
Unleashing Parallelism in Elastic Circuits
with Faster Token Delivery

Ayatallah Elakhras∗, Andrea Guerrieri∗, Lana Josipović† and Paolo Ienne∗
∗Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication Sciences, Lausanne, Switzerland†ETH Zurich, Department of Information Technology and Electrical Engineering, Zurich, Switzerland

Abstract—High-level synthesis (HLS) is the process of automat-
ically generating circuits out of high-level language descriptions.
Previous research has shown that dynamically scheduled HLS
through elastic circuit generation is successful at exploiting
parallelism in some important use-cases. Nevertheless, the literal
conversion of a standard compiler’s control-data flow graph
into elastic circuits often produces circuits with notable resource
demands and inferior performance. In this work, we present
a methodology for generating more area- and timing-efficient
elastic circuits. We show that our strategy results in significant
area and timing improvements compared to previous circuit
generation strategies.

I. INTRODUCTION

In the last few years, there has been some interest in high-
level synthesis (HLS) tools converting imperative languages
(typically C or C++) into dynamically scheduled circuits [1],
[2]. Contrary to classic commercial tools, whose circuits
execute carefully precomputed schedules, these tools produce
elastic (i.e., dataflow) circuits—that is, perfectly synchronous
circuits where every piece of data is accompanied by hand-
shaking signals. Components then execute (i.e., fire) operations
when and only when all operators are available, without any
predefined schedule. Proponents of dynamically scheduled
HLS argue that this method is advantageous over its statically
scheduled counterpart due to its runtime mechanism adapting
to the irregularity and unpredictability of the control structure
of a program. This results in performance gain with less code
refactoring, for wider classes of applications, and at a generally
modest (or at least acceptable) hardware overhead [3].

Elastic circuits bear a strong resemblance to the program-
ming paradigm of the dataflow machines developed in the
eighties and early nineties, such as the Sandia National Lab
εpsilon-2 [4], the MIT Tagged-Token Dataflow [5], or the MIT
Monsoon [6]. Although back then the problem was to produce
software code for these machines, while here the issue is to
generate efficient circuits aggressively exploiting parallelism,
some similarities are striking. In particular, while dataflow
researchers were often interested in concurrent programming
languages, some authors did explore the compilation for
dataflow machines of imperative languages (usually FOR-
TRAN) [7], [8]. The goal of this paper is to show that most
of the analysis done on producing code for dataflow machines
can serve of inspiration to produce significantly better elastic
circuits than those generated thus far.

II. THE TOKEN DELIVERY PROBLEM

In this section, we describe the behavior and functionality
of elastic circuits. We then illustrate the limitations of existing
elastic circuit generation techniques and motivate our work.

A. Elastic Circuits

The basic characteristic of elastic circuits is that tokens
flow from one component (producer) to another component
(consumer) through an elastic channel, as quickly as data
availability and readiness of the consumer allows. Such a
flow is insensitive of the actual latency of the producer and
consumer components (e.g., of the response time of a memory
access). A token abstracts a data signal accompanied by
handshake control signals that represent the validity of data
and the readiness of the receiver, as shown in Figure 1. The
main intuition which makes these circuits viable is that tokens
do not need to be tagged as long as they remain in order
within each channel: the order is sufficient to identify which
piece of data each token represents (e.g., to which iteration
of a loop it belongs). Figure 1 illustrates the functionality of
various elastic components. Note an important particularity of
MUX which will be relevant in the sequel: While all other
components, when triggered, consume a token on every input,
MUX always consumes a token on the control input and one
on the selected input but leaves a token waiting, if any is
available, on the input not selected.

B. From Imperative Code to Elastic Circuits

The starting point of elastic circuit generation out of an
imperative language such as C/C++ is the intermediate pro-
gram representation of a compiler, captured in data flow
graphs (DFGs) and a control flow graph (CFG). Nodes in
the CFG are blocks of code, referred to as basic blocks
(BBs); they are connected by control flow edges representing
the control decisions. A DFG of a BB is a directed graph
of operations connected by edges which indicate data de-
pendences. Dynamically-scheduled HLS techniques [1], [2]
directly translate the DFGs of individual BBs into separate
circuits and then connect the live-out channels of each BB
(i.e., channels carrying tokens that may be used in a later BB)
with the live-in channels of the adjacent BBs (i.e., channels
potentially requiring tokens generated in earlier BBs).

Figure 2b shows a portion of the elastic circuit imple-
menting the code of Figure 2a and built with conventional
techniques [2]; the shown circuit propagates the value of
variable x from its producer (assignment operation in BB0) to
its consumers (store operation in BB2 and addition in BB5).
The token of x exits from each BB through a BRANCH
and enters each BB through a MUX. Whenever a token has
multiple consumers within a BB, it is replicated using a
FORK. It is important to note that the circuit in the figure
contains a network of dataless components (shown in orange).

253

2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)

1946-1488/22/$31.00 ©2022 IEEE
DOI 10.1109/FPL57034.2022.00046

PRODUCER

CONSUMER

ReadyValid Data FORK

1234

12344321
MUX

123

11232

12

MERGE

123

12123

12

CMERGE

123

12123

12

BRANCH

12345

2 13 45

Fig. 1: Elastic Protocol and Classic Elastic Components [3]. Note that the output of MERGE depends also on the arrival times of the
inputs. On the other hand, the behaviour of MUX, in particular, and of all other components is completely determined by the order and,
where appropriate, the values of the tokens.

