
4

Buffer Placement and Sizing for High-Performance

Dataflow Circuits

LANA JOSIPOVIĆ, SHABNAM SHEIKHHA, ANDREA GUERRIERI, and
PAOLO IENNE, École Polytechnique Fédérale de Lausanne

JORDI CORTADELLA, Universitat Politècnica de Catalunya

Commercial high-level synthesis tools typically produce statically scheduled circuits. Yet, effective C-to-
circuit conversion of arbitrary software applications calls for dataflow circuits, as they can handle efficiently
variable latencies (e.g., caches), unpredictable memory dependencies, and irregular control flow. Dataflow cir-
cuits exhibit an unconventional property: registers (usually referred to as “buffers”) can be placed anywhere in
the circuit without changing its semantics, in strong contrast to what happens in traditional datapaths. Yet, al-
though functionally irrelevant, this placement has a significant impact on the circuit’s timing and throughput.
In this work, we show how to strategically place buffers into a dataflow circuit to optimize its performance.
Our approach extracts a set of choice-free critical loops from arbitrary dataflow circuits and relies on the
theory of marked graphs to optimize the buffer placement and sizing. Our performance optimization model
supports important high-level synthesis features such as pipelined computational units, units with variable
latency and throughput, and if-conversion. We demonstrate the performance benefits of our approach on a
set of dataflow circuits obtained from imperative code.

CCS Concepts: • Hardware→High-level and register-transfer level synthesis; Timing analysis; Circuit

optimization; • Computer systems organization→ Data flow architectures; • Software and its engineer-

ing→ Petri nets

Additional Key Words and Phrases: Dataflow circuits, high-level synthesis, performance optimization,

Petri nets

ACM Reference format:

Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and Jordi Cortadella. 2021. Buffer Place-
ment and Sizing for High-Performance Dataflow Circuits. ACM Trans. Reconfigurable Technol. Syst. 15, 1,
Article 4 (November 2021), 32 pages.
https://doi.org/10.1145/3477053

1 INTRODUCTION

Standard high-level synthesis (HLS) tools [6, 43] rely on static scheduling: the clock cycle in
which each operation executes is decided during compilation. To increase parallelism, these tools

L. Josipović was supported by a Google Ph.D. Fellowship in Systems and Networking. J. Cortadella was supported by grants
MINECO TIN2017-86727-C2-1-R and GENCAT 2017-SGR-786.
Authors’ addresses: L. Josipović, S. Sheikhha, A. Guerrieri, and P. Ienne, École polytechnique fédérale de Lausanne, School
of Computer and Communication Sciences, CH-1015 Lausanne, Switzerland; emails: lana.josipovic@epfl.ch; J. Cortadella,
Universitat Politécnica de Catalunya, Department of Computer Science, Jordi Girona Salgado 1–3, 08034 Barcelona, Spain;
email: jordi.cortadella@upc.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
1936-7406/2021/11-ART4 $15.00
https://doi.org/10.1145/3477053

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

https://doi.org/10.1145/3477053
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3477053

4:2 L. Josipović et al.

use techniques such as loop pipelining to overlap statically scheduled loop iterations at a constant
loop initiation interval [5, 36, 44]. Yet, in the presence of memory and control dependencies that
cannot be determined at compile time, this scheduling approach forces worst-case assumptions and
results in suboptimal schedules. In contrast, dataflow or latency-insensitive circuits [7, 14, 16, 41]
implement dynamic scheduling and can resolve such dependencies as the circuit runs, thus achiev-
ing better performance. Although these circuits are naturally capable of overlapping loop itera-
tions, their pipelining abilities critically depend on the placement and sizing of buffers. Some ap-
proaches build dataflow circuits out of imperative code [2, 23], but they still rely on crude heuristics
and manual tuning to optimize performance, hence often producing suboptimal circuits.

If dataflow circuits are to play a significant role in the development of HLS, they need to benefit
from every optimization opportunity that standard HLS techniques regularly exploit. In this work,
we simultaneously tackle two aspects that are crucial for achieving high-performance circuits: con-
straining the critical path and maximizing throughput. We discuss the difficulties of performing
such optimizations in the context of dataflow designs and present a performance optimization
model based on marked graph theory that achieves maximum circuit parallelism at the desired
clock frequency and with minimal resource cost. We discuss the scalability of our optimization
approach and present a set of techniques to reduce the runtime of our performance optimization
while still achieving near-optimal results. In addition to our previously published work [25], this
article enhances our performance optimization model to support several concepts that are critical
in handling typical HLS circuits and crucial to fully benefit from dataflow design, such as computa-
tional units with variable latency and throughput as well as if-conversion. We extend our evalua-
tion section to demonstrate the effectiveness of our approach in such situations; our enhancements
result in speedups of up to 11.6× compared to previous dataflow solutions and achieve up to 13×
higher throughput than the corresponding statically scheduled HLS circuits.

2 BACKGROUND AND MOTIVATION

In this section, we discuss structural aspects of dataflow circuits generated from imperative code
and emphasize the importance of buffer placement for obtaining high-performance designs. We
describe marked graphs, a particular class of Petri nets, which are the basis for the performance
model we introduce in Section 3.

