
A Comprehensive Timing Model
for Accurate Frequency Tuning in Dataflow Circuits

Carmine Rizzi∗, Andrea Guerrieri†, Paolo Ienne†, and Lana Josipović∗
∗ETH Zurich, Department of Information Technology and Electrical Engineering, Zurich, Switzerland

†Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication Sciences, Lausanne, Switzerland

Abstract—The ability of dataflow circuits to implement dy-
namic scheduling promises to overcome the conservatism of static
scheduling techniques that high-level synthesis tools typically rely
on. Yet, the same distributed control mechanism that allows
dataflow circuits to achieve high-throughput pipelines when static
scheduling cannot also causes long critical paths and frequency
degradation. This effect reduces the overall performance benefits
of dataflow circuits and makes them an undesirable solution
in broad classes of applications. In this work, we provide an
in-depth study of the timing of dataflow circuits. We develop
a mathematical model that accurately captures combinational
delays among different dataflow constructs and appropriately
places buffers to control the critical path. On a set of benchmarks
obtained from C code, we show that the circuits optimized by
our technique accurately meet the clock period target and result
in a critical path reduction of up to 38% compared to prior
solutions.

I. INTRODUCTION

Dataflow circuits [1, 2] have recently been explored in

the context of high-level synthesis (HLS), as they implement

dynamically scheduled pipelines that achieve high throughput

in irregular and control-dominated programs [3, 4]. Although

their pipelining capabilities are often superior to static solu-

tions, dataflow circuits typically suffer from long combina-

tional paths that limit the achievable operating frequency; this

effect largely nullifies the benefits of dynamic scheduling and

prevents the widespread usage of dataflow circuits in HLS.

Dataflow circuits employ buffers to break combinational

paths and ensure that all combinational delays meet the desired

clock period target. However, in a distributed dataflow net-

work, these combinational paths are difficult to identify: apart

from the datapath operators (with easily determinable connec-

tions and combinational delays), dataflow circuits contain a

two-way distributed control mechanism that the dataflow units

use to exchange data with their predecessors and successors.

These control signals travel in opposite directions, combine

with the datapath in particular places, and interact with each

other; the resulting combinational paths are not self-evident

and their impact on the circuit delay is challenging to capture.

In this work, we present a comprehensive timing model

for dataflow circuits that enables accurate frequency estimates

and precise critical path regulation. Apart from the timing

of the datapath, our model includes timing information about

the dataflow control network and accounts for all interactions

between the datapath and the control signals. We incorpo-

rate our timing model into a buffer placement strategy that

maximizes circuit throughput under a clock period constraint.

Legend
Mux
Adder
Comparator
Fork
Constant
CMerge
Branch
Data Signal
Valid Signal
Ready Signal
Internal Signal

C1

C2

C3

C4C5

C6

C7

C10

C8

C9

Cx Channel x

C11

C12

C13

C14

C17

do
 x++;
while(x<n)

Bu er

Exit Exit

C15

C16

C18
C19

Figure 1: Considering only the datapath of a dataflow circuit (thick
lines) is not sufficient for accurate critical path regulation, as the
critical path often spans through both the data and the bidirectional
control network. One such path is highlighted in red: the data prop-
agates through channels C1 to C6, combines with the forward-going
control signal (thin line, channels C7, C8 and C2), and then interacts
with the backward-going control signal (dashed line, channels C9 to
C12), thus causing a long combinational delay. The purpose of this
work is to systematically identify such long combinational paths and
appropriately break them with buffers to honor a clock period target.

On a set of benchmarks obtained from C code, we show a

frequency improvement of up to 38% and a total execution

time reduction of up to 34% over prior solutions. Our circuits

meet the same clock period target as their static counterparts,

which increases their performance benefits in cases where

dynamic scheduling is useful and makes them competitive

with static circuits otherwise, thus extending the usefulness

and applicability of dynamically scheduled HLS.

II. WHERE IS THE CRITICAL PATH

IN A DATAFLOW CIRCUIT?

The dataflow circuit in Figure 1 implements the functional-

ity of the code on the right and is constructed using a standard

C-to-dataflow HLS strategy [3]. It is built out of dataflow

units, connected by channels, that exchange data (thick lines)

and communicate with a set of handshake control signals: a

valid signal (thin lines) travels in the same direction as the

data and indicates to each successor that a unit holds a token,

375

2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)

1946-1488/22/$31.00 ©2022 IEEE
DOI 10.1109/FPL57034.2022.00063

BR
AN

CH

M
UX

condin

JO
IN

readyout0validin0

validout

M
ER

GE

datain0 datain1

FO
RK

datain

FF FF

a) Join
c) Merge

b) Fork

e) Branchd) Mux

validin1 readyout1

readyin

readyoutvalidin

validout0 readyin0 validout1 readyin1

readyout0 validin0 validin1readyout1

validoutreadyin

readyout0validin1 readyout1validin2 readyout2

validout readyin

readyout0validin0 validin1 readyout1

validout0 readyin0validout1 readyin1

dataout0 dataout1

dataout

datain0 datain1
condin datain

dataout0 dataout1dataout

validin0

Figure 2: Gate-level descriptions of dataflow units [1, 5]. The goal of this work is to develop a mathematical description of the timing
characteristics of dataflow units—we use this information to optimize the critical path of dataflow circuits obtained from high-level code.

whereas a ready signal (dashed lines) propagates backward

and indicates to each predecessor the readiness of a unit to

accept a new token. The initial value of x enters the mux

through channel C1. The token circulates through the loop

(and x is incremented by 1) until the exit condition is met (as

determined by the branch); then, the execution terminates and

the final value of x exits the loop. The left loop is dataless

and used to regulate the behavior of the datapath [6]: an

initialization token enters from the starting point (C12) and

circulates through the loop (dictated by the same exit condition

as the token x); on each passage, it indicates to the mux on

the right which of the two operands to select and triggers the

constant for incrementing x.

