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Abstract—High-level synthesis (HLS) tools typically generate
statically scheduled datapaths. Static scheduling implies that the
resulting circuits have a hard time exploiting parallelism in
code with potential memory dependences, with control depen-
dences, or where performance is limited by long latency control
decisions. In this work, we describe an HLS approach which gen-
erates dynamically scheduled, dataflow circuits out of imperative
code. We detail a complete set of rules to transform a standard
compiler intermediate representation into a high-performance
dataflow circuit that is able to dynamically resolve memory
dependences and adapt its behavior on the fly to particular
control flow decisions and operation latencies. Compared to a
traditional HLS tool, the result is a different tradeoff between
performance and circuit complexity: statically scheduled circuits
display the best performance per cost in regular applications,
but general-purpose, irregular, and control-dominated comput-
ing tasks require the runtime flexibility of dynamic scheduling.
Therefore, enabling dynamic behavior in HLS is key to dealing
with the increasing computational demands of new contexts and
broader application domains.

Index Terms—Buffer storage, circuit optimization, dataflow
computing, high-level synthesis (HLS), memory architecture.

I. INTRODUCTION

THE USE of FPGAs in datacenters by Microsoft [10], [45]
and Amazon [2], as well as the acquisition of Altera

by Intel [14] signal is one of the greatest opportunities for
FPGAs since they were first introduced. One of the many
challenges ahead is whether software programmers will ever
manage to extract enough performance out of FPGAs through
modern programming paradigms. High-level synthesis (HLS)
tools generate hardware designs from high-level software
descriptions and they are set to play a key role in making
FPGAs accessible to diverse users. While there is conspicuous
research activity on this front, HLS tools almost universally
rely on building datapaths that are controlled following static
schedules—that is, the cycle when every operation is exe-
cuted is fixed at synthesis time [19]. Although this approach
serves well applications that are fairly regular, it tends to pro-
duce conservative and low-performance results in irregular and
general-purpose code, thus limiting the usability of HLS only
to particular market segments.
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An alternative HLS approach is to implement dynamic
scheduling, where decisions on when each operation should
execute are made in the circuit during runtime, hence, achiev-
ing behaviors which are beyond the capabilities of statically
scheduled circuits: apart from the ability to extract more paral-
lelism when control and memory dependences are undecidable
at compile time, dynamic scheduling helps to alleviate the
need for complex loop transformation and the related program-
mer hints. Although beyond the scope of this article, dynamic
scheduling also opens the door to speculative execution [34],
one of the most powerful ideas in computer architecture. These
opportunities to exploit parallelism while minimizing the pro-
gramming effort may be critical for FPGAs to compete with
modern CPUs and, ultimately, to deal with the increasing
computational demands of the 21st century.

This article presents a methodology to automatically generate
high-performance, dynamically scheduled circuits from C/C++
code. Our approach borrows several ideas from the asyn-
chronous domain, but produces perfectly synchronous designs,
which are directly comparable to standard HLS techniques.
The remainder of this article is organized as follows. Section II
explores a classic situation where the dynamic extraction of
operation-level parallelism proves essential to performance.
Section III details our circuit generation methodology as imple-
mented in our open-source HLS tool. Section IV discusses
the role of buffers in dataflow designs and their impact on
performance. The next problem is connecting the design to
memory to handle out-of-order memory accesses, which we
describe in Section V. In Section VI, we provide an overview
of our complete compiler flow and Section VII gives the
results of the comparison of our technique with static HLS. In
Section VIII, we outline what others have done to circumvent
some of the problems of statically scheduled HLS, before con-
cluding this article in Section IX. In addition to our previously
published work [33], this article discusses several new aspects
of the C-to-dataflow conversion (e.g., ensuring deterministic
behavior) and details all concepts that are incorporated into
our complete and open-source HLS framework [35].

II. WHY DYNAMIC SCHEDULING?

To illustrate the limitations of standard HLS approaches,
consider the code in Fig. 1(a). In this loop, there is a con-
trol flow decision (if), which depends on the actual data
being read from arrays a[] and b[]. The operation that might
take place in a specific iteration (s = s + d) introduces a
dependency between iterations and delays the next iteration
whenever the condition is true. When pipelining this loop, a
typical HLS tool needs to create a static schedule—that is, a
conservative execution plan for the various operations in the
loop, which is valid in every possible case. Such a schedule
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Fig. 1. Limitations of static scheduling. (a) Shows a code example where dependences cannot be determined at compile time. (b) and (c) Contrast two static
schedules, possible with standard HLS tools (realized as a pipeline and a sequential state machine, respectively), with a dynamic schedule (d), achievable with
our approach. The dynamic schedule achieves the best possible parallelism, which is reduced only in the presence of actual loop-carried dependences.

is shown in Fig. 1(b): in this example, the condition is true
only for the second and third iterations but “space” is reserved
in the schedule as if the condition was true everywhere. An
alternative could be to avoid pipelining the loop and creating a
sequential finite-state machine. The result could be the sched-
ule in Fig. 1(c), where indeed cycles are spent for the addition
only when needed; however, the decision of not pipelining the
loop has removed one of the foremost potentials for paral-
lelism (in this case, the memory reads, the subtraction, and
the comparison are perfectly independent across iterations and
could be pipelined). Obviously, a good schedule is the one in
Fig. 1(d): the operations of different iterations are overlapped
as much as possible and the parallelism is reduced only when
the dependency is actually there (that is, when the addition is
executed). Such behavior is beyond what a statically scheduled
HLS tool can achieve.

This example is representative of one case where gener-
ating a schedule at synthesis time has a negative impact on
performance. Another well-known situation is the presence of
dependences through memory: a write in a previous iteration
may address the same memory location as the read in a succes-
sive one and thus, creates a dependency imposing serialization;
yet, if these two accesses address different locations, they can
be executed out of order. When an HLS tool is not able to guar-
antee independence between two memory accesses, it must
assume the worst-case scenario and thus, limit the exploitable
parallelism—exactly as above but for a different reason. In
recent years, many authors have been exploring workarounds
to some cases of potential dependences through memory—we
will discuss them in Section VIII—but dynamically scheduled
circuits represent the most general solution to the problem.

A. Dataflow Circuits

The key to avoiding the limitations of static scheduling is
to refrain from triggering the operators through a centralized
preplanned controller but to make scheduling decisions locally

in the circuit as it runs: as soon as all conditions for execu-
tion are satisfied (e.g., the operands are available or critical
control decisions are resolved), an operation starts. The rest
of this section looks informally at one dynamically scheduled
circuit paradigm to give the reader a flavor of what we want
to achieve.

