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Abstract—A recent theme in HLS research is the production
of dynamically scheduled circuits, which are made up of com-
ponents that use handshaking to schedule themselves at run
time, as opposed to following a schedule determined statically at
compile time. Dynamically scheduled circuits promise superior
performance on ‘irregular’ source programs, such as those whose
control flow depends on input data, at the cost of additional area.

Current dynamic scheduling techniques are well able to
exploit parallelism among instructions within each basic block
(BB) of the source program, but parallelism between BBs is
underexplored. Although current tools allow the operations of
different BBs to overlap, they require the BBs to start in strict
program order, thus limiting the achievable parallelism and
overall performance.

We seek to lift this restriction. Doing so involves developing a
toolflow that tackles the following challenges: (1) finding consecu-
tive subgraphs in the control-flow graph and using static analysis
to identify those subgraphs that can be safely parallelised, and
(2) adapting the circuit so that those subgraphs are executed
in parallel while ensuring deterministic circuit behaviour and
correct usage of memory interfaces.

Using two benchmark sets from related works, we compare
our proposed toolflow against a state-of-the-art dynamically
scheduled HLS tool called Dynamatic. Our results show that
after standard loop unrolling is applied, our toolflow yields a 4×
average speedup, with a negligible area overhead. This increases
to a 7.3× average speedup when our toolflow is further combined
with C-slow pipelining.

I. INTRODUCTION

A central step of the HLS process is scheduling, which maps

each operation in the input program to a clock cycle. This

mapping can be decided either at compile time (statically) or

at run time (dynamically). There has been recent interest in

dynamic scheduling because it enables the hardware to adapt

its behaviour at run time to particular input values, memory

access patterns, and control-flow decisions. Therefore, it po-

tentially achieves better performance compared to the static

schedule produced by conservative analysis at compile time.

Dynamically scheduled HLS tools, such as Dynamatic [1],

transform a sequential program into a circuit made up of

components that are connected by handshaking signals. Each

component can start as soon as all of its inputs are ready.

Although these tools aim to allow out-of-order execution as

much as possible, they must take care to respect dependences

in the source program. There are two kinds of dependences:

memory dependences (i.e. dependence via a memory location)

and data dependences (i.e. dependence via a program variable).

There are also two scopes of dependence: between instructions

in the same BB, and between instructions in different BBs.

This leads to four cases to consider:

…

…

loop_0

loop_1

(a) Default CFG.

… …

loop_0

loop_1

loop_0

(b) Parallelised CFG.

Fig. 1: Transformation of control flow graph (CFG) for the

example in Fig. 2. Our toolflow enables multiple BBs to start

simultaneously to achieve the schedule in Fig. 2c.

1) Intra-BB data dependences: these can be respected by

placing handshaking connections between the corre-

sponding hardware operations in the circuit.

2) Intra-BB memory dependences: these can be kept

in the original program order using load-store
queues (LSQs) [2]. An LSQ is a hardware component

that schedules memory operations at run time.

3) Inter-BB data dependences: these can be respected using

handshaking connections, as in (1), and additionally by

starting BBs in strict program order, so that the inputs of

each BB are accepted in program order [3].

4) Inter-BB memory dependences: these can be respected by

starting BBs in strict program order and using an LSQ.

In all cases, existing dynamically scheduled HLS tools allow

out-of-order execution within a BB, but require different

BBs to start in-order, even when some BBs are independent

and could start in parallel. This, naturally, leads to missed

opportunities for performance improvements.

In this work, we focus on cases (3) and (4) above. We find

BBs that can be started out-of-order (or even simultaneously),

and use static analysis (powered by the Microsoft Boogie

verification engine [4]) to ensure that inter-BB dependences

are still respected. We tackle two problems: 1) How to

automatically identify BBs that can safely start in parallel?

2) How to synthesise efficient hardware that can start BBs in

parallel? Our main contributions include:

• a technique that automatically identifies sequences of

consecutive subgraphs from the control-flow graph (CFG)

of a sequential program and reschedules these subgraphs

for parallelism using the Microsoft Boogie verifier;
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1 // f(i) = 0;
2 // g(j) = j*j+1;
3 // h(j) = j;
4
5 int a[N], b[M];
6 void transformVector () {
7 int i, j;
8 loop_0:
9 for (i = 0; i < X; i++)

10 b[i] = op0(a[f(i)];
11 loop_1:
12 for (j = 0; j < Y; j++)
13 a[g(j)] = op1(a[h(j)]);
14 }

(a) Source

b[0] = op0(a[f(0)]);
b[1] = op0(a[f(1)]);

b[2] = op0(a[f(2)]);

b[X-1] = op0(a[f(X-1)]);
a[g(0)] = op1(a[h(0)]);

a[g(1)] = op1(a[h(1)]);
a[g(2)] = op1(a[h(2)]);

a[g(Y-1)] = op1(a[h(Y-1)]);

g(0) = h(1)
g(1)  h(2)

(b) Default pipeline schedule.
b[0] = op0(a[f(0)]);

b[1] = op0(a[f(1)]);
b[2] = op0(a[f(2)]);

b[X-1] = op0(a[f(X-1)]);
a[g(0)] = op1(a[h(0)]);

a[g(1)] = op1(a[h(1)]);
a[g(2)] = op1(a[h(2)]);

a[g(Y-1)] = op1(a[h(Y-1)]);

g(0) = h(1)
g(1)  h(2)

(c) Parallelised pipeline schedule.