2.1 Dataflow Circuits

Latency-insensitive protocols [7, 14] are a natural method to create synchronous dataflow circuits,
capable of making decisions at runtime. Such circuits are built out of units that implement latency-
insensitivity by communicating with their predecessors and successors through channels com-
posed of data lines and paired with handshake control signals: a token of data is propagated from
unit to unit through a channel as soon as memory and control dependencies allow it—otherwise,
it is stalled by the handshake mechanism.

In this work, we rely on existing methodologies for generating dataflow circuits out of high-
level code [15, 20, 23, 37]: our circuits consist of an interconnect of subcircuits obtained from
basic blocks (BBs) (i.e., straight pieces of code separated by control flow decisions). Each BB
subcircuit is a directed acyclic graph of dataflow units. The following units implement control
flow statements [10, 19]: (1) a merge propagates a token received from any of the predecessor BBs
into its BB body, and (2) a branch propagates a token from its input to one of the successor BBs
based on a condition. Each BB contains as many merge units as it has incoming variables and as
many branch units as it has outgoing variables [23]. Apart from the dataflow units implementing

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:3

Fig. 1. A functionally correct but unoptimized dataflow circuit (a) implementing the code from (c) contains
buffers (i.e., registers) placed to break all combinational loops. The optimized circuit (b) has buffers placed
strategically to restrict the critical paths. Moreover, the FIFOs in the paths with higher latency mitigate
backpressure and allow achieving the ideal loop initiation interval (in this example, equal to 1). The red
(stall) arrows indicate the inability of the successor unit to accept a valid piece of data when it arrives; the
green arrows in (b) indicate the ability of valid data to proceed into the FIFOs and to relieve backpressure
from the upper fork.

control flow, BB subcircuits typically contain forks that replicate a token whenever it needs to be
distributed to multiple successors in the same BB.

Figure 1(a) shows a dataflow circuit that calculates the sum of the cubes of N elements of an array.
The initial values of the iterator i and the sum s are injected into the single BB of the circuit through
their respective merges to trigger the computation start. The iterator is forked to a memory port
to access an element of array a, which is sent to the pipelined multipliers to calculate the cube. The
result is then added up with s. At the same time, the iterator value is incremented and compared
to the loop bound. If the iterator has not reached the bound, the updated values of i and s are
sent back through the branches to the merges, which triggers the start of the next loop iteration.
Otherwise, the program terminates as the branch outputs the final value of s and the iterator is
discarded into a sink.

Dataflow circuits require buffers that serve as registers in standard synchronous designs. Buffers
store either tokens (i.e., valid data) or bubbles (i.e., invalid data). As in any circuit, all combinational

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:4 L. Josipović et al.

cycles1 of a dataflow circuit must be cut with at least one buffer, as given in Figure 1(a). Yet, in
contrast to standard registers, buffers can be placed on any channel of the dataflow circuit—this
insertion will not compromise the functionality of the circuit due to its latency-insensitivity [3, 23]
but will, in general, impact its timing and throughput.

2.2 Buffer Placement Is Crucial for Achieving High-Performance Dataflow Circuits

The circuit in Figure 1(a) is completely functional, as every combinational cycle contains a buffer
to break the combinational loop. However, this circuit fails to address two important performance
aspects. First, critical path: the buffers are placed without any consideration for the combinational
delays of the nodes (all non-zero delays are indicated in the figure) and therefore do not restrict the
critical path in any way. The critical path of 5 ns is the sum of the output delay of the pipelined mul-
tiplier with the delay of the adder. Second, throughput: a major performance limitation is caused
by backpressure: some paths through the circuit take a longer time to process data and prevent the
faster paths from consuming tokens at a higher rate. In Figure 1(a), the token carrying the array
value a[i] is forked into two pipelined multipliers, but the lower multiplier cannot accept the token
until the upper multiplier is done computing (i.e., after five clock cycles). Similarly, the condition
token is sent to both branch nodes, but the right branch can accept the condition token only after
the two chained five-stage multipliers produce a result. These stalls cause backpressure on their
respective forks and prevent the short iterator path on the left from executing quickly: although
a new iterator value could be computed on every clock cycle, the token with the updated value
is stalled until the previous tokens have been consumed, which effectively increases the initiation
interval of the loop, thus preventing loop pipelining.

Figure 1(b) shows a circuit configuration with optimal throughput and the critical path con-
strained to 4 ns. The additional buffer between the multiplier and the adder lowers the critical
path. Inserting FIFOs into the paths with longer latency corresponds to slack matching [28] and
increases effective parallelism, as accumulating data in the FIFOs allows to trigger the faster paths
at a higher rate [23]. In this example, this is the case for the fast iterator path, which can now
reenter the loop and trigger the start of a new loop iteration on every clock cycle, hence achieving
a perfect pipeline with the initiation interval of 1.

2.3 Marked Graphs

Marked graphs are a class of Petri nets [29] that represent concurrent behavior but never have any
choices (i.e., conditional execution). Figure 2 shows an example of a choice-free dataflow circuit

(CFDFC) and its representation in the form of a marked graph. The buffer on the back edge of the
circuit contains a token that infinitely loops through the combinational units: a token is forked
from unit n1 into both n2 and n4 concurrently, and the tokens from the two parallel paths are joined
into a single token in n5—the transitions n3 to n5 and n4 to n5 always occur simultaneously. This
concurrency property of marked graphs is the foundation of many linear algebraic techniques
for their structural and performance analysis [4, 34, 35]; some address explicitly optimal buffer
placement in choice-free dataflow graphs [3].