The shown circuit is perfectly functional, as the buffers in

channels C13 and C14 ensure the absence of combinational

cycles. However, the critical path of the circuit is not regulated

in any way—the circuit requires additional buffers that ensure

that all combinational delays are smaller than the desired clock

period target. An intuitive way to reason about this placement

is to consider the combinational delays of the operators on

the datapath (e.g., mux, adder, comparator): whenever the

sum of the operator delays is larger than the target, the path

must be broken with a buffer. This simplistic strategy would

result in additional buffers in the channels carrying the data

(e.g., a buffer in channel C3 would break the combinational

path between the adder and the comparator), but it does not

consider that the bidirectional control signals interact with

each other and with the datapath, which may create long

and complex combinational paths. An example of one such

path (out of many) is highlighted in red in the figure. The

datapath through channels C1 to C5 computes the loop exit

condition which is forked to the branches. In the left branch,

the condition determines the validity of the appropriate branch

output; thus, the data of channel C6 combinationally produces

the valid signal in channel C7. This signal propagates through

the cmerge and mux, ultimately reaching the adder through

channel C2. In the adder, the validity of one input is used to

indicate the readiness of the adder to accept data from the other

input—thus, the valid signal from channel C2 combinationally

produces the ready signal in channel C9, which continues

propagating backward, up to the input C12. The existence of

such long combinational paths is not immediately clear, yet

they may significantly impact the critical path of the circuit.

In the rest of this paper, we provide a systematic method-

ology to identify and regulate the critical path of complex

dataflow networks. In Section III, we describe dataflow circuits

and prior performance optimization approaches. Section IV

summarizes the main idea of this paper. In Section V, we

devise a timing model for dataflow units that captures various

interactions and combinational delays between their data and

control signals. In Section VI, we incorporate this model into

a complete performance optimization strategy that exploits

our timing information to appropriately place buffers into

the dataflow circuit. In Section VII, we demonstrate that

our approach accurately identifies and regulates the critical

path, thus resulting in significant speedups compared to prior

performance optimization strategies for dataflow circuits.

III. BACKGROUND AND RELATED WORK

In this section, we describe the dataflow units and buffers

that we use. We then outline what others have done before us

to optimize dataflow circuit performance.

A. Dataflow Units

In this work, we consider synchronous dataflow units which

have been extensively described in literature [1, 5] and used

to construct dataflow circuits out of software programs [3, 7].

We provide the gate-level descriptions of the basic dataflow

units in Figure 2; all other units we employ are a composition

or trivial extension of those in the figure.

(1) A join (Figure 2a) synchronizes incoming tokens and

is used inside operators that require multiple operands (e.g.,

the adder and comparator in Figure 1). Whenever both pre-

decessors provide valid data (i.e., both validin signals are

set to 1), the join becomes valid. The join indicates its

376

TB

FF

FFO
B

FF

FF

validout readyin validout readyin

readyoutvalidin readyoutvalidindatain

dataout

datain

dataout

Figure 3: Opaque (OB) and transparent (TB) buffer [1]. These
buffers can be inserted on any dataflow channel to control the critical
path and regulate throughput. Using buffers to optimize throughput
has been extensively explored, yet their role in controlling the critical
path has not been fully investigated; we tackle this aspect in this work.

readiness (readyout) to the predecessors when their data are

both valid and the successor is ready to accept a token. As

the readyout signal requires the information of the opposite

operand validity, there is a combinational path from the validin
signal of the other operand (e.g., from validin0

to readyout1).

(2) A fork replicates a single token at its input and sends it

to its multiple outputs. Figure 2b shows a 2-output eager fork:

it can dispatch tokens to the successors at different times and

has internal registers to keep track of where the token was

sent; the fork indicates readiness to accept new data only after

the previous token has been issued to all successors.

(3) A merge (Figure 2c) is employed in places where

program control flow meets (e.g., at an input of a compiler

basic block [8] with multiple predecessors). The internal

data multiplexer selects the input coming from the active

predecessor, as determined based on the validity of the inputs.

(4) A mux is a deterministic version of the merge: in

addition to the data, it receives a condition that determines

which input to select. As indicated in Figure 2d, the condition

condin regulates the validity and readiness of the mux, as well

as the select signal of the internal data multiplexer.

(5) A branch is used to implement control flow; it sends a

token to one of its multiple successors based on the condition

value. As shown in Figure 2e, the output validity is computed

based on the input condition. The readiness of each input is

determined by the validity of the other, as both the data and

the condition must be available for the branch to issue a token.

As illustrated in this section, dataflow units have a variety of

combinational paths that connect their datapath to the control

network, as well as placed where the bidirectional control

signals interact. These features may impact the circuit’s critical

path and must be accounted for when optimizing performance.

B. Buffers in Dataflow Circuits

Thanks to the latency-insensitivity of dataflow circuits,

buffers can be placed on any dataflow channel without com-

promising the circuit’s correctness [9]. Yet, they have a key im-

pact on performance: they can increase the circuit’s frequency

by breaking combinational paths and regulate its throughput

by storing incoming tokens to avoid backpressure [10].

We differentiate two types of buffers [1], whose gate-

level representations are shown in Figure 3: (1) Opaque
buffer (OB) has a register on the data and the valid path,

thus delaying the incoming token for one clock cycle; on the

other hand, its readiness is determined combinationally based

on the readiness of the successor. (2) Transparent buffer (TB)

contains a multiplexer that can propagate the input data token

combinationally to the output in case the successor is available;

otherwise, the token is stored in an internal register. In contrast

to OB, the TB breaks the ready path with a register, whereas

its valid signal propagates through the unit combinationally.