Fig. 2: Motivating example. Assume no dependence between two loops. The dynamically scheduled hardware from the original

Dynamatic [1] computes in the schedule in (b). Our work achieves an optimised schedule in (c).

• a transformation pass that efficiently parallelises these

subgraphs in hardware; and

• results and analysis showing that our approach, compared

to original Dynamatic, achieves a 4× average speedup

(and a 7.3× speedup when combined with our recent

work on C-slow pipelining [5]), and almost the same

circuit area.

The rest of our paper is organised as follows: Sec. II

provides a motivating example of our work. Sec. III introduces

existing works on dynamically scheduled HLS and parallelis-

ing CFGs for HLS. Sec. IV explains our approach in detail.

Sec. V evaluates the effectiveness of our toolflow.

II. MOTIVATING EXAMPLE

This section illustrates a motivating example of parallelising

two sequential loops in dynamically scheduled hardware.

Fig. 2a shows an example of two sequential loops, loop_0

and loop_1. In each iteration of loop_0, an element at index

f(i) of array a is loaded and processed by a function op0. The

result is stored to an element at index i of array b. In each iter-

ation of loop_1, an element at index h(j) of array a is loaded

and processed by a function op1. The result is stored back to

array a at index g(j). For simplicity, let f(i) = 0, g(j) =

j*j+1 and h(j) = j. Hence, there is no memory dependence

between two loops, that is, ∀0≤i<X. ∀0≤j<Y. f(i) �= g(j).
Dynamatic [1], the state-of-the-art dynamic scheduled HLS

tool, synthesises hardware that computes in a schedule shown

in Fig. 2b. The green bars represent the pipeline schedule of

loop_0, and the blue bars represent the pipeline schedule

of loop_1. In loop_1, the interval between the starts of

consecutive iterations, known as the initiation interval (II),

is variable because of the dynamic inter-iteration dependence

between loading from a[h(j)] and storing to a[g(j)]. For

instance, if we suppose that g and h are defined such that

g(0) = h(1), then the first two iterations must be executed

sequentially, and if we further suppose that g(1) �= h(2), then

the second and third iterations are pipelined with an II of 1.

However, loop_1 is stalled until all the iterations in loop_0

have started even though it has no dependence on loop_0.

TABLE I: Elastic components for dynamically scheduled HLS.

Merge: takes the input data from an arbitrary predecessor
and propagates it to its single successor.

Fork: takes the input data from its single predecessor and
replicates it to each of its multiple successors.

Join: triggers its single successor only when the input data
of its all predecessors is available.

Branch: takes the data from its data predecessor and
propagates it to one of its multiple successors based on the
select value from its control predecessor.

The reason is that Dynamatic forces all the BBs to start

sequentially to preserve any potential inter-BB dependence,

such as the inter-iteration memory dependence in loop_1. For

this example, each loop iteration is a single BB, and at most

one loop iteration starts in each clock cycle.

An optimised schedule is shown in Fig. 2c. In the figure,

both loops start from the first cycle and iterate in parallel,

resulting in better performance. Existing approaches cannot

achieve the optimised schedule: static scheduling can start

loop_0 and loop_1 simultaneously such as using multi-

threading in LegUp HLS [6], but loop_1 is sequential as the

static scheduler assumes the worst case of dependence and

timing; dynamic scheduling has a better throughput of loop_1,

but cannot start it simultaneously with loop_0.

Besides, determining the absence of dependence between

these two loops for complex f(i), g(j) and h(j) is challeng-

ing. In this paper, our toolflow 1) generates a Boogie program

to formally prove that starting loop_0 and loop_1 simulta-

neously cannot break memory dependence and 2) parallelises

these loops in dynamically scheduled hardware if they are

proved independent. The Boogie program generated for this

example is explained later (in Fig. 3).

The transformation for the example in Fig. 2 is demonstrated

in Fig. 1. Fig. 1a shows the CFG generated by the original Dy-

namatic. The CFG consists of a set of pre-defined components,

as listed in Tab. I. As indicated by the red arrows, a control

token enters the upper block and triggers all the operations

in the first iteration of loop_0. It circulates within the upper
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block for X cycles and then enters the lower block to start

loop_1. Fig. 1b shows a parallelised CFG by our toolflow.

Initially, a control token is forked into two tokens. These two

tokens simultaneously trigger loop_0 and loop_1. A join is

used to synchronise the two tokens when they exit these loops.

Both designs use the same hardware; yet, Fig. 1b uses these

resources in a more efficient way by allowing the two loops to

be used in parallel, reducing the overall execution time. The

rest of the paper explains the details of our approach.

III. BACKGROUND

This section first reviews related works in existing HLS

tools that use dynamic scheduling. We also compare related

works on parallelising CFGs for HLS with our work.