It is immediately clear that circuits such as the one in Figure 1(a) do not exhibit the choice-free
behavior of marked graphs, as each control flow edge between BBs represents a choice: the merges
in Figure 1(a) can accept the initial values of i and s from the starting point of the program, or the
updated values sent back from the loop body; each branch can dispatch a value either through the
back edge into the loop, or to the end point of the program, as determined by the branch condition.

1In the rest of this article, a cycle indicates a cyclic path of a data or a control flow graph, whereas we explicitly refer to
clock cycles in the context of time (i.e., operation frequency of a circuit).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:5

Fig. 2. A CFDFC and its representation as a marked graph. Circuits obtained out of high-level code (e.g., the
ones in Figure 1(a) and (b)) contain choices (i.e., control flow decisions through merges and branches) and
cannot be represented as marked graphs.

2.4 Key Intuition

The performance of dataflow circuits such as the ones described in Section 2.1 critically depends on
buffer placement and sizing, yet little is known about such optimizations. Yet, the timing properties
of marked graphs have been extensively studied [3]. However, these techniques are not applicable
in the context of dataflow circuits obtained from high-level code, which inevitably feature control
flow and therefore cannot be represented as marked graphs. In this work, we combine the knowl-
edge from marked graph theory with dataflow circuits that implement choices to optimize their
performance: our work is based on the observation that choice-free subgraphs with the properties
of marked graphs can be extracted out of generic dataflow graphs. We describe an approach to per-
form this extraction and adapt an existing performance optimization model for marked graphs [3]
to target dataflow circuits produced out of high-level code. We extend this model to support several
typical HLS features, such as pipelined computational units and if-conversion. Finally, we discuss
the optimization of complex dataflow circuits as well as methods for ensuring scalability of our
approach. We evaluate our technique on a set of benchmarks obtained out of C code.

3 OPTIMIZING PERFORMANCE

In this section, we describe our strategy for extracting probabilistically most significant choice-free
subgraphs of a dataflow circuit. We introduce our performance optimization model for obtaining
the optimal buffer placement and sizes such that (1) the required cycle period is satisfied and (2) the
throughput of the choice-free circuits is maximized. We begin with the single most important
subgraph and then extend the approach to multiple subgraphs.

3.1 Extracting CFDFCs

In this section, we describe our methodology for extracting the most significant CFDFC from a
dataflow circuit. We define a CFDFC as a dataflow circuit obtained from a cycle of the control

flow graph (CFG) (i.e., from a CFG subgraph in which each BB has exactly one input and one
output edge). A CFDFC is therefore (1) choice-free (i.e., the CFDFC has no control flow decisions)
and (2) strongly connected (i.e., the CFDFC implements a loop of the program); hence, it can be
represented as a marked graph. Figure 3 shows a CFG of a nested loop: it contains two cycles that,
internally, correspond to two CFDFCs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:6 L. Josipović et al.

Fig. 3. Extracting CFG cycles. The leftmost graph is a CFG of a nested loop with two cycles (shown on
the right of the figure), which we identify using an ILP-based approach. We then optimize CFDFCs that
correspond to these cycles (i.e., the dataflow units and channels that belong to each CFG cycle, as illustrated
in Figure 4).

The performance optimization that we will introduce in Section 3.3 optimizes the most fre-
quently executed CFDFC. We identify this CFDFC by finding the most frequently executed CFG
cycle using an integer linear programming (ILP) model.

The ILP we employ has the following constants and variables:

• Ne (constant): Execution frequency of control flow edge e (i.e., the total number of times e

executes).
• SE

e (variable, binary): Indicates whether the control flow edge e belongs to the selected CFG
cycle.
• SBB

b
(variable, binary): Indicates whether BB b belongs to the selected CFG cycle.

• N (variable): Total number of times the CFG cycle executes.
• Nmax (constant): Upper bound on the number of executions, which has to be at least as large

as the execution count of the most frequently executed edge of the CFG.

The following constraint states that the number of times the CFG cycle executes (N) corresponds
to the minimum of the execution frequencies of the control flow edges that belong to it. For every
edge e of the CFG,

N ≤ SE

e · Ne +
(
1 − SE

e

)
· Nmax. (1)

Here, Nmax ensures that N is not constrained by the execution frequencies of edges that do not
belong to the loop.

If a BB is a part of the selected cycle, exactly one of its input and one of its output edges belong
to the cycle as well. For every BB b of the CFG,

SBB

b
=
∑

e ∈In(b)

SE

e (2)

and

SBB

b
=
∑

e ∈Out(b)

SE

e . (3)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:7

Fig. 4. Obtaining a CFDFC from a dataflow circuit. A CFDFC contains all dataflow units and channels that
belong to any of the BBs or edges of the extracted CFG cycle (in this example, BB2 and edge e3 from Figure 3).
Every merge and branch in a CFDFC have a single input and output channel, respectively.

Here, In(b) and Out(b) denote the sets of input and output edges of BB b, respectively. We assume
that BBs at the beginning and end of the program have respectively no input and no output edge.

To ensure that only a single cycle is selected, only a single back edge of the CFG may belong to
it: ∑

e ∈Back(CFG)

SE

e = 1. (4)

Here, Back(CFG) denotes the set of all back edges of the CFG. Back edges are typically defined as
edges that point from a BB to another BB that dominates it (i.e., from a BB inside a loop to the loop
header); they can be detected using classical dataflow analysis [1].