Both buffers can be adjusted to contain multiple buffer slots by

increasing the number of internal registers (thus, essentially,

transforming the buffer into a FIFO that can store multiple

tokens) [10].

As the figures suggest, the insertion of each of these buffers

into a dataflow channel will have a dual effect on timing: some

combinational paths will be broken, yet the delay of others will

increase due to the buffer’s combinational logic. This effect

may also contribute to the circuit’s critical path.

C. Performance Analysis of Dataflow Circuits

Standard HLS tools use modulo scheduling [11, 12] to per-

form pipelining and retiming; yet, this approach is not appli-

cable in the dataflow context where a static schedule is absent.

Instead, authors have explored mathematical models based on

Petri net theory to analyze dataflow circuit performance [13]–

[15]. Several techniques for asynchronous dataflow circuits

optimize throughput via buffer sizing [16, 17]; those targeting

synchronous dataflow circuits extend this problem to simulta-

neously optimize throughput and clock period [10, 18].

In this section, we focus on the work of Josipović at al. [10]

that targets synchronous circuits obtained from C code and is

thus the most relevant for our work. This strategy aims to

optimize circuit timing as follows: (1) Throughput (φ). The

throughput of each program loop is maximized by inserting TB

buffers into dataflow channels and sizing them appropriately,

i.e., by modifying the number of buffer slots, BuffSlotsCi
, in

dataflow channel Ci. (2) Clock period (CP). The combinational

delays of the datapath are accumulated across dataflow units

and channels. Whenever the delay is larger than the target

CP, an OB is placed in the channel to break the combina-

tional path (i.e., at least one buffer slot is inserted into the

channel, BuffSlotsCi
≥ 1). These two aspects are combined in

a single mixed-integer linear programming (MILP) problem

that maximizes circuit throughput under a clock period con-

straint, while minimizing the total number of inserted buffers:

max(φ− λ
∑

BuffSlotsCi
), where λ is a tuning constant.

Although this approach has been demonstrated successful

in achieving high-throughput pipelines, it fails in capturing

the intricate details of dataflow networks described in the

previous sections, thus resulting in imprecise critical path

analysis and significant deviations between the achieved and

targeted clock period (the authors measured a CP that is up

to 2.4× of their target). In our work, we also aim to optimize

throughput and clock period simultaneously; we thus follow

the same throughput optimization strategy outlined in point (1)

and employ the same cost function as indicated above. Our

contribution is a new methodology for critical path regulation

377

Data Domain
Valid Domain
Ready Domain
Mixed Domain

data ow channel

data ow unit

delay node

edge

Figure 4: The main idea of our optimization strategy is to represent a
network of dataflow units and channels as a fine-grain graph, where
nodes and edges represent combinational delays and interconnects
between the data and control signals. This approach allows us to
optimize circuit timing with greater accuracy.

that overcomes the limitations of point (2) and ensures that

dataflow circuits successfully meet the clock period target.

IV. KEY INSIGHT

It is evident from Figure 2 that, aside from the datapath,

dataflow units contain (in some cases, significant) combina-

tional logic that computes their control signals; additionally,

there are many situations where the control signals interact

with each other or combine with the datapath. What is more,

although buffers from Figure 3 break some combinational

paths (and thus help to regulate the critical path), they simul-

taneously introduce a delay increase on other paths. Clearly,

a composition of such units into a complete dataflow system

may cause complex signal interactions and, consequently, long

combinational paths (such as the one illustrated in Figure 1).

Thus, to control the critical path of the circuit, we need a

systematic way to reason about these effects.

The main contribution of this work is a comprehensive

mathematical model that accounts for all combinational paths

and delays in a dataflow circuit and precisely regulates its

critical path. The basic idea of our timing optimization ap-

proach is illustrated in Figure 4: instead of considering the

dataflow network as an interconnect of dataflow units and

channels (and suffering from the limitations discussed in

Section II), we break down these constructs into nodes and

edges representing each individual combinational path and

delay constituent. Instead of a single dataflow channel, our

model describes individual edges carrying the data, valid, and

ready signals and explicitly indicates points where they inter-

connect; instead of complete dataflow units, the nodes of our

representation indicate distinct combinational delays of every

input-output combinational path through each unit. This fine-

grain representation allows us to precisely compute all combi-

national delays in the dataflow circuit and to accurately place

buffers to break long combinational paths. In the following

sections, we formalize our timing representation and present

our mathematical formulation for performance optimization.

V. LOOKING INSIDE THE DATAFLOW UNITS

Figure 5 details the timing representations of the dataflow

units illustrated in Figures 2 and 3. Every dataflow channel

is broken into edges representing the data (if present), valid,

and ready signal. Every combinational path through a unit

BR
AN

CH

v

v

v

v v

v

v

v

v

v

M
ER

G
E

v v

vv v

v

v

v v

v

M
U

X

v

v

vv

v
v

v
v

v

v

v v

JO
IN

v

v

FO
RK

v

vv v

vv

a) Join c) Mergeb) Fork

e) Branchd) Mux

Data Domain Valid Domain Ready Domain Mixed Domain

readyoutvalidin0 readyout1 validin0readyout[]validin

validin0 readyout1validin0 readyout0

readyin[]validout[]

readyinvalidout readyin validout

readyin0validout0

datain0

dataout[]

readyinvalidout

condincondin datain0
datain[]

datain

dataout[]

dataout

dataout

v

v v

v

O
B

v

v

v

v v

v

TB

v

v
validout readyin validout readyin

readyout
validin readyoutvalidindatain

dataout

datain

dataout

g) TBf) OB

Figure 5: Timing representation of dataflow units from Figures 2
and 3. It captures all combinational delays and interconnects between
the data, valid, and ready signals within each unit. The OB and
TB have backward- and forward-going combinational delays, respec-
tively, which our performance optimization strategy also considers.

is represented as an edge from input to output, where a

node corresponds to a combinational delay (the empty circles

indicate a delay equal to zero) and the red cross is a register

that breaks the combinational path. The schematics show only

a single distinct input-output pair of each dataflow unit—for

simplicity, we omit the symmetrical input-output connections.