A. Dynamically Scheduled High-Level Synthesis

Most HLS tools such as Xilinx Vivado HLS [7] and

Dynamatic [1] translate an input program into an intermediate

representation (IR) such as LLVM IR, and then transform the

IR into a control data flow graph (CDFG) for scheduling [8].

A CDFG is a two-level directed graph that contains a set of

vertices connected by edges. The top level is a control-flow

graph (CFG), where each vertex represents a basic block (BB)

in the IR, and each edge represents the control flow. At the

lower level, each vertex is also a data-flow graph (DFG), where

each sub-vertex inside the DFG represents an operation in

the BB and each sub-edge represents a data dependence. The

CDFG is used as part of the dependence constraints in both

static and dynamic scheduling [1, 9].

In the world of dynamic scheduled HLS, initial work was

studied by Page and Luk [10], which maps occam programs

into hardware and has been extended to support a commercial

language named Handel-C [11]. The idea of mapping a C

program into a netlist of pre-defined hardware components has

been studied in both asynchronous [12] and synchronous [1]

worlds. Sayuri and Nagisa [13] propose a method that synthe-

sises single-level loops into dynamically scheduled circuits.

Josipović et al. [1] propose an open-sourced HLS tool named

‘Dynamatic’ that automatically translates a program into a

dynamically pipelined hardware. Dynamatic uses a set of pre-

defined components with handshake connections formalised

by Carloni et al. [14]. Each edge in the CDFG of the input

program is translated to a handshake connection between

components. This allows a component to execute at the earliest

time when all its inputs are valid. The memory dependence is

controlled by load-store queues (LSQs). An LSQ exploits out-

of-order memory accesses by checking memory dependence

in program order at run time [2] and early executing those

independent memory accesses.

Dynamatic parallelises DFGs within and across BBs for

high performance, but the CFG still starts BBs sequentially.

Sequentially starting BBs is required to respect inter-BB

dependences at run time. An unverified BB schedule may

cause an error. Our toolflow uses Boogie to formally prove that

the transformed BB schedule cannot break any dependence,

such that the synthesised hardware is still correct.

B. Parallelising CFG for HLS

Automatically parallelising a CFG of a sequential program

has been well-studied in the software compiler world [15].

Traditional approaches exploit BB parallelism using polyhe-

dral analysers such as Pluto [16] and Polly [17]. These tools

automatically parallelise code that contains affine memory

accesses [18, 19] and have been widely used in HLS to paral-

lelise hardware kernels [20, 21, 22, 23]. However, polyhedral

analysis is not applicable when analysing irregular memory

patterns such as non-affine memory accesses, which are com-

monly seen in applications amenable for dynamic scheduling,

such as tumour detection [24] and video rendering [25].

Recently, there are works that use formal verification to

prove the absence of dependence to exploit hardware par-

allelism. Zhou et al. [26] propose a satisfiability-modulo

theory (SMT)-based [27] approach to verify absence of mem-

ory contention in banked memory among parallel kernels.

Cheng et al. propose a Boogie-based approach for simpli-

fying memory arbitration for multi-threaded hardware [28].

Microsoft Boogie [4] is an automated program verifier on

top of SMT solvers. It uses its own intermediate verification

language to describe the behaviour of a program to be verified,

which can be automatically decoded into SMT queries. An

SMT solver under Boogie then reasons the program behaviour,

including the values that its variables may take. Our work

also uses Boogie but for parallelising BBs in dynamically

scheduled hardware.

Mapping a parallel BB schedule into hardware has also been

widely studied. Initial work by Cabrera et al. [29] proposes

an OpenMP extension to off-load computation to an FPGA.

Leow et al. [30] propose a framework that maps OpenMP

code in Handel-C [11] to VHDL programs. Choi et al. [31]

propose a plugin that synthesises both OpenMP and Pthreads

C programs into multi-threaded hardware, used in an open-

sourced HLS tool named LegUp [6]. Gupta et al. propose an

HLS tool named SPARK that parallelises control flow with

speculation [32]. These works either require user annotation

or only use static scheduling, while our approach only uses

automated dynamic scheduling.

Finally, there are works on simultaneously starting BB in

dynamically scheduled HLS. Cheng et al. [33] propose an

HLS tool named DASS that allows each statically scheduled

component to act as a static island in a dynamically scheduled

circuit. Each island is still statically scheduled, while our

toolflow only uses dynamic scheduling. The closest piece of

work to this paper proposes C-slow pipelining for dynamically

scheduled hardware [5]. This work parallelises BBs inside a

nested loop to achieve better throughput of the innermost loop.

However, it only works for nested loops and cannot optimise

code such as sequential loops in Fig. 2, while our approach

can parallelise these BBs.

IV. METHOD

In this section, we first formalise the problem of sequentially

starting BB execution. We then introduce an approach that

statically constructs subgraphs from the CFG of a program
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1 procedure pickOneMemoryAccess () returns (valid: bool ,
2 addr: Index , array: Array , subgraphID: Index ,
3 type: MemoryType) {
4 loop_0: for (i = 0; i < X; i++) {
5 // b[i] = op0(a[f(i)]);
6 if (*) { valid := true; addr := f(i); array := a;
7 subgraphID := 0; type := LOAD; return; }
8 if (*) { valid := true; addr := i; array := b;
9 subgraphID := 0; type := STORE; return; }

}
10 loop_1: for (j = 0; j < Y; j++) {
11 // a[g(i)] = op1(a[h(j)]);
12 if (*) { valid := true; addr := h(j); array := a;
13 subgraphID := 1; type := LOAD; return; }
14 if (*) { valid := true; addr := g(j); array := a;
15 subgraphID := 1; type := STORE; return; }

}
16 valid := false; return; }

(a) Procedure that arbitrarily picks a memory access.