BB0
c0

BB1
c1

BB2
c2

BB3
c3

BB4
c4

BB5
c5

BB0
x = A[0]

FORK

c0 START

BB1

FORK

c1MUX CMERGE

BB2

FORK

c2MUX CMERGE

FORK

A[i] = x

BB4

FORK

c4MUX CMERGE

Reg Reg

BB5

MUX CMERGE

z = x + y

BRANCH BRANCH

BRANCH BRANCH

BRANCHBRANCH

BRANCHBRANCH

to BB3

from BB3

BB0 x = A[0]

BB1

MUX

BB2

FORK

A[i] = x

BB4

Reg

BB5

z = x + y

BRANCH

FORK

Ctrl1

Ctrl2

BRANCH Ctrl3

x = A[0]; y = B[0];
i = 1;
do {
 if (cond) {
 A[i] = x;
 } else {

B[i] = y;
 }
 i++;

} while (i < size);
z = x + y;

(a) (b) (c)

Fig. 2: An Example of Elastic Circuits. (a) A simple code with its
CFG. (b) A slightly simplified circuit as produced by state-of-the-art
techniques, strictly coupling data propagation with control flow [3].
(c) A more efficient circuit which only needs three control signals.

This network carries a single token that propagates through
the circuit strictly following the control flow of the program.
The CMERGEs of this network receive a token at only one of
their inputs at a time; they send the information of the input
origin to all MUXes of the same BB, thus indicating to them
which input token they must consume next.

In addition to the components shown in the figure, elas-
tic circuits require buffers (i.e., registers) to achieve correct
operation (by removing combinational cycles in loops) and
to maximize throughput (by placing buffers to prevent token
stalls). As their role and positioning in the circuit have been
comprehensively addressed by Josipović et al. [9], we omit
them from the rest of this discussion.

C. Fast Token Delivery
The inspection of Figure 2b immediately suggests that this

circuit is unnecessarily complicated and most components,
albeit simple, are redundant. The redundancy is a result of
the conservatism of the control circuit that forces BBs to
trigger one at a time and in order, thus limiting the parallelism
between different operations, as others have noted before
us [10]. Figure 2c shows a simpler and functionally equivalent
circuit. Firstly, one can notice that the value of x produced
at the beginning of the program can be directly delivered to
the adder in BB5 without passing through BB1, BB2, BB3,
and BB4. Yet, the same direct delivery of x is not possible

from BB0 to BB2, because it is not certain that the store will
ever be executed: In elastic circuits, every token delivered
must be consumed and no token must be delivered unless
the operation will eventually consume it; therefore, a direct
delivery is erroneous. This is why x needs to go through
the branch so that the corresponding token is suppressed in
case cond is false. Secondly and similarly, although x could
be delivered to the store node almost directly via a single
branch (which simplifies dramatically the implementation by
removing many unnecessary components), there is another
difficulty: Only a single x token is produced in the initial
BB whereas the store might be executed many times. Again,
in elastic circuits there must be a perfect match between the
number of tokens produced and the tokens consumed. The role
of the leftmost loop around BB2 in Figure 2c is to regenerate
the x token exactly as many times as BB2 is executed.

The improved circuit of Figure 2c does not only save
unnecessary components but also exposes significantly more
parallelism that the circuit can exploit. For instance, BB5 can
now be executed almost immediately after the circuit starts
execution and well before the loop exits.

The contribution of this paper is to show how to obtain
systematically circuits like the one shown in Figure 2c by
delivering every token as directly as possible from the pro-
ducers to the respective consumers. We will also show how to
compute the control signals in orange without the need of the
in-order control network shown in Figure 2b that is largely
responsible of limiting the available parallelism.

III. BACKGROUND ON PROGRAM ANALYSIS

As suggested earlier, our work is related to early efforts
of generating optimized code for experimental dataflow ma-
chines. A significant piece of work on that front is the program
representations developed by Ballance et al. [7] and refined
by Campbell et al. [11]. Our work is heavily inspired by their
work and we use some of the representations they introduced.
Yet, our purpose is to generate circuits and not code, so in
some respects our goals diverge and we use constructs better
amenable to efficient hardware implementation.

A. Control Graph Representations
In a CFG, each BB has at most two successors (true

successor and false successor) [12]. The CFG captures the
global order of the program, which forces the sequencing of
the execution of operations within different BBs.

The control dependence graph (CDG) [13] is an extension
of the standard CFG. It captures the necessary sequencing
between different BBs by identifying the BBs taking control
decisions that might prevent the control flow from arriving to
some other BBs; this relation is called control dependence.

254

Such relations are based on the theory of postdominator
analysis, where a BBi is postdominated by a BBj if every path
from BBi to the exit of the graph passes through BBj [12]. A
CDG is constructed by the recursive application of this idea.
Figure 4b shows a CFG and Figure 4c shows its corresponding
CDG. Loops in the CDG are the minimum strongly-connected
subgraphs [13]. In most compilers, a loop is identified by its
backward edge. The loop header is the target of the backward
edge, the loop body are all BBs in the strongly-connected
subgraph, and loop exits are any BBs having an edge emerging
from the strongly-connected subgraph.

B. Single Assignment Representations

Most standard compilers produce intermediate representa-
tions following the static single assignment (SSA) form by
Cytron et al. [14], which provides a representation of the data
flow properties of the program in a way that assures that every
variable use in the program has a single reaching definition.
If a variable has multiple reaching definitions (at confluence
points in the control flow), φ-functions are inserted to merge
these definitions into a single definition. SSA-form does not
include control information; it provides no distinction between
the various definitions reaching a given φ-function. Thus, they
are naturally translated into a MERGE circuit component,
which is a nondeterministic component [2].

Ballance et al. [7] introduced the gated single assignment
(GSA) form that resolves the limitation of the SSA. It ex-
tends the semantics of the φ-function to capture and hold
control predicates that determine which definition is relevant
depending on control flow decisions. GSA adds three types
of gating functions, denoted by γ, μ, and η, to account for
various control-flow situations.

IV. TOKEN DELIVERY WITHOUT LOOPS

In this section, we describe our proposed methodology
of elastic circuit generation for faster token delivery. We
start analyzing control structures excluding loops, by initially
skipping backward edges. We include them back in Section V.