Fig. 2 shows a simplified version of a dataflow circuit [15]
implementing the loop of Fig. 1(a). Besides normal datapath
units, this circuit uses a few control units labeled buffer, merge,
select, fork, and branch. All directed edges in the figure repre-
sent data signals accompanied by handshake control signals,
which indicate the availability of a new piece of data from
the source unit and the readiness of the target unit to accept
it, respectively. The loop to the left of the figure shows the
part of the circuit which updates the iterator i: at the begin-
ning, the constant 0 is sent from the entry point. The merge
node takes this value and passes it further. The buffer node is
the register that holds i and distributes it on the next clock
cycle to three consumers through the fork node; all successors
must consume the value before the fork accepts a new input
value. The left branch compares the incremented i with the
loop bound; if the bound is not reached, the new value of i
is sent back to the register by the branch node through the
merge. Meanwhile, the other outputs of the first fork use i to
access a[] and b[] and to compute the subtraction, which
is propagated to the rest of the circuit.

The key to a good execution of this loop is that, ide-
ally, a new value of i should be used to start computing
a[i] - b[i] on every cycle. This is the case in this circuit,
contrary to a conservative statically scheduled one: the cycle
on the left-hand side of Fig. 2 is completely combinational
excluding the buffer and thus, a new value for i can be com-
puted on every cycle. It is the right part of the circuit which can
delay this: when the if is not taken, the result of the addition
is dumped by the select node as soon as it arrives through the
merge and the old value of s becomes immediately the new
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Fig. 2. Dynamically scheduled, dataflow circuit implementing the code from
Fig. 1(a) and achieving the schedule of Fig. 1(d).

value that is sent back to the adder on the following cycle; if,
on the other hand, the result is needed, the select will wait for
the sum to complete and the adder will be stalled next cycle
waiting for its right operand. Ultimately, a new subtraction
will not be computed and the memory accesses will not be
performed due to backpressure from the adder; the top fork
will not allow a new i to proceed on the right branch. This
slows down the initiation of the loop and is exactly what the
dynamic schedule in Fig. 1(d) shows.

In the rest of this article, we describe our complete method-
ology to automatically generate dynamically scheduled cir-
cuits, such as the one in Fig. 2, from C/C++ programs.
Although the potentials of gain in terms of clock cycles saved
in situations such as the one in this example are at least qual-
itatively clear, dynamic scheduling also costs resources and
time (i.e., the area and delay of the dataflow units in Fig. 2).
To evaluate these area-performance tradeoffs, we compare our
circuits with those obtained using a state-of-the-art HLS tool
and we show that dynamic scheduling can reap significant
performance benefits in appropriate situations.

III. SYNTHESIZING DATAFLOW CIRCUITS

In this section, we first outline the dataflow units which
we use in our work. We then describe the process we use to
convert an arbitrary piece of code into a dataflow circuit.

A. Dataflow Units

Latency-insensitive protocols [8], [15] are a natural method
to create synchronous dataflow circuits, capable of making
decisions at runtime. Such circuits are built out of units that
implement latency insensitivity by communicating with their
predecessors and successors through channels composed of
data lines and paired with handshake control signals: a valid

Fig. 3. Dataflow units. All data channels are paired with bidirectional control
signals, which indicate the validity of data and the readiness of the successor
unit to accept it.

signal indicates that a unit is sending a valid piece of data to its
successor(s), whereas the ready signal informs the predeces-
sor(s) that a unit can accept a new piece of data. A token [41]
of data is propagated from unit to unit through a channel as
soon as memory and control dependences allow it—otherwise,
it is stalled by the handshake mechanism.

Fig. 3 outlines the dataflow units we use. Their gate-level
descriptions can be found in prior literature [15], [29].

1) An eager fork (fork) replicates every token received at
the input to multiple outputs; as soon as one successor
is ready to accept the token, the fork sends it to the
successor; however, the fork can accept a new token only
after all successors have accepted the previous one.

2) A lazy fork (lfork) has the same functionality as the eager
fork; however, it distributes a token to all successors at
once (i.e., all successors must be ready for the lazy fork
to send the token).

3) A join acts as a synchronizer—its output is triggered
only after all of its inputs become available.

4) A branch implements program control-flow statements;
it dispatches a token received at its single input to one
of its multiple outputs based on a condition.

5) A merge is a nondeterministic unit that propagates a
token received on any of its input to its single output.

6) A mux is a deterministic version of the merge; it prop-
agates to its single output the input token selected by a
control input.

7) A control merge (cmerge) is a merge which apart from
the data output, has an output that indicates which of
the inputs was taken by the merge.

8) A source can always issue a valid token to its single
successor (e.g., a constant).

9) A sink is always ready to consume tokens from its single
predecessor; the token is simply discarded in the sink.

In addition, we use any functional unit the code requires,
such as integer and floating-point units. Units that require
multiple operands contain a join to trigger the operation only
when all inputs are available. Our circuits require buffers that
serve as registers in standard synchronous designs—we discuss
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Fig. 4. Implementing control flow. The left circuits (left of Fig. 4(a) and (b))
show cases where a direct conversion of a data and control flow graph into a
dataflow circuit would fail. Coupling data and control to ensure correct token
transfers between BBs is shown on the right of Fig. 4(a) and (b): data are
propagated exclusively from each BB to its immediate successor BBs, using
merge and branch units for each BB live-in and live-out, respectively.

their properties and placement in Section IV. Finally, our cir-
cuits interface to memory using read and write ports; we will
address the memory interface in Section V.

B. Implementing Control Flow

The starting point for our circuit generation is a standard
compiler intermediate representation in static single assign-
ment (SSA) form, where every variable is defined only once
and phi nodes are used to define a variable from multiple
definitions along multiple control paths [50]. The control-
flow graph (CFG) of a program is organized into basic
blocks (BBs), i.e., straight pieces of code separated by control
flow decisions. Each BB contains a dataflow graph (DFG) of
program instructions; it receives live-in variables from the pre-
decessor BBs and produces live-out variables for the successor
BBs. Transforming the DFG of each BB into a corresponding
interconnect of dataflow units is relatively straightforward—
we will describe this process in Section III-D, but there are a
couple of problems when implementing control flow and send-
ing values from one BB to another due to the fundamental
difference between software programs and dataflow circuits.