Based on their properties and the type of information that

they carry, we classify the edges and nodes of our represen-

tations into four timing domains: (1) Data domain, Dom(D),
is a set of all nodes and edges that carry exclusively data

information. The nodes of this domain are characterized with

the datapath (i.e., computational unit) delays. (2) Valid domain,

Dom(V), is the set of edges and nodes that represent the

valid control signal propagation. The nodes of this domain are

characterized with the combinational delays between the input

(validin) and output (validout) signals of each dataflow unit.

(3) Ready domain, Dom(R), is the set of edges and nodes that

represent the ready control signal propagation. The nodes of

this domain are characterized with the combinational delays

between the input (readyin) and output (readyout) signals of

each dataflow unit. (4) Mixed domain, Dom(M), is a set of

edges and nodes that represent the interconnects between the

data, valid, and ready domains. The nodes of this domain

are characterized with the combinational delays between the

corresponding inputs and outputs of each dataflow unit.

The edges and nodes in the mixed domain enable us to rea-

son about complex paths in which the domains interconnect,

378

OB TB

Tv
C2out

Td
C2out

TrC2in

Tv
C2in

Td
C2in

TrC2out

Tv
C1out

Td
C1out

TrC1in

Tv
C3in

Td
C3in

TrC3out

Dv

u1

Dd

Dr

Dv

Dd

Dr

u1

Ddr

Dr
OB

Dv

Dd

TB

TB

u2
u1

u1

u2

u2

u2

u2

Rvalid

Rdata

Rready

C2

C2

C2

Figure 6: Mathematical model for timing optimization. The figure
indicates the variables that we employ to regulate the critical paths
of our circuits; essentially, they sum up combinational delays across
particular nodes and channels and ensure that every delay larger than
the target is broken with a buffer.

such as the one shown in Figure 1: the transition of the data

into the valid network in the leftmost branch is caused by

the mixed node between the branch condition and valid signal

shown in Figure 5; similarly, our mux description captures

the transition of the data (i.e., condition condin) network

into the valid network, thus explaining the delay propagation

from C8 to C2 in Figure 1. The direction change of the

path in the adder (i.e., from C2 to C9) is exactly what our

join representation shows as a mixed path between the valid

and the ready signals. Thus, our unit timing representation

is key to analyzing the critical path of the circuit; in the

following section, we incorporate this notion into a complete

mathematical formulation for timing optimization.

VI. A COMPREHENSIVE MATHEMATICAL MODEL FOR

DATAFLOW TIMING OPTIMIZATION

As the performance optimization model outlined in Sec-

tion III-C [10], we aim to maximize circuit throughput under

a clock period constraint while minimizing the number of

inserted buffers. Thus, we adopt the MILP-based cost function

and throughput constraints directly from that work. In this

section, we describe the novelty of our optimization approach:

the MILP constraints that regulate the clock period, that we

derive from the unit timing models presented in Section V. Our

constraints provide the following optimization capabilities that

prior approaches omit: (1) we optimize combinational delays

of the datapath as well as of the control network, (2) we

account for interactions between the datapath and the bidirec-

tional control signals, and (3) we consider the combinational

delays of the buffers in the data and control paths.

Variables and constants. Our constraints use the following

variables and constants, illustrated in Figure 6:

• R Ci
timeDom is a binary variable indicating if a register

is placed on an edge of channel Ci , in time domain

timeDom (e.g., R Ci

valid = 1 indicates that the valid edge

in dataflow channel Ci requires a register).

• BuffSlotsCi
is an integer variable indicating the number

of buffer slots in channel Ci . This value is unique for

each channel and its minimum value is bound by the

presence of registers on individual edges (e.g., R Ci

valid = 1
implies that an OB is present in the entire channel, thus

BuffSlotsCi
≥ 1).

• T Ci ,Port
timeDom is a real variable describing the time (i.e., com-

binational delay) at the input/output port of an edge of

channel Ci , in time domain timeDom .

• D u
timeDom is a real timing constant which represents a delay

node in timeDom , within a unit u.

• CP is a constant representing the target clock period.

• CPmax is a constant and upper bound for any time value;

its value must be larger than CP.

Data domain constraints. The datapath constraints ensure

that all datapath delays meet the clock period target. We apply

them to all edges and nodes in the data domain, Dom(D).
Equation 1 computes the combinational delay propagation

through each node in Dom(D) and is formulated for each

input-output pair of edges of the node. Equation 2 ensures that

all combinational delays at the edge input and output must

be smaller than the target clock period; it is formulated for

each data domain edge of channel Ci. Equation 3 determines

whether the data domain edge must be cut with an OB.

T Ci,in
data ≥ T Cj ,out

data + D u
data (1)

T Ci,in
data ≤ CP, T Ci,out

data ≤ CP (2)

T Ci,out
data ≥ T Ci,in

data − CPmax · R Ci

data + D TB
data · R Ci

ready (3)

If the delay at the edge output is smaller than the CP target,

Equation 3 will set R Ci

data to 0; this will propagate the delay

from the input to the output of the edge and increase it by

the delay of the TB, in case it is present in the channel (i.e.

if R Ci

ready = 1). If the output delay is larger than the target, the

edge is cut by an OB by setting R Ci

data to 1. As the OB might be

followed by a TB on the same channel, the output time must be

adjusted to account for its presence and corresponding delay:

T Ci,out
data ≥ D TB

data · R Ci

ready (4)

This equation assumes that, if a channel contains both an

OB and a TB, the OB is placed before the TB, as depicted

in Figure 6. The opposite order is possible as well; the same

delay value would then be added to the channel input time.