1 procedure main() {
2 // assume that all the arrays have arbitrary values
3 havoc a, b;
4 // valid: whether the returned memory access is valid
5 // addr: which address the memory access touches
6 // array: which array the memory access touches
7 // subgraphID: which subgraph the memory access is in
8 // type: the type of memory access , either load/store
9 call valid_0 , addr_0 , array_0 , subgraphID_0 , type_0

:= pickOneMemoryAccess ();
10 call valid_1 , addr_1 , array_1 , subgraphID_1 , type_1

:= pickOneMemoryAccess ();
11 assert !valid_0 || !valid_1 ||
12 subgraphID_0 == subgraphID_1 ||
13 array_0 != array_1 ||
14 (type_0 == LOAD && type_1 == LOAD) ||
15 addr_0 != addr_1;
16 }

(b) Main procedure that proves the absence of dependence.

Fig. 3: A Boogie program generated for the example in Fig. 2. It tries to prove the absence of memory dependence between

two sequential loops loop_0 and loop_1.

and reschedules them. Next, we show how to transform the

hardware to achieve a parallel BB starting schedule. Finally,

we demonstrate how our work is integrated as a plugin to the

open-sourced Dynamatic HLS tool for prototyping.

A. Problem Formulation

Here we formalise our problem of starting BB in parallel.

Let x ≺ y denote that x begins execution at a time less than

the time y begins execution, and let x � y denote that x begins

execution at a time no greater than the time y begins execution.

In dynamic scheduling, a BB bk1 has inter-BB dependence on

bk2 , it must start after the start of bk2 , i.e. bk2 ≺ bk1 .

The search space for BBs that can start in parallel could be

huge, and it scales exponentially with the code size. In order

to increase scalability, we limit our scope to loops. Each loop

forms a subgraph in the CFG for analysis. Parallelising BBs

outside any loop adds significant search time but has negligible

improvement in latency. We define following terms:

• G = {g1, g2, g3, ...}: A set of consecutive subgraphs in

the CFG of the program.

• O : g1,0 ≺ g2,0 ≺ g3,0 ≺ g1,1 ≺ ...: The order of

subgraph execution in the original program order. gi,j
represents the jth iteration of subgraph gi.

• Bgi = {b1, b2, b3, ...}: The set of all BBs in subgraph gi .
• Ogi : b1,0 ≺ b2,0 ≺ b3,0 ≺ b1,1 ≺ ...: The original

program order of BB execution in subgraph gi. bk,j
represents the jth iteration of BB bk.

Dynamatic starts BB execution in the order that combines O
and Ogi lexicographically. However, for an order O : ... ≺
gi1,j ≺ gi2,j ≺ ..., if it is proven that gi1 cannot have

dependence with gi2 , then O′ : ... ≺ gi2,j � gi1,j ≺ ... is

also memory legal. O′ exploits parallelism between gi1 and

gi2 , which could achieve better performance.

The optimised order O′ still respect all the dependences.

First, only the BB order is changed, where the intra-BB

dependences remain the same. The inter-BB dependences are

respected as only the independent BBs are made out-of-order.

The following sections explain two main problems solved by

our work: 1) How to efficiently determine a large set of G
and a highly parallelised order O′ for G? 2) How to map the

parallelised order O′ into efficient hardware?

B. Searching and Scheduling Subgraphs

Here we first show how to construct sets of subgraphs from

a sequential program, where subgraphs in the same set may

start in parallel. Then we show how to use Boogie to check

dependence among these subgraphs, potentially resulting in a

parallel BB schedule.

Given an input program, our toolflow analyses sequential

loops in each depth and constructs a number of sets of

subgraphs. Each set contains several consecutive sequential

loops at the same depth, where each loop forms a subgraph.

For instance, the example in Fig. 2 has a set of two sub-

graphs, corresponding to loop_0 and loop_1. Our toolflow

then checks the dependence among the subgraphs for each

set. Dynamatic translates data dependence into handshake

connections in hardware for correctness. Our toolflow does

not change these connections so the data dependence is still

preserved. For memory dependences, our toolflow generates a

Boogie program to prove the absence of dependence among

subgraphs. For this example, Boogie proves that the two loops

do not conflict on any memory locations and therefore can be

safely reordered.

Boogie uses its own language with has its own construc-

tions [4]. Here we list the ones used in this paper:

1) if (*) {A} else {B} is a non-deterministic choice.

The program arbitrarily does A or B.

2) havoc x assigns an arbitrary values to a variable or an

array x, used to capture all the possible values of x.

3) assert c proves the condition c for all the values that

the variables in c may take.

