipeline until the collision is resolved and,
temporarily, increase the loop II [19]): In Equations 7 and 8§,
the IT can be adapted to every pair of neighboring iterations
(instead of considering a constant value, as specified by the
equations above). Similarly, our formulation naturally captures
situations where not all loop iterations are identical (e.g.,
due to control flow statements inside the loop): instead of
considering Iter,,,, identical datapaths, one can simply account
for Iter,,, different datapaths with different sets of memory
accesses. Of course, the control flow and the exact datapath

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on January 30,2023 at 17:05:44 UTC from IEEE Xplore. Restrictions apply.



startgg,
1

—— Dataflow graph
— Unit latencies (weights)

—ii=—4

startgg, - .
2

Gds 1

BB,

Fig. 4: Dataflow graph with nodes (corresponding to dataflow
operators), annotated with their latencies. We use the timing relations
between the executions of particular dataflow nodes to calculate
memory access allocation and deallocation times.

sequence might not always be known as a priori; in such
cases, one could assume an average case or rely on application
profiling [21], [9]. We will examine these effects in Section VI.

V. DETERMINING THE TIMING OF MEMORY ACCESSES

Our LSQ depth calculation relies on the information about
when each memory request is allocated and deallocated from
the LSQ; we here discuss how we systematically obtain these
values for any memory access and dataflow circuit topology.

As discussed in Section III-A, we consider a graph of
dataflow nodes organized into BBs; each node is characterized
by its sequential delay (i.e., latency). A possible dataflow graph
that exhibits the behavior of Figure 3 is shown in Figure 4. The
dataflow nodes are grouped into two BBs; BB; contains Id ;
and Id, and BB, contains ldg and Id,. Although not shown
in the figure, all loads are connected to the LSQ: they receive
an address from the predecessor node, store it in the LSQ, and
issue the data to the successor node when the LSQ provides
it. Nodes startgg, and startgg, represent the first (i.e., earliest)
executed operation of the corresponding BB and the start of
BB execution. Nodes nd; to nds represent other dataflow
units; their functionality is not relevant for this discussion, but
their latencies may impact the memory access timing.

We define path P(src, dst) as the longest weighted path
of nonrepeating nodes from src to dst, where node weights
correspond to their operation latencies. The latency of this
path, Latp(sre, dst), is the sum of the weights of all nodes in
the path; it dictates the time between the start of src (i.e., src
is triggered by its predecessors) and the execution completion
of dst (i.e., dst produces an output for its successors). In
Figure 4, Latp(ndg, ldg) =4.

As discussed in Section III-B, an access m is allocated into
the LSQ when its BB, BB,,, starts. We can thus calculate the

allocation time of m with respect to the datapath start as:

Tuiioe,d(m) = Latp(startgs,,,, startgs,, ), (10)

init )

where BBjy,;+ is the initial BB of the datapath (in a cyclic CFG,
it corresponds to the loop header BB).

Consider the example in Figure 4: ld; and ld» are allocated
when startgp, triggers; this is, coincidentally, also the datapath
start (i.e., startBBmt), thus Tullac,d(ldl) = a[[(,c,d(ldg) =
Latp (startes,,,,, startgs,) = 1. As ldg and ld,; are in BB,
Ta[[,w‘d(ldg) = Talloc,d(ld4) = Latp(startBBim, startBBz) =4.

An access is deallocated from the LSQ after all its argu-
ments arrive, the LSQ executes the access, and the memory
subsystem processes it (see operating steps (2) to (4) from
Section III-B). Thus, Tyeuuoc,a(m) can be expressed as:

(1)

where Tp,,(m) is the arrival time of the latest argument of
m, Latrsp is the latency of the LSQ execution, and Laty is
the memory latency. Lat;sp and Laty are known values that
depend on the memory architecture; their sum corresponds to
the latency of each m node in the dataflow graph (e.g., in
Figure 4, we assume Lat;sp = 1 and Laty = 1, so the latency
of all loads is 2, as shown in the figure).
We can therefore calculate the deallocation time of m as:

m). (12)

In Figure 4, Tyeaoe.a(ld;) = Latp(startgs, .. ,ld;) = 3; in
other words, the load returns the data and is deallocated from
the LSQ 3 cycles after the datapath starts.