Fig. 4 shows two examples.
1) In Fig. 4(a), the variable a is defined in BB0 and used in

BB2. A typical representation in a compiler (left-hand

side of the figure) propagates the desired information
directly from the source to the destination block (i.e., a
live-in of a BB comes from a BB which is not its imme-
diate predecessor). This flow does not pose problems in
software, as successive values of a would be stored in a
register of a processor or in memory and the last value
used when BB2 is reached.

2) In the example in Fig. 4(b), BB1 is the only BB in the
body of a loop and uses a value a produced in BB0.
The value of a does not change during the execution
of BB1 and is used at every execution of BB1. Again,
the representation on the left would cause no problem in
a processor—the value would be stored in a register or
memory and read as many times as needed. Similarly, in
both cases, a standard HLS tool would devise a schedule
that ensures that each value is kept in a register as long
as it is needed; values are read from and written into the
register in appropriate (and predetermined) clock cycles.

Directly implementing such connections in a dataflow cir-
cuit would result in incorrect behavior because every generated
value is associated with a token; the number of tokens must
exactly match the number of distinct uses. The cases in the
left-hand side of Fig. 4(a) and (b) violate this principle if
implemented literally.

1) In the first case, if the control flow was {BB0-BB1-BB0-
BB1-BB2}, two new values (with the respective tokens)
for a would have been generated and sent to BB2; yet,
BB2 can take only a single token and requires only the
most recent value. The execution would be incorrect or
the circuit would not terminate because the tokens not
absorbed by BB2 would create backpressure to BB0 and
stop it indefinitely.

2) In the second case, BB1 would not be able to execute
repeatedly due to a starving input. Assuming the control
flow is {BB0-BB1-BB1}, the first execution of BB1 will
consume the single data token for a and any further
execution of BB1 would stall indefinitely waiting for a
token.

The solution to both problems is to strictly couple data prop-
agation with control flow, as shown on the right-hand side of
Fig. 4(a) and (b). The following properties must hold.

1) Every BB must provide a live-out for every live-in of
all of its immediate successor BBs and exclusively to
them.

2) Every BB must receive all of its live-ins from its
immediate predecessor BBs and exclusively from them.

We implement these rules as shown in Algorithm 1.
1) We employ a standard liveness analysis algorithm [50]

to determine the live-ins and live-outs of each BB.
2) For every BB live-in and live-out, we place a merge and

a branch unit in the BB, respectively.
3) We connect all operations within a BB that use a live-in

to the appropriate merge of the same BB (i.e., the merge
will inject tokens into the BB to trigger the execution
of its operations).

4) We connect the outputs of all branches to the inputs of
the corresponding merges in the immediate successor
BBs. In Fig. 4(a), this strategy results in merges for a
in BB1 and BB2 and branches for a in BB0 and BB1.
In Fig. 4(b), BB0 has a branch for a and BB1 has a
merge and a branch.
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Algorithm 1: Implementing Control Flow
// Input: CFG (control-flow graph)
// Input: DFG (SSA-based dataflow graph)
// Output: DFG (dataflow graph with coupled
// data propagation and control flow)

// Determine live-ins and live-outs of each BB
liveIns, liveOuts = LivenessAnalysis (CFG)

// Place merge for every live-in in every BB
foreach bb ∈ CFG do

foreach li ∈ liveIns (bb) do
mg = CreateMerge(bb, li, DFG)

// Connect all operations within the BB
// that use the live-in to the
corresponding merge
foreach op ∈ operations (bb) do

if li ∈ predecessors (op) then
Connect (op, mg)

// Place branch for every live-out in every BB
foreach bb ∈ CFG do

foreach lo ∈ liveOuts (bb) do
br = CreateBranch (bb, lo, DFG)

// Connect branch to corresponding merges
// in successor BBs
foreach bbsucc ∈ successors (bb) do

mg = FindMerge (lo, bbsucc)
Connect (br, mg)

This strategy guarantees that every piece of data is sent cor-
rectly from BB to BB, following the control flow of the
program. Each BB contains as many merge units as it has
incoming variables and as many branch units as it has outgoing
variables. Some merges correspond to SSA phi nodes—they
propagate into the BB a value chosen from one of the dis-
tinct predecessor values (based on the control flow), whereas
other merges propagate a single value (coming from differ-
ent control flow directions) to honor the rules above. This is
the case, for instance, for the merge for variable a in BB1 of
Fig. 4(b). All branches of a BB share the same condition and
send tokens to the same successor BB based on a control flow
decision.

Our strategy allows tokens to independently proceed from
one BB to the succeeding BB (i.e., there is no synchronization
of tokens at the BB output) and ensures correctness by propa-
gating all tokens strictly following the control flow. However,
in particular cases, this approach may be overly conservative: a
throughput-critical token (e.g., a token carrying the loop itera-
tor) may be unnecessarily prevented from quickly propagating
through the BBs due to a long-latency BB condition. Although
outside the scope of this article, systematically determining
when data can bypass a certain BB (i.e., when a token prop-
agation is independent of a particular BB condition) would
further simplify the dataflow network and may, in particular
applications, improve the achievable throughput.

C. Ensuring Determinism

Although different operations in a dataflow circuit may exe-
cute out-of-order, tokens arrive to each individual operator
strictly in order. Yet, there is one particular case in which this
property may not hold and which we discuss in this section.

Fig. 5. Nondeterministic behavior at SSA phi nodes. The token entering
BB4 is produced either by BB2 or BB3; since these values are produced
independently, the merge in BB4 may receive its inputs out-of-order.

The execution of our dataflow circuits is triggered by inject-
ing a single token for each input (i.e., program argument) into
the start BB. The tokens propagate through the BBs, follow-
ing the control flow of the program—the BBs are triggered
in exactly the same order as the software execution of the
unmodified original program. When a single value propagates
through the BBs, a token will always enter each BB from
its single active predecessor—once the token enters through a
merge, no other source can reinject a token into the merge until
the merge itself produces a token; hence, there is nothing that
can interfere with the token ordering at the BB input. Tokens
will never reorder inside a BB as it contains only straight and
unconditional dataflow computation.