Without loss of generality, we follow the order described above

and place buffers in our circuits accordingly.

Valid domain constraints. The constraints for the valid

domain are analogous to those of the data domain; they apply

to each edge of channel Ci and node that are in Dom(V):

T Ci,in
valid ≥ T Cj ,out

valid + D u
valid (5)

T Ci,in
valid ≤ CP, T Ci,out

valid ≤ CP (6)

T Ci,out
valid ≥ T Ci,in

valid − CPmax · R Ci

valid + D TB
valid · R Ci

ready (7)

T Ci,out
valid ≥ D TB

valid · R Ci

ready (8)

Ready domain constraints. Consistently with Figure 5g, the

combinational delay in the ready domain is cut by a TB

(indicated by R Ci

ready = 1), whereas the presence of the OB

(R Ci

data = 1) increases the combinational delay on the ready

edge. For each edge of channel Ci and node that are in

Dom(R), the following constraints apply:

T Ci,in
ready ≥ T Cj ,out

ready + D u
ready (9)

T Ci,in
ready ≤ CP, T Ci,out

ready ≤ CP (10)

379

T Ci,out
ready ≥ T Ci,in

ready − CPmax · R Ci

ready + D OB
ready · R Ci

data (11)

T Ci,out
ready ≥ D OB

ready · R Ci

data (12)

Mixed domain constraints. The presence of delays in the

mixed domain is dictated by the dataflow unit topology and

differs for each unit (see Figure 5). The edges internal to the

dataflow units cannot be broken with a register (as it would

require changing the unit structure), so the paths of the mixed

domain do not require buffer placement constraints (such as

Equations 3, 7 and 11); they simply propagate a delay from

one timing domain to another. Thus, for every input-output

edge pair of each node in the domain Dom(M):

T Ci,in
timeDom1 ≥ T Cj ,out

timeDom2 + D u
timeDom2-timeDom1 (13)

We use this equation to describe all mixed domain connec-

tions from Figure 5 (shown in pink). For instance, the equation

T C7 ,in
valid ≥ T C6 ,out

data +D branch
data-valid expresses the connection between

the condition entering the left branch of Figure 1 from the

datapath (channel C6) and its output valid signal (C7).

Buffer consistency constraints. The decision to place an OB

cuts simultaneously the data and the valid path (see Figure 5f);

thus, the R Ci

data and R Ci

valid variables must always have the same

value, as specified by Equation 14 (i.e., either both paths or

neither are cut by an OB). According to Equation 15, the

placement of OB and TB dictates the minimal number of

buffer slots in the channel.

R Ci

valid = R Ci

data (14)

BuffSlotsCi
≥ R Ci

data + R Ci

ready (15)

Equation 15 connects the constraints presented in this section

to the cost function and throughput constraints that we employ,

as discussed in Section III-C; the number of slots bound by this

equation may be further increased for throughput regulation.

The output of the MILP (i.e., values of R Ci
timeDom and BuffSlotsCi

for each channel Ci) indicate the types and sizes of buffers that

should be placed in each dataflow channel to achieve maximal

throughput under a given clock period constraint.

VII. EVALUATION

In this section, we evaluate the effectiveness of our timing

optimization strategy.

A. Methodology and Benchmarks

We incorporate our performance optimization strategy into

Dynamatic [7], an open-source HLS compiler that synthesizes

C code into synchronous dataflow circuits. Our optimizer is

open-sourced as a plugin to Dynamatic at dynamatic.epfl.ch.

Dynamatic contains the performance analysis described in

Section III-C that considers exclusively the datapath delays

(i.e., it employs a simpler version of our Equations 1 to 3 that

excludes buffer delays; all other timing aspects discussed in

Section VI are left out entirely); we use this approach as a

baseline for our evaluation. Instead, we model the dataflow

units as described in Section V and employ the MILP con-

straints from Section VI. Our other circuit generation aspects

are identical to Dynamatic, so we can fairly compare the two

performance optimization approaches; the only difference in

the generated circuits will be the buffering and, consequently,

the critical path, directly determining the achieved clock

period. Although we demonstrate our approach on Dynamatic,

our technique is in no way limited to this HLS strategy and can

be applied to any dataflow-oriented HLS approach [3, 4, 20].

To obtain the delay values required by our timing model

from Section V, we characterize all dataflow units post-place-

and-route, targetting a Kintex-7 Xilinx FPGA. We measure

delays between every unit input and output port and include

them in an extensible unit timing library so that our approach

could be easily adapted to other targets. We use the Gurobi
Optimizer v. 9.5.1 [21] to solve the mixed-integer linear

programming problem from Section VI; we set the clock

period constraint to 4 ns and the timeout of the solver to 3

minutes. We verify all designs in ModelSim [22] and use it to

obtain the clock cycle count; we present our area and timing

results post-place-and-route with Vivado [23].

We evaluate a selection of integer and floating-point kernels

from typical HLS suites [24, 25] and recent works on dynamic

scheduling [3, 4]; the source codes of our benchmarks are

publicly available [26]: (1) gsum and gsumif are typical

cases where dynamic scheduling is superior to static; they

contain loops with irregular control flow and conditional loop-

carried dependencies that prevent static HLS from pipelin-

ing the designs. (2) getTanh and histogram have irregular

memory accesses that cause static HLS to make conservative

scheduling assumptions; instead, dataflow circuits use a load-
store queue (LSQ) [19] to dynamically resolve them. (3) All

other benchmarks are standard HLS kernels where static and

dynamic HLS are expected to achieve qualitatively similar

pipelines; however, as discussed before, the performance of

dataflow circuits typically suffers from frequency degradation,

thus making them an undesirable solution [4].