We formulate the cost function to obtain the most frequently executed CFG cycle as follows:

max :
∑

e ∈CFG

N · SE

e . (5)

Once this cycle is identified, it is straightforward to find the corresponding CFDFC with its
dataflow units and channels. The following properties hold for every unit of the CFDFC: (1) for
every merge, only one input channel belongs to the CFDFC (corresponding to the chosen input
control flow edge of its BB); (2) for every branch, only one output channel belongs to the CFDFC
(corresponding to the chosen output control flow edge of its BB); and (3) for all other units, all
input and output channels belong to the CFDFC.

Figure 4 details the extraction of the most significant CFDFC of the program in Figure 3. The
ILP will identify the self-loop of BB2 as the cycle with the highest execution frequency (i.e., the
ILP result will be SBB

BB2 = 1, SE

e3 = 1, and all other BBs and edges are not selected). Therefore, for
each merge in BB2, we keep only the input channel that originates from BB2 and belongs to edge
e3; for each branch, we keep only the output channel leading back to BB2. All internal channels
and units in BB2 belong to the CFDFC as well.

The approach that we have presented in this section will select one of the innermost loops of
the circuit. We will extend our optimization model on multiple CFDFCs in Section 3.4.

3.2 Optimizing Choice-Free Circuits

The mathematical model presented in this article is based on the theory for performance analysis
of concurrent systems inherited from timed Petri nets [3, 4, 34, 35]. We apply it to CFDFCs of the
dataflow system, which can be represented as marked graphs (with functional units as nodes and
channels as edges) to determine the optimal buffer placement and sizes.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:8 L. Josipović et al.

Fig. 5. Performance optimization of a CFDFC. Grey buffers are used for breaking combinational paths. The
white buffer is transparent and used for throughput optimization. The circuits in the figure differ exclusively
in buffering, which directly affects their timing (i.e., the achievable clock period, throughput, and overall
iteration time).

A buffer can hold a token or a bubble—each time a token moves forward, a bubble moves in
the opposite direction, similar to electrons and holes in semiconductors [18]. Every cycle of our
circuit will always contain at most one token [23], whereas bubbles can be freely allocated by
adding buffers without affecting functionality; to prevent deadlock, each cycle must contain at
least one bubble so that the token and the bubble can always exchange places [3]. The buffers are
located on the channels and characterized with two properties: (1) transparency, which indicates
whether a buffer adds sequential delay onto a path (a nontransparent buffer is used to break the
combinational delay and implies a one-cycle latency, whereas a transparent buffer is implemented
as a pass-through element and does not increase cycle count), and (2) capacity (i.e., number of
slots), which is used to regulate throughput. A single-slot, nontransparent buffer corresponds in
functionality to a standard register—that is, it holds one data item that it can output on the next
clock cycle and breaks a (potentially long) combinational path. A two-slot nontransparent buffer,
sometimes referred to as elastic buffer [23], is what we have indicated as Buff in Figure 1(a)—it
ensures that all combinational cycles are broken and that the cycle can accommodate a token and
a bubble. A common FIFO of size N with a combinational path between input and output is here
an N -slot transparent buffer.

The buffer configuration of a CFDFC determines its throughput Θ: every cycle of the circuit has
a cycle ratio defined as the inverse of the number of nontransparent buffers and the throughput
is limited by the cycle with the minimum cycle ratio [35]. As every cycle contains at least a single
nontransparent buffer, the throughput equals at most 1 (i.e., Θ ≤ 1).

Figure 5 demonstrates the exploration space for the performance optimization of a CFDFC. In
this example, there are two cycles that constrain the throughput. Every node (i.e., a functional
unit of the dataflow circuit) is labeled with its combinational delay. Figure 5(a) shows a solution
with maximum throughput (Θ = 1) by only putting two-slot nontransparent buffers on the cycles,
thus satisfying the requirement to accommodate a single token and a single bubble on each cycle.
The cycle period P is then 25 and a cycle iteration takes 25 time units (Titer = P/Θ). Adding non-
transparent buffers and moving the existing buffers reduces the critical path while maintaining the
maximum throughput (Figure 5(b)). To prevent the topmost loop from stalling due to backpressure
from the noncyclic path, an extra buffer (in white) has been added to one of the paths. Since it is not
required to cut combinational paths, it can be implemented without adding any sequential delay
(i.e., as a transparent buffer that acts as a FIFO, matching in size the nontransparent buffer on the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:9

right). Constraining the system to work with P ≤ 8 requires the addition of nontransparent buffers
on the cycles, thus degrading the throughput. Figure 5(c) shows a configuration with two buffers
per cycle (Θ = 1/2) and optimal period (P = 6) for this throughput, with Titer = 12. Surprisingly,
under the constraint P ≤ 8, there is a more efficient configuration with lower throughput. The
solution is shown in Figure 5(d) with Θ = 1/3 and P = 3, resulting in nine time units per iteration.

Solution (a) is the optimum in terms of area. Solution (b) is the optimum in terms of performance
(Titer) that minimizes area. Finally, solution (d) is the optimum in performance under the constraint
P ≤ 8. The example shows the richness of solutions that can be explored in choice-free dataflow
systems by changing exclusively the buffer positions and sizing—we will rely on this property to
optimize the performance of our dataflow circuits.