However, the situation is different in BB entry points where
a value is redefined (i.e., when a token enters a BB through
a merge which corresponds to SSA phi node)—as each input
represents a distinct and, potentially, uncorrelated value, the
input tokens may arrive in an order different than specified in
the original program. An example of such a case is illustrated
in Fig. 5, which shows the CFG and a simplified datapath
of the code in the figure. Assuming that the control flow
is {BB1-BB2-BB4-BB1-BB3-BB4} (determined by the con-
dition cond in BB1), the iterator from BB1 will first be
sent to BB2 to compute the value of x1. This value takes
multiple cycles to compute, but the iterator can quickly prop-
agate through BB4 and BB1 (the iterator path is omitted from
the figure; as described in the previous section, it follows the
control flow of the program). It will then enter BB3, which will
trigger the short computation producing x2—this value may
arrive to the merge in BB4 before the value of x1; the merge
would send the values to the store out of order, which would
then produce incorrect results. In standard HLS, this problem
is addressed through static scheduling, which enforces in-order
execution and dictates phi input ordering.

To ensure that tokens never enter a BB out of order, we
replace every merge that corresponds to an SSA phi node with
a mux unit described in Fig. 3. We generate an in-order control
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Fig. 6. Ensuring determinism. We extend the circuit from Fig. 5 with
a specialized in-order control network that follows the control flow of the
program—the cmerges of this network communicate with the muxes of the
same BB to indicate the correct input ordering.

path that follows the control flow of the program through
the BBs—essentially, a data-less variable, which is a live-in
and live-out of each and every BB. This path enters each BB
through a cmerge, which connects to the muxes of the same
BB and indicates the ordering of the inputs from which they
will receive data. The extended circuit from Fig. 5 is shown in
Fig. 6: in the previously discussed control flow sequence, the
cmerge in BB4 would first receive a value on input in1, com-
ing from BB2, and then on input in2, coming from BB3—it
would indicate this ordering to the mux, which would then not
accept the value of x2 before it has received the value of x1.
This way of building dataflow circuits implies the following
properties.

1) Determinism: The strict ordering of BBs reflected in the
in-order control path guarantees that the execution is
race free.

2) One Token Per Loop: On a cyclic path, there can be
only a single token at a time (a token enters a BB on a
cycle through a merge; as this BB determines the next
control flow decision, it is the only block that can send
the token back into the merge).

3) Strict Token Ordering on a Path: If there are multiple
tokens on an acyclic path, they could only be injected
into it by repeatedly forking at every passage the single
token of a cycle and the cyclic propagation of this token
is determined by the in-order control flow decision.

D. Constructing the Datapath

Once the control flow is correctly handled, the BB internals
are straightforward to design—each instruction is literally con-
verted into its dataflow unit (i.e., a functional unit with inputs

Fig. 7. Triggering constants. Setting constants as always valid (e.g., using
a source) may incorrectly trigger operations even when their execution is not
determined by the control flow (in this example, the store would constantly
store data to memory). In such cases, at least one constant should be connected
to the in-order control network, thus ensuring that the constant is triggered
only when its BB is active.

and outputs accompanied by handshake signals). When a unit
has more than one direct successor, we place a fork to replicate
the token into an individual token for each of the successors
(i.e., for each point-to-point data transfer). Unused unit out-
puts (e.g., branch outputs without successors) connect to sinks
that discard the unused tokens.

Some units (e.g., constants) do not have any inputs; we
must ensure that they are appropriately triggered and executed.
Keeping units without inputs always active (e.g., by setting a
source as their input) may result in incorrect behavior, as they
could trigger operations that are not supposed to execute. An
example is shown in Fig. 7: a store with a constant address
and data would constantly send data to memory, regardless
of the number of store executions specified by the program.
Another case is that of a branch with a constant data input and
a constant condition, which would constantly trigger a merge
of some successor BB, even if this is not decided by the control
flow. For this purpose, we exploit the in-order control network
described in Section III-C and used to ensure determinism—
we fork the token from this network and use it to trigger
operations with no inputs only and as many times as their
BB becomes active, as shown on the right-hand side of Fig. 7.
Whenever a constant is an input to a unit that is triggered only
when the BB is active (i.e., at least one of the unit predecessors
is a live-in of the BB), the connection of the constant to the
control path can be omitted and it can be triggered by a source
instead, which reduces the complexity of the dataflow network.
This is the case for the constants in BB2 and BB3 in Fig. 5—
the computational units will receive a data input and trigger the
computation only if the corresponding BB becomes active, so
both constants can be triggered with a source. Similarly, only
one of the constant inputs to the store in Fig. 7 requires a
connection to the control network.

IV. BUFFERS IN DATAFLOW CIRCUITS

The circuits produced by the compilation strategy described
in the previous section do not contain any buffers (i.e., reg-
isters). In this section, we discuss buffer properties and their
importance in obtaining high-performance dataflow circuits.

A. Buffer Properties

Dataflow circuits require buffers that serve as registers
in standard synchronous designs. Buffers store either tokens
(i.e., valid data) or bubbles (i.e., invalid data). A buffer can
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Fig. 8. Buffer properties. The figure contrasts a 1-slot nontransparent buffer,
which breaks the combinational path and can store a single token, with a
5-slot transparent buffer, which can send data combinationally from input to
output or store up to five tokens if the successor is not ready to take them.

hold a token or a bubble—each time a token moves forward, a
bubble moves in the opposite direction, similar to electrons and
holes in semiconductors [26]. Every cycle of our circuit will
always contain at most one token (see Section III-C), whereas
bubbles can be freely allocated by adding buffers. The buffers
are characterized with two properties.

1) Transparency indicates whether a buffer adds sequen-
tial delay onto a path; a nontransparent buffer is used
to break the combinational delay and implies a 1-cycle
latency (therefore, potentially damaging throughput),
whereas a transparent buffer is implemented as a pass-
through element and does not increase cycle count (but
may deteriorate the combinational delay due to the
bypass multiplexer at its output)

2) Capacity (i.e., number of slots) is used to regulate
throughput; these properties are illustrated in Fig. 8: a
single-slot nontransparent buffer is equivalent to a reg-
ister in a standard synchronous circuit; a common FIFO
of size N with a combinational path between input and
output is here, an N-slot transparent buffer.

B. Buffers and Circuit Functionality

Dataflow systems use distributed handshake signals to con-
trol the flow of data in the datapath. These signals implicitly
take care of stalling early data items when they need to syn-
chronize with later items [23]. Although buffers shift the
values in time, their presence or absence does not affect
the functional correctness of the system, as any consumer of
multiple values synchronizes the corresponding valid tokens.
Hence, contrary to registers in traditional synchronous designs,
buffers can be placed on any channel of the dataflow circuit—
due to its latency insensitivity, this insertion will not compro-
mise the functionality [5], [33], but may impact timing and
throughput.