The dataflow circuit construction strategy we use defines the
startgg nodes and ensures that there is always a directed path
between them (as this network is built exactly for allocating
memory accesses into the LSQ [20]). Yet, there are two
key pieces of information that the dataflow graph does not
necessarily contain and that we need to supply ourselves:

(1) Allocation precedes memory access execution. There
may be no dataflow edge between m and startgp, . Yet,
m can be executed by the LSQ only after startgs,,, when
an LSQ slot for m has been allocated. To represent this
ordering, we connect all memory nodes with the corresponding
startgg nodes using an additional edge (see green edges in
Figure 4). In this figure, there is no dataflow edge connecting
startgg, and lds. Although startgs, directly provides the
argument (i.e., address) to the load, it can be accepted and the
load executed only after BB, starts. The added edge between
startgg, and Ids conveys this order and creates a new path
that accurately reflects the deallocation time of the load as
Tyeatioc.a(ld 3) = Latp(startgs,,,,lds) = 6.

(2) Back edge orders operations of different loop iterations.
Whenever a path between src and dst includes the back
edge of the loop, it does not impose a delay between src
and dst of the same datapath execution (as all other paths
do); in contrast, it introduces a delay between the execution
of src of one iteration and the execution of dst from the
succeeding iteration. To account for this effect, we annotate
the back edge of the loop with a latency of —II (this strategy
qualitatively corresponds to the time offsets in Equations 7

Tdeulluc,d(m) = Targ(m) + LatLSQ + LatM,

Tueatioe,a(m) = Latp(startsg

init )
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and 8). Consider ldy in Figure 4. The dataflow nodes on
the cyclic path from startgg, to lde have a weighted latency
sum of 9; however, this path represents the delay between
the execution of startgs, ,, from the previous iteration and the
deallocation of ld, from the current iteration. To obtain the
correct distance within the current iteration, we need to deduct
from this delay the distance between the two consecutive
executions of startgg, ,, (corresponding to the IT of 4), which
is exactly what our negative weight on the back edge achieves
(i.e., waygc,d(ldg) = Latp(startBBim, ldg) = 5)

These two insights allow us to accurately reason about the
allocation and deallocation times of all memory accesses (the
times obtained for the loads of Figure 4 are as illustrated in
Figure 3). We can directly exploit this information to calculate
the LSQ depth, as described in Section IV.

The timing calculation assumes that all latencies are known
and fixed. In a dynamically scheduled system, this is not
always the case: Some units may take a variable time to
compute a result [24], [29]. Similarly, a memory interface
may take a variable number of cycles to complete a memory
request (e.g., in a multi-level memory hierarchy, Laty, may be
variable). These effects can impact the values of Tyy,c q4(m)
and Tyeqiioe,a(m) and, consequently, the LSQ depth. Consis-
tently with our optimization objective and existing dataflow
performance optimization approaches [19], whenever a latency
is variable, we assume the latency value that guarantees the
best possible throughput and, thus, performance. Other timing
estimates can be easily included into our strategy (e.g., by
assuming an average or most frequent latency value).

VI. EVALUATION

In this section, we evaluate the effectiveness of our LSQ
sizing strategy as well as its impact on area and timing.