3.3 MILP Model for Performance Optimization

We formulate our performance optimization model as a mixed-integer linear programming

(MILP) model that determines the channels where buffers need to be placed as well as the buffer
sizes. The model is based on the work of Bufistov et al. [3] for optimizing choice-free circuits—
here we adapt it to generic dataflow graphs. We first present the model for a single CFDFC; in
Section 3.4, we generalize our approach to multiple CFDFCs.

We class constants and variables of the MILP model into three groups: input constants (i.e.,
values given as input to the MILP), output variables (i.e., the solution of the buffer sizing problem),
and internal variables (i.e., intermediate values found by the MILP solver but of little consequence
to the user).
Input constants of the model.

• P (integer): Target clock period (CP) of the circuit.
• Pmax (integer): Upper bound on the CP of the circuit, which has to be at least as large as any

possible value of P.
• Bc (binary): Indicates whether channel c is a back edge (Bc = 1) of the dataflow graph.
• Du (real): Combinational delay of unit u.

Output variables of the model.

• Rc (binary): Indicates whether a sequential (nontransparent) buffer is present on channel c .
• Nc (integer): The number of slots of the buffer on channel c . The presence of a buffer implies

at least one slot (i.e., Rc ⇒ Nc > 0). However, Nc > 0 and Rc = 0 indicates that a transparent
buffer is present in the channel.

Internal variables of the model.

• Θ (real): Throughput of the CFDFC.

•
•
Θc (real): Average occupancy of channel c (token presence).

•
◦
Θc (real): Average emptiness of channel c (bubble presence).
• ru (real): Fluid retiming of tokens across unit u.

• t in
c (real): Arrival time at the the input of channel c (i.e., output of unit x , where x

c→ y).

• tout
c (real): Arrival time at the output of the channel c (i.e, input of unit y, where x

c→ y).

We now describe the constraints of the MILP, grouped into path, throughput, and buffer sizing
constraints.
Path constraints. These constraints ensure that the entire circuit meets the target CP. They are
therefore applied to the complete dataflow graph. For every channel c of the dataflow graph,

tout
c ≥ t in

c − Pmax · Rc , (6)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:10 L. Josipović et al.

Fig. 6. Path constraints of the MILP model. These constraints ensure that the dataflow circuit meets the
target CP by accumulating delays across channels and inserting buffers (indicated with Rc = 1) to break the
combinational path.

with tout
c ≥ 0. This constraint, depicted in Figure 6, propagates the combinational arrival time

at each channel. In case of the presence of a buffer (Rc = 1), the right term is guaranteed to be
negative and tout

c becomes zero, essentially disabling the further accumulation of delays through
this channel. The constraint requires an upper bound of the maximum cycle period (Pmax).

The following constraints model the propagation delay of each unitu of the dataflow graph with

a pair of input/output channels x
c1−→ u

c2−→ y:

P ≥ t in
c2
≥ tout

c1
+ Du . (7)

The leftmost constraint enforces all delays to meet the cycle period P. For simplicity, we assume
that channels and buffers have zero delays. Channel, buffer setup, and clock-to-q delays could be
easily incorporated into the model by adding the corresponding constants.

Throughput constraints. Our circuit construction guarantees that there is a single token on each
cyclic path of a CFDFC. We initially consider that this token is placed on the back edge—once
the buffers are assigned to the edges of the system, the throughput constraints will distribute
the token across the cycle edges accordingly. These constraints are only applied to the choice-free

circuit (CFDFC) obtained using the methodology described in Section 3.1. For every channelu
c→ v

in the CFDFC,
•
Θc = Bc + rv − ru (8)

Θ ≤
•
Θc /Rc . (9)

The first constraint is analogous to the equations of classical retiming [27]; in this case, the

variables are real instead of integers (i.e., fluid retiming) and
•
Θc represents the average number

of tokens in the channel at the steady state of the system. The second constraint indicates that
the system throughput is determined by the channel with a minimum average number of tokens
among all channels with a nontransparent buffer. This constraint can be easily linearized taking
into account that Rc is binary and Θ ≤ 1:

Θ ≤
•
Θc − Rc + 1. (10)

For Rc = 1 (i.e., the channel contains a nontransparent buffer), the throughput is limited by the

channel occupancy (i.e., Θ ≤
•
Θc). Otherwise (i.e., for Rc = 0), the throughput Θ is not constrained

by the channel since the largest possible throughput value is 1 (and the right side of the equation
will be greater or equal to 1).

Figure 7 demonstrates fluid token retiming based on the throughput and path constraints. The
path constraints determine the buffer placement to achieve the target period of P ≤ 3. The values

next to the buffers represent the token occupancies
•
Θc . They indicate that every channel of the

upper loop with a buffer will contain a token every one out of three clock cycles, whereas the
buffer in the bottom left channel will contain a token two out of three clock cycles. The values

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:11

Fig. 7. Token retiming with throughput and path constraints for P ≤ 3. The token from the middle channel
(left) is retimed during buffer assignment (right) and distributed in channels where the buffers are placed.

next to the units represent the retiming values r that indicate how much of the token must be

retimed from the initial position (i.e., the middle channel) to achieve the average occupancies
•
Θc .