For example, Fig. 3 shows the Boogie program that proves

the absence of a dependence between loop_0 and loop_1 in

Fig. 2. The Boogie program consists of two procedures. First,
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(a1) (a2) (a3) (b1) (b2) (b3)

(a) (b)

Fig. 4: A CFG may be parallelised differently, depending on

(a) parallelising in top-to-bottom/bottom-to-top order, and (b)

grouping BBs with the loop before/after. The dashed arrows

represent memory dependence.

the procedure in Fig. 3a describes the behaviour of function

transformVector and arbitrarily picks a memory access

during the whole execution. The procedure returns a few

parameters for analysis, as listed in lines 4-8 in Fig. 3b. The

for loop structures are automatically translated using an open-

sourced tool named EASY [28]. In the rest of the function,

each memory operation is translated to a non-deterministic

choice if(*). It arbitrarily returns the parameters of a memory

operation or continues the program. If all the memory opera-

tions are skipped, the procedure returns an invalid state in line

16. The non-deterministic choices over-approximate the exact

memory locations to a set of potential memory locations. For

instance, any memory location accessed by the code in Fig. 2a

is reachable by the procedure in Fig. 3a. The assertions in

Fig. 3b must hold for any possible memory location returned

by the procedure in Fig. 3a to pass verification.

Second, Fig. 3b shows the main procedure. In line 3, the

verifier assumes both arrays hold arbitrary values, making

the verification input-independent. Then, the verifier arbitrarily

picks two memory accesses in lines 9-10. Each memory access

can capture any memory access during the whole execution

of transformVector. The assertion describes the depen-

dence constraint to be proved that for any two valid memory

accesses (line 11), if they are in different subgraphs (line

12), they must be independent. Lines 13-15 describe the

independence, where they either touch different arrays or

different indices, or they are both load. If the assertion always

holds, then it is safe to parallelise loop_0 and loop_1.

Our toolflow generates
k(k−1)

2 assertions for k subgraphs,

because that is the number of ways of picking 2 subgraphs

from k. The subgraphs are rescheduled based on the verifica-

tion results. If a subgraph is independent of any its preceding

subgraphs within a distance of n, it can simultaneously start

with its (m − n)th last subgraph. For case of two or more

consecutive subgraphs that are all mutually independent, it is

straightforward to schedule them all in parallel. However, a

sequence of subgraphs that are neither completely indepen-

dent nor completely dependent may result in several possible

solutions. For instance, the CFG in Fig. 4a1 contains three

consecutive loops, BB1, BB2, and BB3. BB1 and BB2 can be

parallelised, as can BB2 and BB3, but BB1 and BB3 cannot.

We therefore have to choose between parallelising them as

in Fig. 4a2 or in Fig. 4a3. Our current approach greedily

parallelises BBs in top-to-bottom order, so yields Fig. 4a2 by

default, but this order can be overridden via a user option.

It may be profitable in future work to consider Fig. 4a3 as

an alternative if BB2 and BB3 have more closely matched

latencies.

Second, the BBs between sequential loops can be included

in a subgraph of either loop, resulting in several solutions.

For instance, Fig. 4b1 can be parallelised to Fig. 4b2 or to

Fig. 4b3. In Fig. 4b2, BB2 is grouped with its succeeding loop

BB3, and so is BB4. In Fig. 4b3, the BBs are grouped with

their preceding loops. This may result in different verification

results which affect whether the subgraphs can be parallelised.

For instance, if BB3 depends on BB2, then Fig. 4b2 is

memory-legal and Fig. 4b3 is invalid (our toolflow will keep

the CFG as in Fig. 4b1). This grouping can be controlled via

a user option.

C. Parallelising Hardware

We here explain how to construct dynamically scheduled

hardware in which BBs can start simultaneously. First, we

illustrate how to insert additional components to enable BB

parallelism. Second, we show how to simplify the data flow

to avoid unnecessary stalls for subgraphs.

1) Inserting Components for Parallelism: With given sets

of subgraphs that start simultaneously, our toolflow inserts ad-

ditional components into the dynamically scheduled hardware

to enable parallelism. For each set, our toolflow first finds the

start of the first subgraph and the exit of the last subgraph in

the program order. The trigger of the first subgraph is forked

to trigger the other subgraphs in the set. The exit of the last

subgraphs is joined with the exits of the other subgraphs and

then triggers its succeeding BB. For the example in Fig. 1b,

the start of the function is forked to trigger both loop_0 and

loop_1. A join is used to synchronise the BB starting siganls

in loop_0 and loop_1. The join waits for all the BBs in both

loops to start and then starts the succeeding BB of the loops.

The BB starting order O′ is now out-of-order, but the

computed data must be in-order. The transformation above

ensures the order of data does not affect the correctness. Since

we only target loops, only the muxes at the header of the

loops are affected. Outside of the loops to be parallelised,

the order remains unmodified. When each parallelised loop

starts, a token enters the loop and circulates through the loop

exactly as the program order. The parallelised loop outputs are

synchronised by the join, thus, everything that happens later

remains in order. Only the BB orders among these parallelised

loops are out-of-order, which have been proven independent.