C. Buffers and Avoiding Deadlock

The following conditions are necessary to ensure deadlock-
free execution of dataflow systems.

1) Each combinational cycle must be broken with at least
one nontransparent buffer; this requirement is analogous
to that in standard synchronous circuits, where each
combinational cycle needs to be broken using a register.

2) Each cycle in must contain at least one token and one
bubble [16]; this requirement ensures that a token and
a bubble can always exchange places and tokens can

(a) (b) (c)

Fig. 9. Adding buffers. A combinational cycle without buffers or with a single
buffer slot will cause deadlock, as the token will not be able to propagate
through the cycle. At least two buffer slots are necessary to ensure deadlock-
free execution. (a) No buffer on cycle: deadlock. (b) 1-slot buffer on cycle:
deadlock. (c) 2-slot buffer on cycle: no deadlock.

propagate through the cycle. As our circuit generation
strategy guarantees that each cycle will have exactly one
token, our combinational cycles will require at least two
buffer slots to accommodate for the token and (at least)
one bubble.

Fig. 9 contrasts a combinational cycle of a dataflow cir-
cuit without a buffer, with a single-slot nontransparent buffer
(satisfying the first requirement above), and with a two-slot
nontransparent buffer (satisfying both of the requirements
above). In the first case, a token at the input of the merge
cannot propagate through the cycle due to the combinational
relationship of the valid and ready handshake signals on the
cycle. Adding a buffer breaks the combinational path and
enables the token to enter the cycle, but there is no empty
buffer slot (i.e., bubble) for the token to loop back through
the merge. A 2-slot buffer (N2-buff) ensures deadlock-free
execution as a token and a bubble can always exchange
places.

D. Buffers and Performance

The circuit in Fig. 10(a) satisfies the correctness properties
described in the previous sections, but it fails to address two
important performance aspects.

1) Critical Path: The buffers are placed without any con-
sideration for the combinational delays of the nodes (all
nonzero delays are indicated in the figure) and therefore,
do not control the critical path in any way.

2) Throughput: Some paths may take a longer time to pro-
cess data and prevent the faster paths from consuming
tokens at a higher rate. This effect may restrict loop
pipelining—even if the need for another iteration can be
decided very fast, new tokens may not be able to trigger
the following loop operations because tokens from the
previous iterations are stalled in the loop units.

In Fig. 10(a), the token carrying the array value a is forked
into two pipelined multipliers, but the lower multiplier cannot
accept the token until the upper multiplier is done computing
(i.e., after three clock cycles). Similarly, the store can accept
the iterator from the fork only after the two chained 3-stage
multipliers produce a result. Because of backpressure in these
paths, the iterator cannot be issued through the loop at a high
rate, which lowers the loop initiation interval (II).
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Fig. 10. Circuit in (a), implementing the code from (c), is functionally correct and deadlock free, but it is not optimized for performance. The optimized
circuit in (b) has buffers placed strategically: nontransparent buffers (i.e., N1- and N2-buff) control the critical path and larger capacity transparent buffers
(i.e., T4- and T8-buff) in the slow paths mitigate backpressure to maximize throughput.

Algorithm 2: Performance Optimization
// Input: CFG (control-flow graph)
// Input: DFG (dataflow graph)
// Output: buffers (list of dataflow channels
// characterized with buffer capacity and
// transparency)

// 1. Identify choice-free subgraphs of the
dataflow graph
profile = ProfileApplication (CFG)

// ILP for iterative cycle extraction
cycles = ExtractCycles (CFG, profile)

// Find dataflow subgraph of each cycle
foreach c ∈ cycles do

subgraph (c) = FindDataflowSubgraph (c, DFG)

// 2. Optimize performance
foreach c ∈ cycles do

// Choice-free subgraph throughput
th.add(ThroughputConstraints(subgraph(c)))

foreach u ∈ DFG do

// CP of entire dataflow graph
cp.add(PeriodConstraints(u, e))

// MILP to max. throughput under CP constraint
buffers = MILP (th, cp, CPtarget)

Fig. 10(b) shows a possible circuit configuration with
optimal throughput and the critical path constrained to 4 ns.
The additional nontransparent buffer lowers the critical path
by breaking the combinational delay of 6 ns between the
multipliers. Inserting transparent buffers of larger capacity
increases effective parallelism, as accumulating data in these

buffers allows to trigger the faster paths at a higher rate and,
in this case, achieves the ideal loop II of 1.

We developed an optimization approach [36] which allows
for resource-optimal buffer placement and sizing, with the
purpose of maximizing throughput of the performance-critical
loops at the desired clock frequency. Our optimization strategy
consists out of two main steps, as illustrated in Algorithm 2:
1) we profile the application and employ an integer linear pro-
gramming model to identify performance-relevant choice-free
subgraphs of the DFG and 2) we employ a mixed-integer
linear programming model based on Petri net theory [41]
which strategically places and sizes buffers to optimize the
throughput of each choice-free subgraph, while ensuring that
the entire DFG meets the target clock period (CP) constraint.
The resulting circuits correspond to the one in Fig. 10(b):
larger transparent buffers regulate throughput and smaller
nontransparent buffers control the critical path.

Analogous to static HLS, where the decision on how many
units to employ is made together with operation scheduling,
our performance optimization model can also decide which
operations can share a functional unit: the obtained throughput
directly determines the rate of token propagation through each
unit and identifies underutilized units that may be shared with-
out a performance degradation. Appropriately multiplexing the
incoming tokens at the shared unit inputs avoids unit starvation
and ensures the absence of deadlock [30].

V. CONNECTING TO MEMORY

Thanks to their latency insensitivity and in contrast to
statically scheduled designs, dataflow circuits can easily con-
nect to any memory interface and hierarchy without requir-
ing memory-specific modifications; the handshake logic will
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Fig. 11. LSQ required for correct out-of-order memory accesses. In addition
to load and store ports, the LSQ requires a specialized signal indicating the
start of each BB in the program-determined order.

ensure that the execution naturally adapts to any memory
latency and variability (e.g., variable latency of a DRAM
memory controller or a cache). Connecting every load or
store operation to a read and write port, respectively, seems
a natural decision, but the result may be incorrect. Access
requests will arrive to the memory interface in an arbitrary
order. In general, this is the dynamic out-of-order feature that
we desire—in contrast, statically scheduled circuits must con-
servatively serialize possibly dependent accesses, resulting in
suboptimal performance. Yet, this out-of-order execution may
lead to the violation of memory dependences: for instance, if
a write happens at the same address as some successive read,
and if the read token arrives in the dataflow circuit before the
write token, the result of the read will be incorrect.