A. From Basic Blocks to Subcircuits

Our first step is to translate operations of individual BBs into
elastic components and to connect the data-dependent compo-
nents within each BB. As for conventional techniques, such as
the work by Josipović et al. [2], this is a trivial step because,
essentially, every instruction in the BB corresponds directly
to an elastic component and data-dependent components can
be connected directly. The only important difference with the
method of Josipović et al. is that we start from the GSA-form
and not the SSA-form, hence there are no φ nodes (that is, no
MERGE components in the obtained circuits). Rather, there
are gating functions that can be translated to MUXes, where
the predicate of the gated function holds information about the
select signal of MUX.

Although information about the select signals of MUXes is
readily provided by the gated functions predicates, we need
to do some necessary analysis prior to connecting the select
signal of MUXes, as we will explain in Section IV-D.

PRODUCER

SUPPRESS

GENERATE

CONSUMER

fsupp

fgen

BBi

BBj

SUPPRESS

OUT

12345IN

CTRL

(a)

(b)

(d) (d)

(c)

F FTF

124

T

GENERATE

OUT

123IN

CTRL F FTF

12X

T

Y 3

BRANCH

12345

2 14

FF TT F

MUX

123

12X3Y

XY

FF TT F

Fig. 3: Connecting Producers to Consumers. (a) The generic way we
connect any producer to any consumer; depending on the conditions,
SUPPRESS and GENERATE may in fact disappear. (b–c) The
functionality of SUPPRESS with its natural implementation. (d–e)
The functionality of GENERATE with its natural implementation.

B. Connecting Subcircuits
We deliver tokens from producers (assignments of a new

variable in GSA representation) to consumers (users of the
assigned variable). Since we have already completely imple-
mented each BB independently, we are only left with data-
dependent components across different BBs. The GSA repre-
sentation guarantees that there will be only one producer for
one or more consumers (i.e., only one definition for each use).
Our analysis considers independently each producer-consumer
pair to generate control components and their conditions; this
will, naturally, generate a number of potentially redundant
components (e.g., in case there are multiple consumers that
could share the same components). We remove these redun-
dancies with peephole optimizations in a later step, prior to
generating the circuit.

The important problem we need to handle is that, in general,
at one point in time, there is no guarantee that the control flow
will arrive to any of the two BBs containing the producer
and consumer operations. This implies that, independently, a
token may or may not be issued from the producer and a
token may or may not be absorbed by the intended consumer.
As discussed before, a fundamental property of our circuits
is that every produced token must be consumed and every
consumed token must be produced. Hence, our goal is to match
the conditions of production (definition) of a token with the
conditions of consumption (use) of the token.

We, therefore, connect every producer to the corresponding
consumer through two new elastic components, as shown in
Figure 3a. The SUPPRESS component has the functionality
shown in Figure 3b and simply eliminates a token from the
sequence when the Boolean control signal (CTRL) receives a
token true. The GENERATE component is shown in Figure 3d
and simply inserts a token whose value is undetermined
(arbitrarily a ‘0’ or ‘1’) every time the Boolean control signal
(CTRL) receives a token true; every time the control signal
gets a token false, a token from the input stream is propagated
to the output. These two new components are readily generated
with ordinary elastic components, as Figure 3c and e illustrate.
As Figure 3a suggests, the SUPPRESS component fires every
time the BB of the producer executes, thus essentially belongs
to it; conversely, the GENERATE component must fire every
time the BB of the consumer executes. Clearly, appropriately

255

if(c0) {
x = ...;

 if (c2) goto BB4;
 else goto BB3;
} else goto BB1;
BB1:
 goto BB6;
BB3:
 x = ...;
 if(c3) goto BB4;
 else goto BB5;
BB4:
 ... = x;
BB5:
BB6:

BB0
c0

BB1
c1

BB2
c2

BB3
c3

BB4
c4

BB5
c5

BB6
c6

x = ...

x = ...

... = x

False True

False True

True
False

(b)(a)

(c) (d)

Fork

c3 c2

SUPPRESS

MUX

SUPPRESS

x from BB3 x from BB2

x to BB4

BB0

START

BB6

BB1 BB2 BB5

BB3

BB4

Fig. 4: Delivery Problem. (a) Sample code skeleton that has a com-
plicated control structure generated by goto statements or similar
constructs. (b) CFG for the given code with two producers and one
consumer of variable x. (c) CDG for the given CFG. START is the
entry node in the graph. (d) Optimized delivery circuit.

controlling the SUPPRESS and GENERATE components
is sufficient to ensure that the tokens emitted by the producer
match the expectations of the consumer; we address this in the
next section. It is worth mentioning that, in a correct program,
a GENERATE component should not be required between a
producer and consumer in the datapath; having a consumer
absorbing a token that the producer has not generated is
nonsensical. However, it could be, potentially, required in
the control path, as we will explain in Section IV-D. We
consider the general case and compute the control signal of
GENERATE for any pair of producer and consumer, which
happens to deliver only false control signals for producers
and consumers in the datapath; we rely on logic synthesis
to remove away the logic of GENERATE in this case.

Up to this point, our analysis matches the analysis done
by Ballance et al. [7]. However, their analysis could insert,
potentially, several SUPPRESS nodes (they call them switch
nodes) between a producer-consumer pair, where each SUP-
PRESS node takes a simple control signal. Our analysis, on
the contrary, introduces exactly a single SUPPRESS node
in the data path which takes a more complex condition, as
we will explain in the coming two sections. The example of
Figure 5 discussed in Section IV-D will clarify the difference
between these approaches and the advantages of ours.