B. Results: Comparison with Standard Datapath Optimization

Table I details the comparison of our circuits (DVRM) with

the approach of Dynamatic (Naive); the CP column indicates

the achieved clock period. The Naive method does not capture

any of the combinational delays of the control network nor its

interactions with the datapath. Thus, it fails in meeting the CP

target (4 ns) in the majority of the benchmarks. In contrast,

DVRM models delays in the data, valid, ready, and mixed

domain, and finds a superior buffer placement that meets the

clock period target in all our benchmarks. The exceptions are

getTanh and histogram, where the CP target is violated due

the LSQ at the memory interface, whose critical path is larger

than our CP target and not optimizable by our strategy. To

confirm this intuition, we synthesized the LSQ of the getTanh
benchmark in isolation and measured an internal delay of

4.56 ns. We note that the problem of effectively pipelining the

internal structure of the LSQ is orthogonal to our contribution:

accurate delay regulation within a dataflow network.

Our strategy typically places more buffers into the circuit

than the Naive approach, thus resulting in higher FF and LUT

380

Benchmark Method CP (ns) Cycles Exec. Time (μs) Exec. Time Ratio DSPs DSP Ratio LUTs LUTs Ratio FFs FFs Ratio

gsum
Naive

DVRM (Our Work)
Static

5.22
3.78
3.36

5264
5371

10067

27.50
20.30
33.80

-
D/N=0.74
D/S=0.60

22
22
5

-
D/N=1.00
D/S=4.40

2053
2177
600

-
D/N=1.06
D/S=3.63

2765
3067
1023

-
D/N=1.11
D/S=3.00

gsumif
Naive

DVRM (Our Work)
Static

5.58
3.66
3.18

5192
5263

10047

29.00
19.30
32.00

-
D/N=0.66
D/S=0.60

26
26
4

-
D/N=1.00
D/S=6.50

2594
2758
579

-
D/N=1.06
D/S=4.76

3478
4175
963

-
D/N=1.20
D/S=4.34

getTanh
Naive

DVRM (Our Work)
Static

6.17
5.29
3.17

8174
8185

47003

50.40
43.30

149.00

-
D/N=0.86
D/S=0.29

16
16
5

-
D/N=1.00
D/S=3.20

2619
2644
425

-
D/N=1.01
D/S=6.22

2363
2679
576

-
D/N=1.13
D/S=4.65

histogram
Naive

DVRM (Our Work)
Static

4.56
4.94
3.51

4028
4029

13003

18.40
19.90
45.70

-
D/N=1.08
D/S=0.44

2
2
2

-
D/N=1.00
D/S=1.00

2001
2037
286

-
D/N=1.02
D/S=7.12

1611
1709
510

-
D/N=1.06
D/S=3.35

2mm
Naive

DVRM (Our Work)
Static

4.71
3.52
3.27

9287
9293

12930

43.70
32.80
42.30

-
D/N=0.75
D/S=0.77

16
16
5

-
D/N=1.00
D/S=3.20

2948
3146
612

-
D/N=1.07
D/S=5.14

3281
4085
939

-
D/N=1.25
D/S=4.35

3mm
Naive

DVRM (Our Work)
Static

4.44
3.73
3.39

14021
14216
18243

62.20
53.10
61.80

-
D/N=0.85
D/S=0.86

15
15
5

-
D/N=1.00
D/S=3.00

2922
3327
667

-
D/N=1.14
D/S=4.99

3244
4018
1068

-
D/N=1.24
D/S=3.76

mvt
Naive

DVRM (Our Work)
Static

4.12
3.47
3.28

20041
20106
21378

82.50
69.80
70.20

-
D/N=0.85
D/S=0.99

10
10
5

-
D/N=1.00
D/S=2.00

1673
1780
516

-
D/N=1.06
D/S=3.45

2039
2384
873

-
D/N=1.17
D/S=2.73

covariance
Naive

DVRM (Our Work)
Static

4.44
3.50
3.39

178463
178457
187178

792.90
624.80
635.10

-
D/N=0.79
D/S=0.98

12
12
5

-
D/N=1.00
D/S=2.40

2313
2447
697

-
D/N=1.06
D/S=3.51

2499
2905
994

-
D/N=1.16
D/S=2.92

gaussian
Naive

DVRM (Our Work)
Static

3.58
3.42
3.59

3738
3334
3294

13.40
11.40
11.80

-
D/N=0.85
D/S=0.97

3
3
3

-
D/N=1.00
D/S=1.00

677
705
180

-
D/N=1.04
D/S=3.92

511
691
341

-
D/N=1.35
D/S=2.03

matrix
Naive

DVRM (Our Work)
Static

3.91
3.39
3.28

68708
68710
65545

268.40
233.10
215.20

-
D/N=0.87
D/S=1.08

3
3
3

-
D/N=1.00
D/S=1.00

635
715
155

-
D/N=1.13
D/S=4.61

522
737
300

-
D/N=1.41
D/S=2.46

gemver
Naive

DVRM (Our Work)
Static

4.44
3.55
3.10

6508
6511
4301

28.90
23.10
13.40

-
D/N=0.80
D/S=1.73

18
18
18

-
D/N=1.00
D/S=3.20

2619
2644
425

-
D/N=1.01
D/S=6.22

2363
2679
576

-
D/N=1.13
D/S=4.65

kmp
Naive

DVRM (Our Work)
Static

6.38
3.95
3.23

8621
9625
8358

55.00
38.00
27.00

-
D/N=0.69
D/S=1.41

0
0
0

-
D/N=0
D/S=0

2601
2763
225

-
D/N=1.06
D/S=12.28

2631
3232
435

-
D/N=1.23
D/S=7.43

TABLE I: Timing and area comparison of dataflow circuits optimized using the strategy implemented in Dynamatic (Naive), our
optimization (DVRM), and circuits by Vivado HLS (Static). All results are obtained post-place-and-route, for a target CP of 4 ns. Our
circuits always succeed in meeting the clock period target; the exceptions are getTanh and histogram, where the CP increase is due to the
load-store queue whose internal critical path is larger than our target; this design aspect is well-known [19] and orthogonal to our work.

requirements. This effect is completely expected, as the Naive

strategy fails to recognize places where buffers are needed

and thus omits them. Instead, we accurately determine the

buffer positions and insert them to precisely control the critical

path, thus mitigating the unpredictable CP variability that

the Naive solutions suffer from. It is important to note that,

despite the increased buffering, our strategy does not compro-

mise design throughput and the clock cycle count remains

essentially unchanged (apart from minor alterations due to

the changes in datapath latency). Consequently, our solutions

achieve significant improvements in overall execution time.