The solution is to use an LSQ similar to those present in
dynamically scheduled processors. Yet, we have shown that
building an LSQ for dataflow circuits has one fundamental
difference [32]: the LSQ must be given explicit information
on the original program order of the memory accesses, so that
it can allocate them into the queue in the right order and thus,
resolve them in a semantically correct way. The details are
beyond the scope of this article; it suffices to say that the
key condition for the LSQ to execute correctly is to receive
tokens that follow the actual order of execution of the BBs
of the circuit. This ordering enables the LSQ to determine
and resolve dependences as memory access arguments from
different BBs arrive out-of-order.

Consider a program containing a single BB with a poten-
tially dependent read and write access, as shown in Fig. 11.
Apart from the read and write port communicating with the
LSQ, an additional signal indicates to the LSQ the start of the
particular execution of the BB. Each BB with accesses target-
ing the same memory will employ such a signal—the ordering
of these tokens enables the LSQ to appropriately handle out-
of-order memory accesses. In the example in the figure, the
second read request may arrive before the previous store has
completed; the LSQ will appropriately stall its execution if
it is dependent on the store or allow the accesses to execute
out-of-order otherwise.

Apart from the allocation strategy, which is unique for our
dataflow approach, the remainder of our LSQ implementa-
tion qualitatively corresponds to a standard processor LSQ,
as Fig. 12 suggests. Our challenge here is to guarantee that
the signals coming from the BBs to the LSQ are produced in
order by a circuit which we have, otherwise, designed to be as
aggressively out-of-order as we could. To this end, we exploit
the in-order control path that we introduced in Section III-C.
The tokens in this path trigger the allocation of BBs as soon

Fig. 12. LSQ structure. Apart from the allocation strategy, our LSQ is
essentially identical to that of a common processor.

as the control flows there (i.e., as soon as a decision is made
to enter a particular BB). However, applying the standard
dataflow circuit design strategy described in the previous sec-
tions might result in the incorrect order of token arrival to the
LSQ. Fig. 13 shows two example situations leading to a poten-
tially wrong execution: 1) if the token is forked to the LSQ
using the typical eager fork, one of the fork outputs might send
a token to the next BB before the LSQ has accepted a token
from its predecessor, as shown in Fig. 13(a) and 2) although
placing buffers in dataflow circuits has no impact on correct-
ness (as discussed in Section IV), a buffer on the fork output
connected to the LSQ might compromise the order of token
arrival to the queue—if the token remains stored in the buffer,
the successor BB could send a new token before the prior
allocation has been completed, as shown in Fig. 13(b).

The correct way to connect the LSQ to the dataflow circuit
is shown in Fig. 13(c): 1) the forks used to send the tokens
to the LSQ are lazy forks (lforks)—if one of the fork outputs
is stalled, the other one will stall as well and 2) no sequential
elements (i.e., buffers) are allowed on the fork outputs con-
nected to the LSQ. This ensures that a token can be passed to
the successor BB only when the allocation of its predecessor
BB has been completed—if an allocation is deferred (e.g., due
to limited space in the LSQ), the token stalls and no further
allocation requests reach the LSQ.

To connect our datapaths to memory, we leverage com-
piler analysis to simplify our memory interface. Whenever
the compiler can disambiguate memory accesses, groups of
accesses that cannot mutually conflict use separate LSQs,
while accesses that cannot have dependences with any other
accesses are connected to simple memory interfaces [31].

VI. COMPLETE FLOW

In the previous sections, we have shown how an arbitrary
program described in a high-level language can be transformed
into a dynamically scheduled, dataflow circuit, which executes
operations out-of-order, naturally implements pipelining, and
efficiently handles potential memory dependences.

The presented flow is implemented in Dynamatic, our open-
source HLS compiler [35]. The basic flow of Dynamatic is
shown in Fig. 14. It takes as input C or C++ code and
produces a synthesizable hardware description of the corre-
sponding dataflow circuit. The first two steps of the flow,
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Fig. 13. Connecting the dataflow circuit to the memory interface. (a) and (b) give examples of incorrect connections. In (a), the eager fork may send an
allocation to BB2 before the allocation of BB1 completes. In (b), the allocation order may be reversed due to the storage element on the control line between
the circuit and the load-store queue (LSQ). (c) shows the correct way to connect the LSQ—an allocation cannot occur unless all predecessor allocations have
been completed.

Fig. 14. Dynamatic HLS compiler: software-to-hardware flow.

analysis and elaboration preprocess the C files by precheck-
ing code correctness, adding metainformation, and formatting
it for the rest of the flow. The synthesis step relies on the
LLVM framework [39]: the clang frontend parses the C/C++
program and produces an SSA intermediate representation
(LLVM IR), which is then optimized using standard LLVM
transformation and analysis passes. The optimized IR is then
given as input to a set of our custom passes. The main pass
adds dataflow units from Section III-A, following the trans-
formations described in Sections III-B–III-D to produce a
functionally correct dataflow circuit; additional passes per-
form analysis and optimizations (e.g., memory access analysis
to create the memory interfaces from Section V). The out-
put is a DFG in the form of a DOT netlist. This netlist is
then provided to the optimizer—it uses a MILP solver [22]
to find the optimal buffer placement and sizes for a user-
defined CP constraint, as indicated in Section IV. This step
produces an optimized DOT netlist. Finally, the DOT describ-
ing the dataflow circuit is converted into a VHDL netlist of
dataflow units. This netlist, in conjunction with a predefined
library of dataflow units, can be synthesized and implemented
on an FPGA. The generated circuit is packaged as an IP

and integrated as a hardware accelerator into a heterogeneous
FPGA design, which includes a soft or hard CPU core and
communicates through an AXI interface. Dynamatic currently
targets Xilinx and Intel FPGAs; our component library is eas-
ily extensible to target other platforms. Thanks to their flexible
handshake logic, dataflow circuits can easily adapt their execu-
tion to units with different timing properties; yet, their timing
may impact circuit performance and, therefore, must be con-
sidered by our performance optimization model. Hence, we
characterize each unit in our unit library with its latency, II,
and critical path (determined based on static timing analysis
of the unit); based on the target FPGA, we choose the units
to employ in the circuit and include the corresponding timing
values in our performance optimizer.