An advantage of such transformation is that the execu-

tion of parallelised subgraphs and their succeeding BB are

in parallel, although they still start in order. The memory

dependences between these subgraphs and the succeeding BB

are still respected at run time as they start in order. This
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1 loop_0_1:
2 for(i=0;i<A;i++){
3 loop_0:
4 for(j=0;j<B;
5 j++)
6 ...
7 loop_1:
8 for(k=0;k<C;
9 k++)

10 ...
11 }
12 loop_2:
13 for(h=0;h<D;h++)
14 ...

(a) Source (b) CFG Transformation. (c) Parallel BB starting schedule.

Fig. 5: An example of parallelising BB starting schedule by CFG transformation. There are two sets of sequential loops

in different depths. Assuming all the loops are independent, each set of sequential loops start simultaneously after the

transformation in (b). (c) only shows the time when a BB starts, where a BB may take multiple cycles to execute.

1 loop_0:
2 for(j=0;j<Y;

j++)
3 t += B[j];
4
5 loop_1:
6 for(i=0;i<X;

i++)
7 s += A[i];
8
9 return s+t;

(a) Source.

…
loop_0

loop_1

(b) Default dataflow.

…
loop_0

loop_1

(c) Optimized dataflow.

Fig. 6: An example of simplify data flow for live variables. t is

a live variable in line 3, but not used in loop_1. t circulates in

loop_1 to preserve liveness but is seen as data dependences,

stalling loop_1 before t is valid. Our toolflow identifies and

removes these cycles, such that loop_1 can start earlier.

effect qualitatively corresponds to what standard dynamically

scheduled hardware exhibits yet, in that case, only on a single

BB at a time. Compared to traditional static scheduling, which

only starts the succeeding BB when all the subgraphs finish

execution, our design can achieve better performance.

Fig. 5 shows an example of parallelising nested parallel

subgraphs. The code contains two sequential loops, loop_0_1

and loop_2. Loop loop_0_1 is a nested loop that contains

two sequential loops, loop_0 and loop_1. For simplicity,

assume that there is no dependence between any two loops.

Our toolflow constructs two sets of subgraphs in two depths,

allowing more parallelism in the CFGs. One set contains

loop_0_1 and loop_2, and the other set contains loop_0

and loop_1. The transformation of CFG is illutrated in

Fig. 5b. loop_0_1 and loop_2 are parallelised at the start

the program, and loop_0 and loop_1 are further parallelised

inside loop_0_1. The corresponding BB starting schedule is

demonstrated in Fig. 5c, which only shows the time when

each BB starts. A BB may have a long latency and execute in

parallel with other BBs.
2) Forwarding Variables in Data Flow: The second step

is to simplify the data flow of live variables for parallelising

sequential loops. Dynamatic directly translates the CFDG of an

input program into a hardware dataflow graph. In the data flow

graph, each vertex represents a hardware operation, and each

edge represents a data dependence between two operations.
The data flow of a loop uses cycles for each variable that

has carried dependence. The data circulates in the cycle and

updates its value in each iteration. However, such approach

also maintain all the live variables in these cycles while

executing a loop, even when they are not used inside the loop.

The edges of these cycles are seen as data dependences in

the hardware, where the edges for unused live variables could

cause unnecessary pipeline stalls.
For example, the loops in Fig. 6a can be parallelised.

loop_0 accumulates array B onto t, and loop_1 accumulates

array A onto s. The sum of s and t is returned. The dataflow

graph of loop_1 is shown in Fig. 6b. The loop iterator i and

the variable s have carried dependence in loop_1. They are

kept and updated in the middle and right cycles. The result of

loop_0, t, is still live and required by addition in line 9. t is

kept in the left cycle, circulating with i and s.
loop_1 is stalled by the absence of t even when parallelised

with loop_0, but t is not needed by loop_1. In order to

remove these unnecessary cycles, our toolflow checks whether

a live variable is used in the loop. If it is not, our toolflow

removes the corresponding cycle and directly forwards the

variable to its next used BB. Fig. 6c illustrates the transformed

dataflow graph. t is now directly forwarded to the final adder,

enabling two loops to start simultaneously.
3) Handling LSQs: The parallel BB schedule also affects

the LSQs. First, the original Dynamatic starts BB sequentially,

where the LSQ expects sequential BB allocation. Our paral-

lelised schedule allows multiple BBs to start simultaneously;

therefore, we place a round-robin arbiter for the LSQ to

serialise the allocations. The out-of-order allocation still pre-

serves correctness as the simultaneous BB requests have been

statically proven independent by our approach in Sec. IV-B.
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Fig. 7: Our work integrated into the open source Dynamatic

tool [1]. Our contribution is highlighted in bold text.

Second, the arbiter may cause deadlock if the LSQ depth

is not sufficient to consume and reorder all memory acceses

(e.g. a later access may be stuck in an LSQ waiting for a

token from an earlier access, but the earlier access cannot

enter the LSQ if it is full, thus never supplying the token).

This issue has been extensively explored in the context of

shared resources in dataflow circuits [34]; similarly to what

is suggested in this work, the appropriate LSQ size could be

determined based on the number of overlapping loop iterations

and their IIs. Although systematically determining the minimal

allowed LSQ depth is out of the scope of this paper, we here

assume a conservative LSQ size that ensures that deadlock

never occurs in the benchmarks we consider. We note that

minimising the LSQ is orthogonal to our contribution and

could only positively impact our results (by reducing circuit

area and improving its critical path).