C. Results: Comparison with Static Scheduling

Dynamically scheduled circuits typically suffer from in-

creased critical paths compared to their statically scheduled

counterparts [3] which reduces their benefits in applications

where dynamic scheduling is useful and makes them unde-

sirable in cases where static and dynamic scheduling achieve

similar pipelines. In this section, we thus compare the circuits

optimized with our timing strategy with the results of a

state-of-the-art HLS tool [27]. It is important to note upfront

that dynamic scheduling typically requires significantly more

resources than statically scheduled circuits, as others have

noted before us [4, 10]. Optimizing dataflow resources is not

the focus of this work; we here aim to: (1) show that our

ability to meet the CP target is equivalent to that of static HLS,

and (2) investigate how the improved performance of dynamic

circuits compares to a state-of-the-art static approach.

Figure 7 visualizes the dataflow solutions normalized to

the corresponding static designs (all in point (1,1)); Table I

details the Vivado HLS results (Static). In the graphs, the

matching dataflow solutions are connected with an arrow, such

that the arrow base and point show Naive and DVRM designs,

respectively. All points left of the vertical dashed line have a

lower execution time than Vivado.

While both Static and DVRM solutions meet the CP target

(apart from the two cases discussed above), Static solutions are

sometimes pipelined in an over-conservative manner: their CP

is lower but the cycle count increases due to additional pipeline

stages needed to achieve it. In contrast, our solutions are more

precise in meeting the CP target. In benchmarks that profit

from dynamic scheduling (e.g., gsum, gsumif), Naive solutions

are superior to Static in overall execution time; our perfor-

mance optimization lowers the CP and thus further increases

the achieved speedups (i.e., the points move further left in the

graph). When dynamic scheduling achieves lower throughput

than static (due to the sometimes conservative dataflow circuit

construction strategy [10] or the additional buffers that their

more complex datapaths require), our approach lowers the

CP and successfully reduces the execution time difference

381

Figure 7: Execution time and area (LUTs, FFs) of dataflow circuits,
normalized to the Static solutions. The base and point of the arrows
show the Naive and DVRM (our solutions) points, respectively.
DVRM enables the majority of the benchmarks to achieve equal or
better performance than the Static circuits.

(e.g., kmp, gemver). Most importantly, in cases where static

and dynamic scheduling have similar pipelining capabilities

and, consequently, cycle counts, the ability of DVRM to meet

the CP target enables the majority of our benchmarks to meet

the execution time of the Static designs (e.g., covariance, mvt
move to the red dashed line) or even to outperform them (e.g.,

2mm, 3mm, gaussian cross the red dashed line). All these

results indicate that our approach significantly advances the

usability of dynamic scheduling in diverse applications.

D. Results: Effectiveness of the Clock Period Constraints

Table II shows how the achievable CP changes with the in-

clusion of particular sets of timing constraints from Section VI.

The Naive strategy is what we discussed in Table I and its

results are shown as CPNaive; the following columns gradually

include the constraints and delays that correspond to the

valid, ready, and mixed domains (CPDVRM is our complete

optimization model, equivalent to our results from Table I).

The CP values gradually improve with the increased number

of considered timing domains, as additional combinational

paths are identified and optimized. Yet, it is only the final and

complete model that consistently reaches the target CP. This

shows that the complex combinational paths that span through

the different timing domains (see Figure 1) indeed contribute

to the critical path of the circuit and confirms the necessity of

employing our complete timing model from Section VI.

Benchmark CPNaive CPDV CPDVR CPDVRM MILPNaive MILPDVRM

gsum 5.22 4.64 4.35 3.78 1 8

gsumif 5.59 5.64 4.63 3.66 11 180

getTanh 6.17 6.36 6.51 5.29 1 2

histogram 4.56 5.26 5.16 4.94 1 1

2mm 4.71 5.22 3.74 3.53 361 361

3mm 4.44 4.44 3.87 3.73 541 529

mvt 4.12 3.84 3.74 3.47 6 13

covariance 4.44 4.35 3.97 3.50 183 197

gaussian 3.59 3.64 3.61 3.42 73 64

matrix 3.91 4.10 3.59 3.39 180 103

gemver 4.44 4.82 4.05 3.55 18 17

kmp 6.39 5.24 5.22 3.95 324 201

TABLE II: CP (ns) achieved by different timing models. Naive and
DVRM are as in Table I, and DV and DVR are intermediate points
of our approach that gradually include different timing domains. The
results confirm that a complete (DVRM) model is needed to achieve
accurate CPs. The MILP columns show the MILP runtime (s); our
runtimes do not deviate significantly from the Naive approach.

E. Results: MILP Runtime

Our optimization strategy introduces new MILP constraints

and variables, thus increasing the size of the MILP problem

compared to that of Dynamatic. We here explore the impact

of these additions on the MILP runtime.

The final two columns of Table II indicate the MILP run-

times of Naive (MILPNaive) and our approach (MILPDVRM).