VII. EVALUATION

In this section, we compare the dynamically scheduled cir-
cuits produced by Dynamatic with a commercial HLS tool.
We give an overview of our methodology and benchmarks
before presenting our results. Our complete HLS tool and our
benchmarks are publicly available at dynamatic.epfl.ch.
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TABLE I
DYNAMICALLY SCHEDULED RESULTS (OUR DATAFLOW CIRCUITS) CONTRASTED TO STATICALLY SCHEDULED RESULTS (VIVADO HLS).

THE SLICE COUNT FOR THE KERNELS WITH THE LSQ IS SHOWN AS SLICES OF KERNEL + SLICES OF LSQ

A. Methodology

To demonstrate the benefits of using dynamic scheduling
in HLS, we compare our circuits with designs generated by
Vivado HLS [54], a state-of-the-art commercial HLS tool. In
all Vivado designs, we apply the pipelining optimization direc-
tive. Although supported by our approach, we do not employ
unrolling as this code restructuring optimization is orthogonal
to the scheduling paradigm and would affect similarly Vivado’s
results and ours. To provide a fair comparison, we employ the
same arithmetic units (with custom wrappers employing hand-
shake signals) and RAM blocks used by Vivado in our designs.
When our compiler cannot disambiguate memory accesses, we
employ the LSQ in our designs and connect it to the RAM
interface; otherwise, we connect the dataflow read/write ports
to the RAM through a simple memory arbiter.

We functionally verify the designs in ModelSim [40]. We
obtain the average loop II from the simulation and the CP from
the postrouting timing analysis to calculate the total execution
time. Placing and routing the designs using Vivado gives us
the resource usage (i.e., the number of CLB slices, with the
corresponding LUT and FF count, as well as the number of
DSP units).

B. Benchmarks

The designs that we discuss in this section are simple ker-
nels which represent typical cases where static scheduling
is known to run into its fundamental limits while dynamic
scheduling should make a significant difference. We also con-
sider kernels where static scheduling is fully successful, to
show that dynamically scheduling achieves virtually the same
result with acceptable overheads.

1) Histogram reads an array of features and increases the
value of the corresponding histogram bins. The memory
access pattern cannot be determined at compile time—
the loop may contain read-after-write dependences if the
same bin is updated in neighboring iterations.

2) Matrix power performs a series of matrix–vector
multiplications. Each iteration of a nested loop reads
a row and a column coordinate and updates the cor-
responding matrix element. At compile time, it is not
possible to determine if successive iterations perform
conflicting writes and reads.

3) Matching performs the maximal matching algorithm,
which iterates through the edges of a graph and checks
whether their endpoint vertices are marked; if this is

Fig. 15. Resource utilization and execution time of the dynamically scheduled
designs, normalized to the corresponding static designs produced by Vivado
HLS.

not the case, the vertices are updated using conditional
stores. There are potential read-after-write dependences
between the stores and the loads from the following
iterations.

4) If loop add is the kernel discussed in Section II, with a
potential dependency across loop iterations.

5) If loop mul is a variation of the previous kernel where
we replace the conditional addition with a multiplication
of the same variables and which we will contrast with
the previous kernel in terms of resource utilization.

6) FIR is an ordinary FIR filter calculating the output
based on the inputs and the coefficients. The memory
reads and writes are independent and disambiguated at
compilation.

7) Matvec is a standard matrix–vector multiplication; as
in the previous case, all memory accesses can be
disambiguated during compilation.

C. Results: Comparison With Static HLS

Table I summarizes the timing and resource results for all
kernels and Fig. 15 shows our results relative to those from
Vivado HLS (results to the left or below the red square, which
represents all Vivado designs, are better).

Timing: Avoiding conservative assumptions on memory and
control dependences results in a significant improvement of
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the throughput and, consequently, execution time in all of the
corresponding benchmarks (note that the dynamic results are
data dependent: the best possible II is achieved when there
are no dependences and the worst possible II when all neigh-
boring iterations are dependent; this II corresponds to the
statically computed one). The additional dataflow control logic
(i.e., the merge, branch, fork, and join units which we insert
into the design) typically have an acceptable impact on the
CP. The critical path of the LSQ is extremely sensitive to
the number of queue entries [32]; hence, it also impacts the
achieved CP. Although this timing overhead is quite tangible,
it is still conspicuously small when compared to the poten-
tial improvement in II and, consequently, the net performance.
On the FIR and Matvec benchmarks, static HLS techniques
produce highly optimized pipelines because memory accesses
can be disambiguated at compile time. The static HLS tool
depends on techniques such as modulo scheduling [47] to
restructure and pipeline the loop, whereas we effortlessly com-
pile the LLVM IR into a dataflow circuit as is: although both
the static and dynamic design achieve the ideal II of 1, these
are the only cases where our results are Pareto-dominated by
the static results due to the increase in CP.

Resource Utilization: The right of Table I contrasts the
resource utilization of statically and dynamically scheduled
circuits. The overhead in slices of the dynamic designs, notable
across all benchmarks, is partially due to the control logic that
the dataflow circuits contain and which allows them to achieve
the latency insensitivity that we desire. The overhead of the
FIFOs that we introduced to increase throughput, as discussed
in Section IV-D, is probably overblown by the simplicity of
the examples with only a few functional units. Additionally,
Vivado employs allocation and binding algorithms to share
(i.e., time multiplex) functional units among operators; shar-
ing is possible without a performance penalty due to the low
throughput, which the static designs achieve. Since all the
dynamic designs achieve high-throughput pipelines, sharing
units is not possible without compromising throughput; we,
therefore, allocate a new unit per operator, which contributes
to the resource difference between the static and dynamic
design. For instance, our If loop add design requires two func-
tional units to perform the addition and the subtraction whereas
Vivado HLS time-multiplexes the same one (as evident from
the DSP usage). By replacing one of the operations with a mul-
tiplication (i.e., If loop mul), we verified that the DSP count
is now equal and the overall resource difference is smaller.

It is immediately visible from Fig. 15 that the circuits
requiring an out-of-order memory interface demand signifi-
cant additional resources. Although others have accelerated
similar kernels to a qualitatively comparable extent and with
only insignificant overhead [18], their solution is highly spe-
cific and solves only a subset of problems discussed in this
work. It should be emphasized that the resource and tim-
ing overhead could be minimized by implementing the LSQs
as hard-macros, in the same way as other memory hierarchy
components might be in the future (e.g., caches and TLBs).