D. Tool Flow
Our toolflow is implemented as a set of LLVM passes

and integrated into the open-sourced HLS tool Dynamatic for

prototyping. As illustrated in Fig. 7, the input C program is

first lowered into LLVM IR and analysed by our subgraph

constructor. It generates Boogie assertions and calls Boogie

verifier to automatically verify the absence of dependence

between any two subgraphs. Then the constructor constructs

sets of subgraphs and reschedules them. The front end of

Dynamatic translates the LLVM IR into a dot graph that

represents the hardware netlist. Our back-end toolflow inserts

additional components and simplifies the unnecessary cycles

for the live variables, resulting in a new hardware design in

the form of a dot graph. Finally, the back end of Dynamatic

transforms the new dot graph to RTL code, representing the

final hardware design.

V. EXPERIMENTS

We compare our work with Xilinx Vivado HLS [7], the

original Dynamatic [1], and Dynamatic with C-slow pipelin-

ing [5]. To make the comparison as controlled as possible, all

the approaches only use scheduling, pipelining and array parti-

tioning. We use two benchmark sets to evaluate the designs in

terms of total circuit area and wall-clock time. Cycle counts

were obtained using the Vivado XSIM simulator, and area

results were obtained from the post-Place & Synthesis report

in Vivado. We used UltraScale+ family of FPGA devices for

experiments, and the version of Xilinx software is 2019.2.
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Fig. 8: Speedup, compared to original Dynamatic, as more

subgraphs in the CFG are parallelised.

A. Benchmarks

We use two open-sourced benchmark sets for evaluation.

One is the LegUp benchmark set by Chen and Anderson [35]

for evaluating multi-threaded HLS. The LegUp benchmark set

manually specifies the threads using Pthreads [36]. We inlined

all the threads to a sequential program. The other benchmark

set the C-slow pipelining benchmark set by Cheng et al. [5]

for evaluating dynamically scheduled HLS. We only include

the benchmarks where our approach is applicable. The other

benchmarks will have the same results as the original Dyna-

matic. The second benchmark set aims to evaluate dynamic

loop pipelining and contains few loop kernels. In order to

create more opportunities for our optimisation to be applied,

we unrolled the outermost loops by a factor of 8. This is the

largest factor that still led to the designs fitting on our target

FPGA. We also partitioned the memory in block scheme to

increase memory bandwidth. The benchmarks that we used

are listed as follows:

• histogram constructs a histogram from an integer array,

• matrixadd sums a float array,

• matrixmult multiplies two float matrices,

• matrixtrans transposes a single matrix,

• substring searches for a pattern in an input string,

• los checks for obstacles on a map,

• fft performs the fast Fourier transformation,

• trVecAccum transforms a triangular matrix,

• covariance computes the covariance matrix,

• syr2k is a symmetric rank-2k matrix update, and

• gesummv is scalar, vector and matrix multiplication.

B. Results

Figure 8 assesses the extent to which more parallelisa-

tion of subgraphs leads to more speedups compared to the

original Dynamatic, using the seven LegUp benchmarks. We

see that all the lines except matrixadd indicate speedup

factors above 1. Placing more subgraphs in parallel leads to

more speedup, with histogram and matrixtrans achieving

optimal speedups. In the matrixadd benchmark, two reasons

for the lack of speedup are: 1) that there are other parts of

the CFG that have to be started sequentially, and 2) that

the memory is naively partitioned in a block scheme, so the
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TABLE II: Evaluation of our work on two benchmark sets. For each benchmark, we highlight the best results in each dimension.

(a) Evaluation on the LegUp benchmarks. vhls = Vivado HLS; dhls = original Dynamatic; cslow = C-slow pipelining by Cheng et al. [5];
ours = our work; both = our work + C-slow pipelining. The code size lists the number of loops, BBs, instructions and extracted subgraphs.

Benchmarks
Code size LUTs (1000s) DSPs Cycles (1000s) Fmax (MHz) Relative area-delay product

loops bbs insts graphs vhls dhls ours cslow both vhls dhls ours cslow both vhls dhls ours cslow both vhls dhls ours cslow both vhls dhls ours cslow both

histogram 9 91 384 9 1.67 156 156 156 156 0 0 0 0 0 197 317 39.8 317 39.8 464 57.7 58.3 57.7 58.3 1 1212 150.9 1212 150.9
matrixadd 8 17 112 8 1.11 9.15 9.17 9.15 9.17 2 30 30 30 30 262 106 48.9 106 48.9 159 110 110 110 110 1 4.8 2.2 4.8 2.2
matrixmult 72 145 1521 72 6.87 79.4 79.8 101 100 5 320 320 320 320 4195 1090 229 164 164 155 123 104 83.3 72.3 1 3.8 0.9 1.1 1.2
matrixtrans 8 17 81 8 0.103 2.67 2.69 2.67 2.69 0 0 0 0 0 65.6 65.6 8.2 65.6 8.2 562 227 210 227 210 1 64 8.7 64 8.7
substring 16 54 255 8 0.938 14.4 14.6 14.4 14.6 0 0 0 0 0 98.3 217 154 217 154 470 126 129 126 129 1 126 88.9 126 88.9
los 24 89 513 8 2.68 46.5 46.1 46.5 46.1 0 0 0 0 0 48.8 114 19.9 114 19.9 281 272 282 272 282 1 41.8 7 41.8 7
fft 24 65 457 8 2.65 351 351 351 351 16 192 192 192 192 86 5.39 5.15 5.39 5.15 155 81.8 103 81.8 103 1 15.7 12 15.7 12