C. Generating and Suppressing Tokens

The goal of this section and the next is to implement the
delivery path between an arbitrary pair of a producer and
consumer operations (Figure 3a). In this section, we compute
the logic conditions to suppress or generate a token; in the next

section, we solve the problem of computing and delivering the
tokens corresponding to such conditions. To illustrate each
step of the algorithm, we apply our algorithm to the delivery
problem in the CFG in Figure 4b that requires the delivery
of the variable x from its two producers in BB2 and BB3,
respectively, to its consumer in BB4.

ALGORITHM 1 (Computation of Delivery Conditions).
For each pair of producer-consumer pair, we compute as
follows the logic conditions fsupp and fgen, identifying the situ-
ations when a token from the producer needs to be suppressed
and when a token for the consumer needs to be generated,
respectively.

1) Identify Control Dependencies of Producer and Con-
sumer BBs. Using the CDG, compute two sets Sprod

and Scons, representing the set of BBs that the producer
BB and the consumer BB, respectively, are control
dependent on. For our example, whose CDG is shown
in Figure 4c:

a) (Producer in BB2, Consumer in BB4) Sprod =
{BB0} and Scons = {BB0,BB2,BB3}.

b) (Producer in BB3, Consumer in BB4) Sprod =
{BB0,BB2} and Scons = {BB0,BB2,BB3}.

2) Eliminate Common Control Ancestors. Adjust the sets
Sprod and Scons by removing the common elements
Sprod∩Scons from each set. This is equivalent to remov-
ing the common ancestor BBs between the producer and
consumer BBs in the CDG, such as BB0 in our example.
The decision of such common BBs plays no role in
generating or suppressing tokens because either both
the producer and consumer have a chance to execute
(determined by other conditions) or none of them can
execute. Therefore, they should be dropped from our
analysis. In our example:

a) (Producer in BB2, Consumer in BB4) Sprod = ∅
and Scons = {BB2,BB3}.

b) (Producer in BB3, Consumer in BB4) Sprod = ∅
and Scons = {BB3}.

3) Compute Conditions of Production and Consump-
tion. Compute the Boolean expressions (fprod and fcons)
representing the conditions under which the producer
will produce a token (if fprod is true) and the consumer
will consume a token (if fcons is true). They are calcu-
lated by traversing the CDG starting from each BB in the
Sprod to the producer BB, and each BB in Scons to the
consumer BB. Each path identifies a Boolean product
of elementary conditions expressing the reaching of the
target BB from the corresponding member of the set;
the products for all such paths are added. Empty control
dependency sets result in a true Boolean expression. In
our example:

a) (Producer in BB2, Consumer in BB4) fprod = 1
and fcons = c2 + c2 · c3.

b) (Producer in BB3, Consumer in BB4) fprod = 1
and fcons = c3.

4) Adjust the Consumption Condition for MUXes. Cor-
rect the expression fcons if the consumer is a MUX
by multiplying fcons by either the value of the MUX

256

BB0
c0.

BB1
c1

BB2
c2

BB3
c3

False True

TrueFalse

x = ...
y = ...

... = x

... = y

BB0
c0

BB1

(b) (c)(a)

FORK
x = ... y = ...

BRANCH

c0

MUX

SUPPRESS SUPPRESS

x = ... y = ...

FORK

c1BB0
0

FORK

c1

BRANCH

BRANCH BRANCH

BB1

BB2

FORK

c1

MUXMUX

... = y... = x

BB2

... = y... = x

Fig. 5: Delivery Problem and Two Valid Solutions. (a) CFG with
two pairs of producers and consumers in identical BBs. (b) A
valid solution that does not minimize the data path by using one
SUPPRESS per basic block instead of one per producer-consumer
channel. (c) Our proposed solution that minimizes the data path at
the cost of a slightly more complicated control path; yet, the control
path can be shared among different data paths.

select signal (fsel) or its complement, as appropriate,
to force the consumption condition to be true only if
fsel activates the MUX input connected to the producer
currently under study. This adjustment should occur only
if there is a possibility that the consumer executes when
the input connected to its producer is not activated, i.e., if
fcons ·fsel evaluates to nonzero. Also, this adjustment has
to be performed only if the producer BB is not control
dependent on the BB whose condition is the select signal
of the MUX. In our example, fsel = c2 for the producer
in BB2 and fsel = c2 for the producer in BB3.

a) (Producer in BB2, Consumer in BB4) fprod = 1
and fcons · fsel = (c2+ c2 · c3) · c2 = c2 · c3 which
is nonzero; therefore, adjust the consumption con-
dition to fcons = c2 · (c2 + c2 · c3) = c2.

b) (Producer in BB3, Consumer in BB4) fprod = 1
and fcons = c3. Since BB3 is control dependent on
BB2, fcons is unmodified.

5) Conditions of Suppression and Generation. Compute
the suppression and generation conditions as fsupp =
fprod · fcons and fgen = fprod · fcons. In other words, we
need to suppress a token if the producer outputs one
but the consumer will not absorb any, and we need to
generate one if the consumer absorbs it and the producer
does not output it. In our example:

a) (Producer in BB2, Consumer in BB4)
fsupp = 1 · c2 = c2 and fgen = 1 · c2 = 0.

b) (Producer in BB3, Consumer in BB4) fsupp = 1·c3
and fgen = 1 · c3 = 0.

The tokens used to control SUPPRESS and GENERATE
must have the Boolean value expressed by fsupp and fgen,
respectively. In simple situations, such as our example, this
already results in the correct circuit shown in Figure 4d. Yet,
in the general case, there are some issues to take care of to
correctly produce these tokens, as shown in the next section.