VIII. RELATED WORK

Standard commercial (e.g., Vivado HLS [54]) and academic
(e.g., LegUp [7], PandA [44]) HLS tools rely on a static sched-
ule, determined at compile time; this schedule dictates the

clock cycle in which each operation will execute. Pipelining is
typically achieved through modulo scheduling [6], [47], [55]:
the aim is to minimize the loop II under the given clock
and resource constraints. In regular applications, this approach
results in high-throughput pipelines; however, when memory
accesses or control decisions are not determinable during code
compilation, the HLS tool must make pessimistic schedul-
ing assumptions, often yielding inferior schedules and lower
performance.

Recent advances in HLS have explored methods to over-
come the conservatism in static scheduling. Several tech-
niques [1], [38] generate multiple schedules, which are dynam-
ically selected during runtime, once the values of all param-
eters are known; they rely on the capabilities of current HLS
tools by replicating the source code and dynamically selecting
the code copy to execute. Tan et al. [49] described an approach
called ElasticFlow to apply loop pipelining on a particular
class of irregular loops. Dai et al. [17] proposed methods
for pipeline flushing by performing scheduling for multiple
IIs of the pipeline; they later developed application-specific
dynamic hazard detection circuitry [18] and have shown the
ability of speculation but with stringent constraints (e.g., state-
less inner-loop datapath). Nurvitadhi et al. [43] performed
automatic pipelining, assuming that the datapath is already
partitioned into pipeline stages. To effectively tolerate variable
memory latencies, several authors propose prefetching and
access/execute decoupling; they rely on complex compilation
techniques to automatically separate data access and address
calculations from value computations [12], [27]. The underly-
ing methodology in all these techniques is still based on static
scheduling adapted to enable some level of dynamic behavior,
which limits the achievable performance improvements only
to some particular cases.

Different authors exploited latency-insensitive protocols [8],
[15], [21] to construct synchronous and asynchronous dataflow
circuits. Elastic circuits [15] are probably the best-studied
form of latency insensitivity, but the original paradigm is too
restrictive for HLS. Several approaches [11], [28] extended
the SELF protocol [15] with constructs similar to the branch
and merge which we use in this work. Kam et al. [37]
showed the ability of elastic circuits to create dynamic
pipelines, but do not provide generic transformations to create
them out of high-level descriptions. Efforts in the asyn-
chronous domain, such as Balsa [20] and Haste/TiDE [42],
applied syntax-driven approaches for mapping a program
into a structure of handshake components [48]; a syn-
chronous backend for Haste/TiDE has later been developed.
Putnam et al. [46] also explored synthesizing dataflow-like
circuits from high-level specifications. Townsend et al. [51]
synthesized dataflow networks from functional programming
representations. Dataflow circuits, with their handshake sig-
nals, bring to mind Bluespec and its firing rules [52]. However,
all these approaches provide little information on some criti-
cal conversion aspects that are at the heart of this article; to
the best of our knowledge, these approaches have never been
contrasted to modern HLS tools.

The efforts closest to ours are the work by Huang et al. [29]
and Budiu et al. [3], [4]. Huang et al. [29] mapped dataflow
circuits generated from C code to a coarse-grain reconfigurable
array. Their circuit generation differs from ours in two aspects:
1) they use a single branch node per BB, thus synchronizing
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all the BB outputs and preventing pipelining and 2) they do
not employ an LSQ; all memory accesses which may con-
flict need to be conservatively sequentialized. Budiu et al.
described a compiler for generating asynchronous circuits
from C code [3], [4]. Although their final circuits are funda-
mentally different from ours (our circuits are synchronous and
avoid the traditional difficulties of asynchronous design), the
generation strategy is similar to ours. Unfortunately, the exact
methodology is never described in full detail; although they
also employ an LSQ to handle memory dependences, their
allocation policy is more conservative than ours.

Several HLS approaches explore coarse-grained dataflow
design. Commercial HLS tools support task-level pipelining
(i.e., “dataflow optimization” [53]), which overlaps functions
and loops, connected via FIFOs, to increase throughput and
concurrency. The FIFOs are typically sized conservatively by
the HLS tool so that they can hold all data exchanged between
tasks; it is up to the user to identify and manually specify
the appropriate FIFO sizes such that the resource utilization
is minimal and that deadlock never occurs. Furthermore, the
optimization is applicable only to tasks without bypass, feed-
back, or conditionals between each other. In contrast, our
approach successfully supports cyclic behavior and condition-
als and is able to compute the required FIFO sizes even in
those cases, while at the same time ensuring the absence
of deadlock. Cheng and Wawrzynek [13] described sequen-
tial programs as networks of processes in which hardware
accelerators exchange data via FIFOs. Geilen et al. [24] used
model checking to minimize buffer requirements in coarser
synchronous dataflow graphs (SDFs). Govindarajan et al. [25]
targeted large-grain actor graphs and presented an approach
to minimize buffer storage while executing at the optimal
computation rate. Castellana and Ferrandi [9] presented an
HLS flow for generating dynamically scheduled accelera-
tors that use an adaptive distributed controller to imple-
ment coarse-grained parallelism, concurrent function calls, and
variable-latency operations. In contrast to all these works, we
explore fine-grained dataflow design (i.e., scheduling indi-
vidual loop and function datapaths) and focus on methods
to exploit instruction-level parallelism in the presence of
irregular memory accesses and control flow. Our circuit gen-
eration strategy supports constructs that typically appear in
imperative high-level languages, our buffer placement method
guarantees optimality and the absence of deadlock, and our
memory interface dynamically resolves dependences that are
undeterminable at compile time.

IX. CONCLUSION

With FPGAs finding their way into datacenters, HLS tools
are set to play a key role in the future of reconfigurable
computing. Yet, generating good static circuits from high-
level languages requires peculiar code restructuring algorithms
(e.g., modulo scheduling), demands expert user interaction
(e.g., pragmas and code restructuring), forces worst case
assumptions on important issues (e.g., memory and control
dependences), and precludes key performance optimizations
(e.g., general forms of speculative execution). In this article,
we have described a dynamically scheduled form of HLS,
which produces dataflow circuits, able to resolve dependences
as the circuit runs. When static HLS exploits the maximum

parallelism available, our technique achieves similar results
with minimal degradation in cycle time; when static HLS
misses some key performance optimization opportunities, our
circuits seize them, achieving large performance improve-
ments with the investment of more resources. We believe
that this avenue of HLS has potential to open new doors for
reconfigurable computing and its applications.
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[31] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne, “Shrink it or
shed it! Minimize the use of LSQs in dataflow designs,” in Proc. IEEE
Int. Conf. Field Program. Technol., Dec. 2019, pp. 197–205.
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