A. Methodology and Benchmarks

We incorporated our sizing strategy in Dynamatic [18], an
open-source HLS tool that produces dataflow circuits from
C/C++. Our work is an open-source plugin for Dynamatic
(the benchmarks are included) [1]. Dynamatic employs various
memory analyses to simplify the memory interface [14]; we
apply our LSQ sizing strategy on those LSQs that the tool de-
termines necessary for correctness. We use the output dataflow
graph of Dynamatic, already annotated with unit latencies, to
calculate the memory access timing, as discussed in Section V.
We then calculate the LSQ depth as presented in Section I'V-B;
consistently with the LSQ architecture that we employ [16], we
calculate the depth of the load and the store queue separately.
We incorporate the LSQ of the appropriate depths into the
RTL description of Dynamatic’s dataflow circuit.

We evaluate kernels from standard HLS suites [28], [27] and
recent works [17], [7], with different memory access patterns
and control flow: (1) Bicg and Gaussian have statically deter-
minable memory dependencies in the innermost loop of their
loop nests. (2) Histogram and Matrix Power exhibit irregular
memory access patterns; their memory dependencies are deter-
mined by the input data (see example in Figure 1). (3) GetTanh

a) Bicg
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Fig. 5: LSQ depth exploration in regular benchmarks. In both bench-
marks, our LSQ sizing strategy successfully identifies the minimal
load and store queue depths that achieve the best possible clock cycle
count (i.e., the points with blue frames).

has variable control flow (i.e., an if-else statement inside a
loop) and possible, input-dependent, memory dependencies.
We investigate the benchmarks with data-dependent be-
havior under the following conditions: (1) there are no de-
pendencies among any of the accesses (No Collisions), (2)
there is a RAW dependency among the accesses of all odd
loop iterations (Half Collisions), and (3) there is a RAW
dependency among the accesses of all consecutive loop iter-
ations (All Collisions). When the circuit behavior is perfectly
predictable (i.e., Bicg and Gaussian), the performance analyzer
of Dynamatic provides the exact loop II; in cases with
irregular dependencies, it calculates the best achievable I
(corresponding to the No Collisions case). We calculate the 17
of the other two cases based on the best-case II and memory
dependency distance. When all iterations have a dependency,
there is a single I that we incorporate into Equations 7 and §;
when half of the iterations are dependent, these equations use
two II values interchangeably, as discussed in Section IV-B.
We use ModelSim for functional verification and for mea-
suring the clock cycle count of the circuit execution. We
use Vivado [32] (targetting a Kintex-7 Xilinx FPGA) to
determine the post-place-and-route clock period and resources
(i.e., LUTs, FFs) of the final dataflow circuits with the LSQs.

B. LSQ Depth Exploration

In this section, we investigate the effectiveness of our LSQ
sizing strategy in identifying the minimal LSQ depths that
achieve the best performance (i.e., clock cycle counts).
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We explore the number of clock cycles that our benchmarks
require to execute while varying the LSQ depths. We represent
our exploration results as heatmaps in Figures 5 and 7, where
the x- and y-axis show the store and load queue depths,
respectively, and the value in each heatmap cell represents the
clock cycle count; lighter cell colors represent a lower clock
cycle count. The purpose of our exploration is to investigate
whether the point identified by our strategy is the lowest and
leftmost (i.e., smallest queue depths) among the lightest points
in the heatmap (i.e., lowest clock cycle count).

Figure 5 shows the exploration results for Gaussian and
Bicg. We highlight the points found by our strategy with a
blue frame. In both cases, our approach successfully identified
the minimal depths that achieve the lowest cycle count (e.g.,
in Bicg, the load and store queue of depth 5 and 6 are
the minimal depths that allow the circuit to execute in 135k
clock cycles; all smaller queues cannot sustain the incoming
rate of memory requests and, thus, increase the total clock
cycle count). This indicates the successfulness of our sizing
strategy: it automatically identifies the desired Pareto points
and, most importantly, removes the need for extensive manual
exploration of all design points shown in the figures.