D. Delivering Control Tokens
We now have to generate control tokens, both for the

MUXes resulting from the conversion of the GSA BBs (Sec-
tion IV-A) and for the SUPPRESS and GENERATE com-
ponents (Section IV-C). Consider the CFG of Figure 5a, that
represents a program composed of nested if-then-else
statements. The tokens of x and y produced in BB0 and
consumed in BB2 result in fsupp = c0·c1. It would be tempting
to simply compute this function with an elastic circuit: in our
case, a simple elastic NOR gate between c0 and c1 (“unless
either c0 is true or c1 is true, suppress the token produced in
BB0”). Logically, when c0 is true, the output is false and the
result is apparently correct. Yet, there is a problem summarized
in the following table:

c0 c1 fsupp
false false true
false true false
true (no token) false

If c0 is true, c1 will never be generated, because BB1 does
not execute; consequently, the NOR gate will not receive both
tokens in this case and will never compute the result. The
condition for the SUPPRESS node will never arrive and the
circuit will deadlock.

A simple solution is to implement, as mentioned above,
the logic function with elastic logic gates but, instead of con-
necting the conditions directly, consider them as an ordinary
producer and consumer relation and follow recursively the
procedure of Section IV-C. This will result in the insertion
of GENERATE components to compensate for the conditions
that will never arrive by inserting a number of arbitrary ‘0’
or ‘1’ tokens that are perfectly unnecessary except to fire the
appropriate components. Although the solution is functionally
correct, it generates and consumes pointless tokens. We, there-
fore, follow a different strategy to generate control tokens,
which is functionally equivalent but more economical: it
ignores missing tokens through MUXes which do not consume
them instead of generating pointless ones.

ALGORITHM 2 (Delivery of Control Tokens). For each
logic condition f (l0, l1, ...ln) (e.g., fsupp), we determine the
corresponding circuit with the following algorithm.

1) Partial Ordering of the Literals. Create a graph Gord

where the nodes are all the literals li in f and where
there is an edge between two literals if in the CDG
there is a path between the BBs of the corresponding
literals. Intuitively, this indicates that a control token
corresponding to the literal at the head of an edge will
be available only under some conditions determined by
the value of the literal at the tail (whose corresponding
control token may or may not be available based on
the incoming edges of that literal). For the example in
Figure 5, Gord is trivial: there are only two literals c0
and c1 and there is an edge c0 → c1, thus c1 is available
only under some condition about c0.

2) Order the Literals. Pick repeatedly any literal l from
Gord among those without an incoming edge, remove
it from Gord, and add it to a list Lordwhich will hold
an ordered list of the literals. Since the first literal
in the list has no predecessors in the whole Gord, its

257

INIT

OUT

123IN

START
S

S123

(a)

MERGE

123

S123

S
IN

START

(b)

Fig. 6: The INIT Component. (a) Before simply propagating all input
tokens to the output, this new component waits for a single token on
the start input and propagates this first to the output. (b) A naive
and unsafe implementation of the INIT component; if the start token
arrives strictly before any other input token (which may be guaranteed
in some real circuits), this implementation behaves correctly.

corresponding token will be certainly available. Tokens
corresponding to literals appearing later in the list will
be available under conditions identified exclusively by
literals preceding them. In the example of Figure 5, there
is only one possibility to build the list and it results into
Lord = {c0, c1}.

3) Successive Shannon Expansions. Use the order of the
literals in Lord to perform successive Shannon expan-
sions of f . Assuming, without loss of generality, that
the literals in f (l0, l1, ...ln) are in the order of Lord (if
they are not, the literals can be renamed), we write

f = MUX(l0, fl0(l1, ...ln), fl0(l1, ...ln)) = ...

and we repeat the expansion for all literals. We are
simply implementing the Boolean function of f with
MUX components and, thanks to the property of MUXes
that they do not consume tokens on the deselected
inputs, we do not need to worry about missing tokens.
In our example, fsupp = c0 · c1 = MUX(c0, c1, 0).

Figure 5c shows the circuit produced by our algorithm. It
is clearly simpler and more straightforward than the circuit
in Figure 5b which is what we would obtain if we use the
techniques of Ballance et al. [7] to generate a circuit.

V. TOKEN DELIVERY WITH LOOPS

The introduction of loops through the consideration of the
backward edges brings two new problems: (1) On the one
hand, there is a new set of MUX nodes when one of the
producers of a particular value is carried by the loop (i.e., loop-
carried dependencies). Authors have recognized that MUXes
cannot follow the same rules as for dependencies outside of
loops (Section IV-B) [11]. (2) The token miscount is no longer
limited to a single token that may or may not be produced and
may or may not be consumed; now we may have many tokens
generated during loop execution but only the last one might
be consumed and, in a dual way, we may have single tokens
which are used many times. An example of the latter case is
the fact that x is used in several loop iterations in our example
of Figure 2. The next two sections address these two issues.

A. Controlling MUXes in Loops

Consider the MUX created as a result of the backward edge
of a loop, such as the one at the input of BB1 in Figure 2c
where x gets reassigned in each loop iteration. The MUX
should take the value of x arriving from outside of the loop in

the first iteration and thereafter should take the local value of
x regenerated from within the loop, until the loop completes
execution. In the general case, we can have some inner loop
in a nested loop structure where the MUX should take a fresh
value from outside every time a new outer loop iteration starts
and thereafter should take the local inner value, until the loop
completes execution. It is fairly easy to prove that the MUX
select signal is the same as the exit condition of the loop but
delayed by one cycle. The only particularity is the first loop
iteration ever, for which no loop exiting condition has ever
been computed; in this case, we need to force the selection
of the value of x arriving from outside. In summary, the
sequence of MUX select signals is a token that says “from
outside” followed by tokens representing the loop condition
with appropriate sign (i.e., “continue loop” = “from inside”
and “exit loop” = “from outside”).