The only case where the runtime notably increases is gsumif,
as the new variables increase the problem size and complexify

the solution search. In the majority of cases, the MILP

runtime does not change significantly or even reduces; the

typically minor variations are mostly accidental and due to

particular solutions that the different constraints enforce (e.g.,

the additional constraints of DVRM may enforce a particular

buffer placement, thus reducing the exploration space and,

consequently, MILP runtime). The fact that our MILP for-

mulation consistently sustains a reasonable runtime suggests

its applicability to a wide variety of real-life benchmarks.

VIII. CONCLUSIONS

In this paper, we present a timing model for dataflow circuits

that enables accurate buffer placement for critical path (i.e.,

operating frequency) regulation. Our model captures complex

interactions between the datapath and the distributed dataflow

control logic; it successfully identifies all combinational delays

of the circuit and provides a reliable frequency estimate. We

incorporate our timing model into a performance optimizer

that maximizes circuit throughput for a given clock period

constraint and show that our methodology achieves signifi-

cant critical path reductions (and, consequently, performance

speedups) over prior performance optimization techniques. In

benchmarks where dynamic scheduling is useful, our strategy

increases its performance benefits; in other cases, it makes

dynamic circuits competitive with static circuits. Thus, our

approach is a promising step in making dynamic scheduling

broadly usable in the context of high-level synthesis.

382

REFERENCES

[1] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of syn-
chronous elastic architectures,” in Proceedings of the 43rd Design
Automation Conference, San Francisco, Calif., Jul. 2006, pp. 657–62.

[2] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli,
“Theory of latency-insensitive design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no. 9, pp.
1059–76, Sep. 2001.

[3] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-
level synthesis,” in Proceedings of the 26th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey, Calif., Feb.
2018, pp. 127–36.

[4] J. Cheng, L. Josipović, G. A. Constantinides, P. Ienne, and J. Wickerson,
“Combining dynamic & static scheduling in high-level synthesis,” in
Proceedings of the 28th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Seaside, Calif., Feb. 2020, pp. 288–98.

[5] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu, “Elastic CGRAs,” in
Proceedings of the 21st ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, Calif., Feb. 2013, pp. 171–80.

[6] L. Josipović, A. Guerrieri, and P. Ienne, “From C/C++ code to high-
performance dataflow circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 7, pp. 2142–55,
Jul. 2022.

[7] L. Josipović, A. Guerrieri, and P. Ienne, “Dynamatic: From C/C++ to
dynamically scheduled circuits,” in Proceedings of the 28th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Seaside,
Calif., Feb. 2020, pp. 1–10.

[8] http://www.llvm.org, The LLVM Compiler Infrastructure, 2018.
[Online]. Available: http://www.llvm.org

[9] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms, “Correct-
by-construction microarchitectural pipelining,” Proceedings of the 27th
International Conference on Computer-Aided Design, pp. 434–41, Nov.
2008.

[10] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer placement and sizing for high-performance dataflow circuits,” in
Proceedings of the 28th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Seaside, Calif., Feb. 2020, pp. 186–96.

[11] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in Proceedings of the 32nd International Conference on
Computer-Aided Design, San Jose, Calif., Nov. 2013, pp. 211–18.

[12] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in Proceedings of the 43rd Design Automa-
tion Conference, San Francisco, Calif., Jul. 2006, pp. 433–38.

[21] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

[13] C. Ramchandani, “Analysis of asynchronous concurrent systems by
timed Petri nets,” Massachusetts Institute of Technology, Tech. Rep.
Project MAC Technical Report 120, Feb. 1974.

[14] C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asyn-
chronous concurrent systems using Petri nets.” IEEE Transactions on
Software Engineering, vol. 6, no. 5, pp. 440–49, Sep. 1980.

[15] J. Campos, G. Chiola, J. M. Colom, and M. Silva, “Properties and
performance bounds for timed marked graphs,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 39,
no. 5, pp. 386–401, May 1992.

[16] M. Najibi and P. A. Beerel, “Slack matching mode-based asynchronous
circuits for average-case performance,” in Proceedings of the 32nd
International Conference on Computer-Aided Design, San Jose, Calif.,
Nov. 2013, pp. 219–25.

[17] G. Venkataramani and S. C. Goldstein, “Leveraging protocol knowledge
in slack matching,” in Proceedings of the 25th International Conference
on Computer-Aided Design, San Jose, Calif., Nov. 2006, pp. 724–29.

[18] D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar, “A
general model for performance optimization of sequential systems,” in
Proceedings of the International Conference on Computer-Aided Design,
San Jose, Calif., Nov. 2007, pp. 362–69.

[19] L. Josipović, P. Brisk, and P. Ienne, “An out-of-order load-store queue
for spatial computing,” ACM Transactions on Embedded Computing
Systems, vol. 16, no. 5s, pp. 125:1–125:19, Sep. 2017.

[20] M. Budiu, P. V. Artigas, and S. C. Goldstein, “Dataflow: A complement
to superscalar,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, Austin, Tex., Mar. 2005,
pp. 177–86.

[22] Mentor Graphics, “ModelSim,” 2016. [Online]. Available: https:
//www.mentor.com/products/fv/modelsim/

[23] Vivado Design Suite, Xilinx Inc., 2020. [Online]. Available: https:
//docs.xilinx.com/v/u/2019.2-English/ug901-vivado-synthesis

[24] L.-N. Pouchet, Polybench: The polyhedral benchmark suite, 2012.
[Online]. Available: http://www.cs.ucla.edu/pouchet/software/polybench

[25] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
Proceedings of the IEEE International Symposium on Workload Char-
acterization, Raleigh, North Carolina, October 2014.

[26] “DVRM benchmark suite,” Jun. 2022. [Online]. Available: https:
//doi.org/10.5281/zenodo.6759150

[27] Vivado High-Level Synthesis, Xilinx Inc., 2018. [Online]. Avail-
able: http://www.xilinx.com/products/design-tools/vivado/integration/
esl-design.html

383