Norm. median 1 1 1 1 1 1 1 1 1 0.21 1 0.17 1 1.01 1 1.01 1 41.8 8.7 41.8 8.7

(b) Evaluation on the C-slow pipelining benchmarks. unroll = original Dynamatic taking the program where all outermost loops are unrolled
by a factor of 8; ours = unroll + our work; both = unroll + our work + C-slow pipelining.

Benchmarks
Code size (unrolled) LUTs (1000s) DSPs Cycles (1000s) Fmax (MHz) Relative area-delay product

loops bbs insts graphs dhls unroll ours cslow both dhls unroll ours cslow both dhls unroll ours cslow both dhls unroll ours cslow both dhls unroll ours cslow both

trVecAccum 16 49 249 8 18.9 149 150 19.8 153 5 40 40 5 40 389 393 161 256 33.2 188 132 121 157 117 1 11.27 5.05 0.83 1.11
covariance 48 113 593 24 27.1 56.6 55.5 26.8 65.7 9 72 72 9 72 698 605 77.1 263 33.6 72.1 132 102 89.7 102 1 0.99 0.16 0.30 0.08
syr2k 24 49 385 8 4.14 30.5 30.7 4.57 34.4 19 152 152 19 152 674 602 84.1 255 33.9 125 126 98.9 130 128 1 6.53 1.16 0.40 0.41
gesummv 16 33 297 8 3.96 26.9 26.9 4.56 30.2 18 144 144 18 144 797 787 327 524 66.6 128 162 163 119 120 1 5.33 2.20 0.82 0.68

Norm. median 1 7.10 7.09 1.08 7.85 1 8 8 1 8 1 1 0.27 0.52 0.07 1 1.13 1.03 0.99 0.98 1 5.93 1.68 0.61 0.54

memory bandwidth is limited and there is serious contention

between BBs for the LSQs.

Detailed results for the LegUp benchmarks using eight

subgraphs are shown in Tab. IIa. We observe the following:

1) Static scheduling (Vivado HLS) is the clear winner in

terms of area (see columns ‘LUTs’ and ‘DSPs’), but in

the context of dynamic scheduling, our approach brings

only a negligible area overhead because we only insert

small components into the hardware.

2) Our approach requires substantially fewer cycles than

original Dynamatic thanks to the parallelism it exploits

between BBs (see column ‘Cycles’).

3) The only benchmark where C-slow pipelining wins is the

matrixmult benchmark (see column ‘Cycles’), which

contains nested loops. Fortunately, our approach is com-

patible and complementary to C-slow pipelining, so we

can apply both techniques simultaneously to reach the

best of both worlds (see the ‘both’ columns).

4) Our approach achieves a 4× average speedup (see column

‘Wall clock time’). We further observe that the area-delay

products we obtain are significantly smaller than those of

the original Dynamatic.

5) Although Vivado HLS has low performance in cycles, its

high clock frequency makes it win for histogram and

substring. Also, it uses if-conversion to simplify BBs

(unlike our work), which results in fewer BBs. The BBs

in innermost subgraphs still start sequentially, leading to

large cycle counts.

For the C-slow pipelining benchmark set (Tab. IIb), we

make the following observations:

1) The area-delay product of Dynamatic is significantly

worse than Vivado HLS because the version of Dynamatic

we used does not support resource sharing leading to sig-

nificant area overhead (although it is now supported [34]).

2) Unrolling alone is not enough to obtain substantial

speedups because the BBs still have to start sequentially

(see column ‘Cycles → unroll’).

3) C-slow pipelining enables a 1.9× average speedup with

only 8% area overhead (see column ‘Wall clock time’).

Our approach achieves a 4.2× average speedup for

the unrolled benchmarks. By applying both techniques

simultaneously on the unrolled programs, we achieve

a 14.3× average speedup with a 10% area overhead.

That significant speedup can be attributed in part to the

reordering of BBs.

VI. CONCLUSIONS

Existing dynamically scheduled HLS tools require all BBs

to start in strict program order, in order to respect any inter-BB

dependences, regardless of whether dependences are actually

present. This leads to missed opportunities for performance

improvements by having BBs start simultaneously.

We propose an automated approach to lifting this restriction.

We show how to statically identify sequences of consecutive

subgraphs in the CFG of a program and reschedule them

(with the help of the Microsoft Boogie verifier) to start

simultaneously. We then show how to map the optimised

schedule into efficient hardware designs. The performance

gain is significant (and can be further improved with C-slow

pipelining), while the area overhead is negligible. Our plan for

future work is to automate the process of optimising subgraph

configurations for arbitrary programs in this framework.
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