All values that are equal to zero are omitted from the figure.
Buffer sizing constraints. Buffer sizing is essential for avoiding backpressure. It corresponds to
adding empty buffer slots, which do not affect circuit functionality. The average occupancy of
tokens and bubbles will determine the number of buffer slots at every channel of the CFDFC:

Nc =
•
Θc +

◦
Θc . (11)

The constraint for bubble occupancy is dual to that of token occupancy (and can be linearized
in the same manner); it ensures that each cycle has at least one bubble, thus avoiding deadlock:

Θ ≤
◦
Θc /Rc . (12)

Cost function. Subject to the path and the throughput constraints, we maximize throughput Θ for
a given CP P while accounting for the minimization of the total number of buffer slots in the
channels of the dataflow circuit:

max : Θ − λ ·
∑

c

Nc , (13)

where λ is a small coefficient that gives a lower priority to the minimization of buffer sizes. As al-
ready mentioned, the path constraints include the complete dataflow graph, whereas the through-
put constraints apply to the most frequently executed CFDFC.

In this work, without loss of generality, we focus on maximizing the throughput of the system.
The model that we have presented in this section could easily be employed with different cost
functions and optimization objectives (e.g., minimizing the CP or the buffer area cost under a
throughput constraint [3]).

3.4 Optimizing Multiple CFDFCs

The model that we have presented so far optimizes only the single, most frequently executed
CFDFC of the circuit. In this section, we extend our methodology to multiple CFDFCs.

We apply the ILP from Section 3.1 iteratively to extract one CFDFC after another based on
their respective execution frequencies. After finding the most frequently executed CFG cycle, we
update the execution frequencies by subtracting the execution values of the extracted CFG edges.
Applying the ILP on the CFG while considering only the remaining execution values extracts the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:12 L. Josipović et al.

Fig. 8. Extracting multiple CFDFCs. The ILP from Section 3.1 can be iteratively applied while updating the
execution frequencies of the CFG edges to extract one CFDFC after another. In the figure, the first extracted
cycle (and the CFDFC that it represents) executes 60 times. After subtracting this value from the execution
count of each corresponding CFG edge, we extract the next cycle of 40 iterations.

next cycle and its corresponding CFDFC based on its share in the runtime of the program. We
illustrate this approach in Figure 8.

It is important to note that our ILP extracts cycles in the order of their importance (i.e., based on
their fraction in the application runtime). We could also employ any algorithm for finding cycles in
a directed graph [21], yet this approach would require extracting all graph cycles and subsequently
sorting them based on their execution frequencies (by repeatedly identifying the most significant
cycle and then updating the execution frequencies of all remaining cycles). The fact that our ILP
simultaneously orders and extracts the cycles makes it possible to terminate the extraction as
soon as appropriate criteria have been met (e.g., no remaining edge has an execution frequency
above some threshold or the extracted cycles collectively represent a sufficient fraction of the
application runtime). As we will discuss in Section 6, having such criteria is of great importance
to limit the MILP runtime; moreover, the optimization of all CFDFCs is not always needed to
maximize performance.

Optimizing multiple CFDFCs requires the extension of the MILP from Section 3.3 to maximize
throughputs of all CFDFCs. For every additional CFDFC, the MILP includes an additional set of
throughput and buffer sizing constraints (i.e., Equations (8) through (11)). The cost function to
maximize system throughput considers a weighted sum of the individual throughputs Θ of all
extracted CFDFCs:

max :
∑

i

wi · Θi − λ ·
∑

c

Nc , (14)

where the weight wi of each throughput is proportional to the frequency of execution of each
CFDFC (i.e., an approximation of the runtime fraction of each CFDFC in the program profile).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:13

Fig. 9. An abstract model of a sequential (pipelined) unit.

4 MODELING COMPUTATIONAL UNITS AND IF-CONVERSION

The model that we have presented so far (as well as the model by Bufistov et al. [3] on which
our work is based) only accounts for combinational nodes (i.e., combinational dataflow units). In
this section, we extend the model to pipelined computational units and discuss how to apply it to
units with variable II and latency. We then use these insights to model if-conversion, a typical HLS
transformation.

4.1 Modeling Pipelined Units

To be able to handle cases such as the one in Figure 1, our MILP model needs to account for
pipelined units. For this purpose, we characterize a pipelined unit u using two classic parameters:
latency Lu and initiation interval IIu . Figure 9 depicts our model.

The pipelined unit is modeled as two combinational units, separated by a channel cu . The units
in and out are represented with the unit input and output delay, Din and Dout . The channel cu

contains a nontransparent buffer with Lu slots, as the latency of the unit corresponds to the number
of tokens the unit can hold. The delays Din and Dout participate in the path constraints of the MILP
(i.e., Equations (6) and (7)), like those of any other unit. The maximal operating frequency of the
unit, fu,max , can be neither modified nor optimized by the MILP, and hence we provide it directly
as a constraint on the target CP (i.e., 1/fu,max ≤ P). Unless this constraint cannot be met (i.e., the
MILP cannot find a feasible solution for the given target period), it has no impact on the buffer
placement and sizing.

The initiation interval of unit u puts a constraint on the average presence of tokens in channel
cu that cannot be greater than Lu/IIu . Thus, throughput constraints for channel cu can be written
as follows:

•
Θu = rout − rin (15)

and

Θ · Lu ≤
•
Θu ≤ Lu/IIu , (16)

where rin and rout are the corresponding retiming variables for the input and output combinational
units, in and out .