Ballance et al. [7] essentially made the same observation
when they introduced the μ-function in GSA instead of the
normal γ-function (our MUX) for loops. The behavior of μ
is fairly complex and was refined in a later paper [11]. We
implement the very same functionality by introducing a com-
ponent INIT which does exactly what is described above (see
Figure 6a): it inserts a token before the stream of conditions
coming on the input channel. This component is more tricky
to implement and Figure 6b shows a naive implementation.
If the token on the start input arrives before any token on
the other input, this implementation is correct because the
potential nondeterminism of the MERGE behaviour has no
impact; this is arguably a typical case, but, as Campbell et al.
observed, it is not always true. It is not clear whether a correct
implementation of INIT is possible using only classic elastic
components, but it is straightforward to implement it directly
by writing the corresponding state machine (it is clear that
this component is sequential because it needs to “remember”
whether the start token has already been sent). We omit the
details of the implementation due to the lack of space.

In summary, the circuit we need to control the new MUXes
introduced by the back edges (the μ-functions of Ballance
et al. [7]) is as follows: (i) we create the logic function
expressing whether we are exiting the loop (i.e., if the loop
has multiple exits, this will be the logic OR of the various
exit conditions); (ii) we implement this logic function with
Algorithm 2 (Section IV-D); and (iii) we feed this signal to
the select input of the MUX through an INIT component.

B. Producers inside Loops and Consumers outside

Now we need to take care of the miscount of tokens. We
start from the situation when the producer is part of a loop
and the consumer is not; in this case, only the last token
produced before the exit must be delivered. Consider, for
instance, the example of Figure 7a and the case of y which
is produced in the inner loop (BB3) and consumed outside
the nested loop (BB8). The slight complexity is due to the
fact that the producer is deep inside a nested loop structure
with some loops having several exiting edges and from BBs
before or after the BB of the producer. The solution is in fact
simple and one can look at this case as a normal case of token
delivery every time the producer is executed: for this we cut

258

BB1
c1

BB2
c2

BB3
c3

BB4
c4

BB5
c5

BB6
c6

False

TrueFalse

x = ...

... = y

... = x
y = ...

False

True

True

BB0
c0

BB7
c7

BB8
c8

True

False

BB1
c1

BB2
c2

BB3
c3

BB4
c4

BB5
c5

BB6
c6

True

y = ...

... = y

BB0
c0

BB7
c7

BB8
c8

False

False True

y from BB3

y to BB8

x to BB3

x from BB0

0 MUX 1
c7

c4

0 c2

1

0 MUX 1

0 MUX 1

INIT

FORK

FORK

FORK

0 MUX 1

INIT

START

FORK

0 MUX

SUPPRESS

SUPPRESS

1

c7

FORK

c40
c2

(a) (c)

(b)

(d)

SUPPRESS

Fig. 7: Producers and Consumers across Nested Loop Borders. (a)
A producer outside the loop with the consumer inside (x) and a
producer inside with the consumer outside (y). (b) Modified CFG by
breaking the cycle before the producer to implement the delivery from
inside the loop to the consumer outside it. (c) Circuit for delivering
the token in variable y by analyzing the CFG in (b). (d) Circuit for
delivering the token in variable x.

the edges entering the BB of the producer, so that the producer
is no longer in a loop (Figure 7b) and, thus, the delivery from
producer to consumer can be simply implemented as described
in Section IV. One can note that this simple procedure avoids
considering separately while and do...while loops: it
works for an arbitrary loop structure. The circuit shown in
Figure 7c is a result of applying Algorithms 1 and 2 on the
modified CFG of Figure 7b.

C. Producers outside Loops and Consumers inside

The dual problem is when the producer is outside a loop and
the consumer is inside it; in this case, only one token is sent
but many copies need to be consumed. Consider the case of
x in Figure 7a: x is produced before entering the loop (BB0)
and consumed inside the loop (BB3). Once the problem is
detected by elementary loop analysis, the solution is, simply,
applying the GSA form algorithm for managing loop-carried
dependency by imagining the dependency to be a “reassign-
ment” (x = x in our case) right after the consumer [7], [11].
This creates a second producer, this time inside the loop.
Because there are now two definitions to the variable, this
would naturally result in MUXes inserted at the loop headers
and controlled as described in Section V-A: the token will be
regenerated as frequently as needed. SUPPRESS components
are then inserted to stop the regeneration when the loops
complete execution. Figure 7d shows the circuit for delivering
the token in variable x.

VI. EXPERIMENTAL RESULTS

We integrated our proposed HLS methodology into Dyna-
matic [17], an open-source C-to-elastic circuits HLS tool based
on LLVM [18]. We replaced key parts of Dynamatic’s elastic
circuit generation strategy with a custom LLVM pass imple-
menting our methodology. We use the unmodified backend of
Dynamatic to insert buffers and generate the RTL description
of the circuit. We synthesize the generated VHDL netlists with

TABLE I: Description of the Benchmarks.

Benchmark Description

Stencil2d 2-dimensional Stencil computation

PolyRqmul Polynomial multiplication of post-quantum cryptography [15]

BinSearch Divide and conquer array search algorithm

Sobel Ordinary Sobel filter

Gaussian Ordinary Gaussian filter

Matvec Matrix-vector multiplication

Bicg Subkernel of the BiCGStab linear solver [16]

BinGCD Stein’s binary algorithm for greatest common divisor (GCD)

Fir Ordinary finite impulse response (FIR) filter

Vivado [19] with a clock period timing constraint of 4 ns,
targeting a Kintex-7 Xilinx FPGA. We simulate the designs
with ModelSim [20] and use a set of test vectors for functional
verification. We measure (1) the cycle count obtained from
simulation, (2) the clock period (CP) from the postrouting
timing analysis, and (3) resource usage (i.e., LUT, FF and DSP
counts) reported from Vivado after placement and routing.

Our benchmarks are nine kernels with different control
structures, listed in Table I. The memory access patterns of
our benchmarks can be resolved at compile-time; thus, these
circuits do not require any load-store queues.