Figure 7 explores the benchmarks with irregular behaviors
in the same manner and for different data distributions. The
RAW dependencies modify the 17, which directly impacts the
LSQ requirement: The cases with no dependencies have the
best possible II and the largest number of iterations overlap;
consequently, the LSQ requires the largest depth to hold their
memory requests. As the number of collisions increases, the 1]
increases as well (as evident from the increasing clock cycle
counts), therefore reducing the LSQ depth requirements. Our
sizing strategy accurately follows these trends and identifies
the minimal LSQ depths that achieve the best cycle count for
each particular execution scenario.

Although we are here able to fully benefit from our sizing
strategy for all data distributions, this might not always be the
case: the distribution might be unknown or more irregular than
we assume, which is simply the nature of the unpredictability
of dynamic scheduling. The fact that our depth calculation can
correctly identify the appropriate depth range and accurately
supports different data estimates indicates its broad usability
and easy adaptation to various area-performance targets.

C. Area and Timing Analysis

In the previous section, we demonstrated the ability of our
approach to identify the minimal LSQ depths that achieve the
best clock cycle counts. We now investigate the impact of these
findings on the circuit’s resources and total execution time.

Figure 6 plots the resources (i.e., LUTs, FFs) and execution
time (i.e., the product of the clock cycle count and achieved
clock period) of three design points of each benchmark: the
point with the minimal LSQ depths (Min Depth, corresponding
to the leftmost and lowest point of the heatmaps from the
previous section), our LSQ depths (Opt Depth, the highlighted
blue points in the heatmaps), and the largest explored LSQ
depths (Max Depth, the top- and rightmost points). The clock
period (CP) of each design point is annotated next to it.
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Fig. 6: Resources and execution time of our benchmarks, incorpo-
rating LSQs with various depths (i.e., minimal depth, maximal depth,
and the depth our strategy identifies). Our points are always Pareto-
optimal and achieve the best performance with affordable resources.

The resource impact of the LSQ is immediately evident:
Max Depth designs require up to 25.7x more LUTs and 4.1 x
more FFs than the corresponding Min Depth designs (these
overheads worsen for even larger LSQs that we did not explore
here). The Min Depth designs suffer in total performance as
the LSQ is not able to sustain the rate of incoming memory
requests; we already observed this effect in Section VI-B;
our points increase the LSQ depth sufficiently to achieve
the minimal clock cycle count and, therefore, improve the
performance. Interestingly, the execution time of the designs
with the largest explored LSQs increases with respect to
our points: although the Opt Depth and Max Depth designs
achieve an identical clock cycle count, the critical path of the
LSQ deteriorates with the depth, causing an increase in the
circuit’s clock period and, consequently, the total execution
time. Therefore, our designs Pareto-dominate the Max Depth
designs. In addition to the significant resource variabilities
of different LSQ solutions, this CP degradation is another
motivator to minimize the LSQ depth; both aspects indicate
the importance of our strategy in making dataflow circuits
obtained from C code area- and timing-affordable.

VII. CONCLUSIONS

Load-store queues are a fundamental component of a
dataflow system, as they allow memory accesses disambigua-
tion at runtime and enable dynamic schedule adaptation to the
presence or absence of memory dependencies. Yet, LSQs are
extremely expensive to implement in a spatial context. The
main factor that impacts their resource cost and clock degra-
dation is the queue depth, i.e., the number of pending memory
requests that the LSQ can hold; this parameter determines
the queue storage requirements, complexity of the address
comparison logic, and its critical path. In this work, we present
a methodology to calculate the LSQ depth that minimizes
the resource requirements of the LSQ while maintaining all
performance benefits of dynamic scheduling; our technique
removes the need for manual LSQ tuning and enables us
to automatically identify Pareto-optimal design points. We
believe that this contribution makes an important step in build-
ing memory interfaces suitable for dataflow designs obtained
from high-level code, thus making this HLS paradigm more
attractive and viable in a variety of practical cases.
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Fig. 7: LSQ depth exploration in irregular benchmarks. In all benchmarks, our LSQ sizing strategy successfully identifies the minimal load
and store queue depths that achieve the best possible clock cycle count (i.e., the points with blue frames).
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