4.2 Modeling Variable Initiation Interval

The model from Section 4.1 assumes a constant latency Lu and a constant initiation interval IIu

for each computational unit. Yet, this may not always be the case—here we consider units with a
variable initiation interval (i.e., IIu = [IIu,min , IIu,max]). Typical examples of units that exhibit such
behavior are read and write ports that connect to memory through a load-store queue (LSQ) [22].
The role of the LSQ is to ensure that all memory accesses with dependencies are executed in the
correct order—based on the dependencies present in the program, the LSQ may issue and receive
data from the memory ports at different rates, hence changing their effective initiation interval.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:14 L. Josipović et al.

For instance, if a load has a read-after-write dependence with a previous store, the LSQ will return
its data only after the store completes; this effect will temporarily lower the rate with which the
load port issues data into the circuit, hence resulting in an increased II. However, if there are no
dependencies, the load port can issue data at a high rate (i.e., with a low II, ideally equal to 1).
Similarly, computational units with variable latency (which we discuss in detail in the following
section) may also exhibit variable II: a longer latency of one computation implies the stall of new
incoming data, thus temporarily increasing the unit II and, possibly, impacting the II of the entire
circuit. For simplicity, here we discuss separately the concepts of variable II and variable latency,
yet our technique is perfectly applicable to units that exhibit both of these properties.

Like any other sequential unit, units with variable II require the formulation of Equation (16),
which connects the unit II, IIu , to the CFDFC throughput (i.e., Θ ≤ 1/IIu). A higher IIu value results
in a tighter throughput constraint; hence, modeling a unit with an IIu value that is larger than the
II achieved during execution may conservatively constrain the throughput Θ. Consequently, the
resulting buffer configuration may be suboptimal and the achieved circuit performance may be
limited. Therefore, the question here is how to choose the appropriate value of IIu for Equation (16)
when the II of a unit is variable.

Consider the circuit in Figure 10, with the timing parameters of each unit listed under (a); all
units have fixed latencies, but the II of the multiplier varies between 1 and 2. If we include into the
MILP model the higher II, IImul,max = 2, it will constrain the CFDFC throughput to 1/2 and the
buffers will be sized accordingly—in this case, the capacity of the transparent buffer before the store
will be set to 3. Although this buffer capacity is sufficient to sustain the throughput of 1/2, it will
cause backpressure when the multiplier operates with a lower II, hence always (i.e., regardless of
the actual II that the multiplier achieves) constraining the throughput to 1/2. In contrast, optimizing
the circuit for IIu,min = 1 (and, consequently, the throughput of 1) will result in a larger buffer
capacity (here equal to 6)—the buffer will be fully utilized when the throughput is equal to 1 and
underutilized otherwise, but it will never limit the throughput and damage performance.

Given that our goal is to maximize throughput (and, consequently, performance), in Equa-
tion (16), we model each unit with its minimum initiation interval value, IIu,min . Our MILP model
from Section 3.3 remains unmodified by this enhancement.

4.3 Modeling Variable Latency

Our circuits may also contain variable-latency units: for instance, computational units that can
take a variable number of cycles to compute the result depending on the input data (e.g., variable-
latency adders [40] and multipliers [11, 31] that are optimized to compute the result quickly for the
majority of input data but prolong the execution time for a small subset of inputs, thus realizing
high performance on average) as well as load ports that wait a variable number of cycles for the
memory to return the requested data. As in the case of variable II, the modeled latency value may
have a significant impact on the circuit throughput and performance.

Consider the example in Figure 10, now with the parameters listed under (b), where now the mul-
tiplier latency ranges from one to four cycles. If the MILP model considers the minimum latency
of 1, the capacity of the transparent buffer before the store will not suffice to eliminate backpres-
sure when the multiplier latency is higher than 1. In contrast, if the model considers the maximum
latency of 4, the MILP will produce a larger buffer that will relieve backpressure for every possible
case, hence achieving the best possible performance.

The situation is different with the timing assumptions of bullet (c)—the variable-latency adder is
on a cyclic path and its latency may constrain the CFDFC throughput. This effect occurs because
there is always a single token on a cycle, as mentioned in Section 3.2; a long-latency unit on a cyclic

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:15

Fig. 10. Modeling variable II (case a) and variable latency (cases b and c). When a unit has variable II, it is
always desirable to model its best-case (i.e., lowest) II to achieve optimal buffer placement and, consequently,
best possible performance. When a unit has variable latency, its model depends on whether the unit lies on a
cyclic path; if so, it should be modeled with its minimum latency (so that it does not constrain throughput);
otherwise, it is should be modeled with its maximum latency.

path limits the rate with which the token can reenter the loop body, therefore lowering the system
throughput. Hence, considering the maximum latency value may create an overly conservative
throughput constraint and buffer placement, similar to the effect discussed in the previous section
(i.e, the resulting buffers will not be able to sustain higher throughput, achievable when the unit
latency is lower). Hence, when a unit is on a cyclic path of the CFDFC, it is desirable to consider
its minimal latency; the MILP will optimize the system for the largest achievable throughput and
place buffers accordingly.

Therefore, to maximize performance, we model the latency of a variable-latency unit
Lu = [Lu,min , Lu,max] in Equation (16) as follows: (1) if a unit is on a cyclic path of a CFDFC,
we consider its minimum latency, Lu,min , and (2) if a unit is on a noncyclic path, we consider its
maximum latency, Lu,max .