Table II summarizes the timing and resources of the cir-
cuits generated by our approach (Ours) in comparison to
those generated by the baseline Dynamatic ([17]). Results
show a significant reduction in area and an improvement in
performance of our generated circuits. Figure 8 graphically
represents our results normalized to those by Dynamatic.
Advantages are generally quite tangible. On two fronts (re-
sources and critical path), the improvement is largely due to
the avoidance of a multitude of elastic components inserted
by Dynamatic to implement its simpler delivery strategy (we
suggested this effect qualitatively in our motivating example
of Figure 2). Additionally, our results sport a gain in number
of cycles which is often nonnegligible; this is mainly because
our analysis and the resulting delivery of tokens exposes more
parallelism for the circuits to exploit. We describe here some
of these important situations.

Stencil2d, Sobel, and Gaussian are composed of deep loop
nests. Our approach overlaps the outer loops iterations with the
execution of the inner loops; thus, exploiting more parallelism.
This is in contrast to Dynamatic which advances outer loop
iterations only when the inner loops complete execution.

PolyRqmul and BinSearch are composed of multiple nat-
ural loops that are loading and processing different parts of
arrays: our approach parallelizes the execution of these loops,
while Dynamatic sequentializes them. Similarly, BinGCD
involves iterative bit-level analysis on two operators: our
approach allows for parallelizing the analysis on the two
operators. BinGCD runs here with 32-bit operators and thus
the execution takes only a small number of cycles.

Bicg consists of a loop nest with the outer loop loading one
array element that is used by all iterations of the inner loop.
Although we can now decouple the memory loads in the outer
loop from the processing in the inner loop, data dependencies
limit the amount of exploitable parallelism. Yet, our design
reduces the resources and is Pareto-dominant to Dynamatic.

259

TABLE II: Elastic circuits produced by our methodology, contrasted to those produced by the open-source tool Dynamatic [17]. We measure
cycle counts in simulation and obtain the timing and resources from Vivado, after place-and-route.

Benchmark Cycle count CP (ns) Execution time (μs) LUTs FFs DSPs
[17] Ours [17] Ours [17] Ours [17] Ours [17] Ours

Stencil2d 12610 7072 7.21 6.78 90.9 48.0 -47% 2826 2438 -14% 2253 1806 -20% 12

PolyRqmul 59221 44696 6.00 5.8 355.3 259.2 -27% 2002 1823 -9% 1767 1470 -17% 6

BinSearch 210 106 6.00 6.40 1.26 0.68 -46% 1700 1349 -21% 1750 1053 -40% 0

Sobel 5556 4279 6.90 6.70 38.3 28.7 -25% 4310 3740 -13% 4058 2640 -35% 12

Gaussian 5858 5838 6.50 6.00 38.1 35.0 -8% 2622 2150 -18% 2095 1473 -30% 3

Matvec 10109 10010 6.80 6.20 68.7 62.1 -10% 1240 1115 -10% 1061 829 -22% 3

Bicg 943 910 6.10 5.70 5.75 5.19 -10% 1797 1668 -7% 1484 1255 -15% 6

BinGCD 13 9 4.58 5.00 0.060 0.044 -27% 2381 1480 -38% 2220 1063 -52% 0

Fir 1010 1008 5.93 4.60 5.99 4.64 -23% 672 600 -11% 621 515 -17% 3

0

0.1

00.2

0.3

00.4

0.5

00.6

0.7

00.8

0.9

1

Stencil2d PolyRqmul BinSearch Sobel Gaussian Matvec Bicg BinGCD Fir Geomean

Total Execution Time (normalized to Dynamatic) LUT (normalized to Dynamatic) Registers (normalized to Dynamatic)

Fig. 8: Results. Execution time and resources of our circuits, normalized to the results of Dynamatic [17].

VII. RELATED WORK

We have addressed throughout the manuscript our similar-
ities and differences from classic work aimed at producing
code for dataflow machines from imperative code [7], [11]. We
focus here on more recent work aimed at producing circuits.

Latency insensitive protocols have been extensively used to
construct synchronous and asynchronous elastic circuits [2],
[21]–[23]. Several efforts explored the automatic generation
of asynchronous circuits from high-level descriptions [24]–
[26] and one addressed synchronous circuits [2]. The closest
efforts to ours are the works by Budiu et al. [25] and
by Josipović et al. [2] which employ the circuit generation
strategies of Dynamatic [17]. We use it as a baseline but, as
our discussion illustrates and our results show, the existing
strategy is qualitatively and quantitatively inferior to ours. The
works by Zaidi et al. [10] and Li et al. [27] aim at better
exploiting instruction level parallelism in dataflow circuits by
performing control flow graph analysis and optimizations. Li et
al. [27] impose a “canonical form” requirement on the CFGs,
which is violated by goto statements and, probably, similar
constructs such as continue and break statements. We, on
the other hand, do not impose any constraint on the control
structures that we support, and our methodology results in
simpler datapaths; for the example in Figure 5, the techniques
by Li et al. would generate a circuit similar to Figure 5b.
Zaidi et al. [10] present Value State Flow Graph, a compiler
intermediate representation that represents the control flow
in terms of Boolean predicates. However, the work does not
detail the calculation and usage of the Boolean predicates in
complicated control structures where the predicates should
be functions of conditions from multiple BBs such as the
examples we discuss in Figure 4 and Figure 5.

VIII. CONCLUSIONS

In this paper, we have completely rewritten how to deliver
tokens in an elastic circuit obtained from imperative code.
We have done so inspired by the program representations
developed in the nineties when some authors were trying to
efficiently map imperative languages on dataflow machines.
In general, we have appreciable gains on three fronts: (i)
we save resources by having significantly less components
on the paths from producers to consumers; (ii) this naturally
also improves combinational delays; and (iii) our faster de-
livery exposes potentially much more parallelism and thus
reduces the number of execution cycles. The latter benefit
is, qualitatively, the most important because the truly critical
task of an HLS tool is to expose as much parallelism as
possible for the resulting circuit to exploit. Yet, most HLS
approaches, both statically and dynamically scheduled, are in
fact quite limited: Statically scheduled techniques, because
of their very static scheduling, cannot really overlap, for
instance, inner and outer loop iterations of nested loops or
independent sequential program loops—at least, not in the
most general case or not without tangible code rewriting. On
the other hand, supporting this seems naturally feasible with
dynamically scheduled methods; yet, to our best knowledge,
circuit generation techniques in this class similarly fail because
of the conservative (one may even say crude) way they deliver
tokens. We hope that this work opens a new dimension to the
parallelization of dynamically scheduled circuits automatically
extracted from imperative languages like C/C++.

ACKNOWLEDGMENTS

This research is partially supported by Huawei.

260

REFERENCES

[1] M. Budiu, P. V. Artigas, and S. C. Goldstein, “Dataflow: A complement
to superscalar,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, Austin, Tex., Mar. 2005,
pp. 177–86.

[2] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-
level synthesis,” in Proceedings of the 26th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey, Calif., Feb.
2018, pp. 127–36.

[3] L. Josipović, A. Guerrieri, and P. Ienne, “Synthesizing general-purpose
code into dynamically scheduled circuits,” IEEE Circuits and Systems
Magazine, vol. 21, no. 2, pp. 97–118, Second quarter 2021.

[4] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes, “The Epsilon
dataflow processor,” in Proceedings of the 16th Annual International
Symposium on Computer Architecture, Jerusalem, Apr. 1989, pp. 36–
45.

[5] Arvind and R. S. Nikhil, “Executing a program on the MIT Tagged-
Token dataflow architecture,” IEEE Trans. Computers, vol. 39, pp. 300–
318, 1990.

[6] G. M. Papadopoulos, “Implementation of a general-purpose dataflow
multiprocessor,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, Laboratory for Computer Science, 1998.

[7] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstien, “The Program
Dependence Web: A representation supporting control-, data-, and
demand-driven interpretation of imperative languages,” in Proceedings
of the 11th ACM SIGPLAN Conference on Programming Language
Design and Implementation, White Plains, NY, Jun. 1990, pp. 257–71.

[8] K. J. Ottenstein and S. J. Ellcey, “Experience compiling Fortran to pro-
gram dependence graphs,” Software: Practice and Experience, vol. 22,
1992.

[9] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer placement and sizing for high-performance dataflow circuits,” in
Proceedings of the 28th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Seaside, Calif., Feb. 2020, pp. 186–96.

[10] A. M. Zaidi and D. Greaves, “A new dataflow compiler IR for ac-
celerating control-intensive code in spatial hardware,” in 2014 IEEE
International Parallel Distributed Processing Symposium Workshops,
Phoenix, AZ, May 2014, pp. 122–131.

[11] P. L. Campbell, K. Krishna, and R. A. Ballance, “Refining and defining
the program dependence web,” University of New Mexico, Tech. Rep.
Technical Report 93-6, Mar. 1993.

[12] L. Torczon and K. Cooper, Engineering a Compiler, 2nd ed. Morgan
Kaufmann, 2011.

[13] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, pp. 319–349, 1987.

[14] R. G. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“An efficient method of computing static single assignment form,” in
Proceedings of the 16th Symposium on the Principles of Programming
Languages, Austin, TX, Jan. 1989, pp. 25–35.

[15] NTRU, Algorithm specification and supporting documentation, NTRU,
2020. [Online]. Available: https://ntru.org

[16] L.-N. Pouchet, Polybench: The polyhedral benchmark suite, 2012.
[Online]. Available: http://www.cs.ucla.edu/pouchet/software/polybench

[17] L. Josipović, A. Guerrieri, and P. Ienne, “Dynamatic: From C/C++ to
dynamically scheduled circuits,” in Proceedings of the 28th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Seaside,
Calif., Feb. 2020, pp. 1–10.

[18] http://www.llvm.org, The LLVM Compiler Infrastructure, 2018.
[Online]. Available: http://www.llvm.org

[19] Vivado Design Suite, Xilinx Inc., 2017. [Online]. Available: http:
//www.xilinx.com/products/design-tools/vivado.html

[20] Mentor Graphics, “ModelSim,” 2016. [Online]. Available: https:
//www.mentor.com/products/fv/modelsim/

[21] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli,
“Theory of latency-insensitive design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no. 9, pp.
1059–76, Sep. 2001.

[22] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of syn-
chronous elastic architectures,” in Proceedings of the 43rd Design
Automation Conference, San Francisco, Calif., Jul. 2006, pp. 657–62.

[23] S. A. Edwards, R. Townsend, and M. A. Kim, “Compositional
dataflow circuits,” in Proceedings of the 15th ACM-IEEE International
Conference on Formal Methods and Models for System Design, Vienna,
Sep. 2017, pp. 175–84. [Online]. Available: http://doi.acm.org/10.1145/
3127041.3127055

[24] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware syn-
thesis language,” The Computer Journal, vol. 45, no. 1, pp. 12–18, Jan.
2002.

[25] M. Budiu and S. C. Goldstein, “Pegasus: An efficient intermediate
representation,” Carnegie Mellon University, Tech. Rep. CMU-CS-02-
107, May 2002.

[26] S. F. Nielsen, J. Sparsø, J. B. Jensen, and J. S. R. Nielsen, “A behavioral
synthesis frontend to the Haste/TiDE design flow,” in Proceedings of the
15th International Symposium on Asynchronous Circuits and Systems,
Chapel Hill, N.C., May 2009, pp. 185–94.

[27] R. Li, L. Berkley, Y. Yang, and R. Manohar, “Fluid: An asynchronous
high-level synthesis tool for complex program structures,” in Proceed-
ings of the 27th International Symposium on Asynchronous Circuits and
Systems, Beijing, Sep. 2021, pp. 1–8.

9

261