It is important to note that a unit may be on a cyclic path through one CFDFC but on a noncyclic
path of another (e.g., a loop-carried dependency of an innermost loop may not be on the cyclic path
through the outer loop). As each CFDFC has its own set of throughput constraints, independently
modeling its units based on Equation (16), each CFDFC can consider the appropriate latency in its
own unit constraint following the preceding rules to achieve the best possible throughput. If a unit
has both variable II and variable latency, we choose the II following the rules from Section 4.2 and
the latency following the rules described in this section—as suggested earlier, these decisions are
completely independent. Our approach analyzes each unit separately to make the best possible II

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:16 L. Josipović et al.

Fig. 11. Modeling if-conversion, implemented using a Select unit. The long-latency cycle (shown in red
dashed) through the Select will limit achievable throughput, even if this input is never selected by the unit;
hence, we omit this input from the model to place and size buffers for the best-case throughput.

and latency decision per unit and per CFDFC; therefore, it is naturally applicable to any number
of units in the dataflow graph.

The rules presented in this and the previous section could easily be adapted to different cost
functions and optimization objectives, discussed in Section 3.3. A possible modification would be to
consider average latencies and initiation intervals; such an approach may result in lower resources
(i.e., it may instantiate smaller buffers than the solutions we present here), but in contrast to our
approach, it would not guarantee optimal performance for every possible outcome.

4.4 Modeling If-Conversion

Compilers typically rely on optimizations such as if-conversion to convert conditional branches
into predicated instructions [38]; this transformation usually requires a dedicated instruction that
chooses one of the input values based on a condition (i.e., a Select instruction). This instruction
translates directly into the corresponding Select dataflow unit; it can be implemented as a multi-
plexer that outputs data as soon as the condition and the chosen input are available, whereas other
inputs are simply discarded upon (possibly late) arrival [8, 13].

The performance optimization model that we have discussed so far considers all operations
within a BB as choice-free units—all inputs must become available for the unit to trigger. This
model is not suitable for a Select unit, which needs only one of its inputs (i.e., the input chosen
by the condition) to trigger. If a Select is on a cycle and one of its inputs takes more cycles to
compute than the other, our model as described so far would assume the worst-case latency and
conservatively model throughput, even if the long-latency input may actually be discarded and the
computation can proceed early on. This is the case for the circuit in Figure 11: even if the multiplier
input is not selected, the MILP accounts for the long-latency cyclic path (shown in red dashed) and
limits the obtainable throughput, exactly as described in the previous section. In the rest of this
section, we further extend our model to avoid making conservative throughput assumptions in
the presence of a Select unit.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:17

It is interesting to note that the behavior of a Select unit corresponds to the behavior of a variable-
latency unit; yet, instead of a single unit with varying latency, as we discussed in Section 4.3,
the latency variability is now due to the different latencies of the two paths between the Fork
and the Select (i.e., the path through the multiplier and the path through the adder). In this case,
this variability cannot be resolved at unit level (i.e., adapting the timing parameters of the Select
unit would not impact the modeled latency of its incoming paths). Instead, we exclude from the
throughput constraints the input channel of the Select unit that is on the long-latency cycle, as
indicated in Figure 11; essentially, the model will assume that this input is never taken and the
best-case throughput will be computed accordingly.

To achieve the best possible throughput in the presence of a Select unit, we model the Select
unit inputs as follows: (1) we include into the throughput constraints each Select input channel
that is on a noncyclic path, as this latency will never compromise throughput; (2) if the Select has
a single input on a cyclic path, we exclude the corresponding input channel from the throughput
constraints; and (3) if the Select has both inputs on cyclic paths, we exclude the input channel
on the cycle with more sequential stages. This situation corresponds to the one in Figure 11. Ex-
cluding a channel from the throughput constraints (i.e., Equations (8) through (10)) corresponds

to predefining the token occupancy value of the channel
•
Θc to zero.

Note that this model produces optimal throughput regardless of which input is actually taken
during circuit execution, as the buffer sizes are determined based on the highest possible through-
put values—the produced buffering will support lower throughputs (potentially caused by the
slower input which our model ignored) as well. It is interesting to note that the same effect could
be achieved by handling the choices of the Select unit similar to the choices in the CFG graph—that
is, by decoupling a CFDFC with a Select unit into two choice-free graphs (with each graph consid-
ering only one of the Select inputs). However, this strategy would increase the model complexity
(by adding a new set of throughput constraints per input of each Select unit) while producing
equivalent results.

5 SCALABILITY

In this section, we discuss the runtime complexity of the MILP model described in Section 3.3 and
propose a technique to ensure scalability when optimizing complex circuits.

The ILP for cycle extraction operates on the CFG of the program, which usually covers a limited
number of BBs and control flow edges. Hence, this ILP is typically of low complexity and size
and it does not impact the overall algorithm runtime—we confirm experimentally this intuition
in Section 6. However, the MILP for performance optimization operates on the dataflow graph of
the program. While the throughput is optimized locally by applying the throughput constraints
on subsets of the circuits (i.e., the frequently executed CFDFCs), the relations for path constraints
(i.e., Equations (6) and (7)) extend on the entire dataflow graph—they need to ensure that the circuit
as a whole meets the target period. The MILP size and runtime are therefore dependent on the
overall number of channels and units of the dataflow circuit, which can result in large runtimes
when optimizing complex designs.

A possible method to limit the MILP runtime of large applications is to split the dataflow graph
into disjoint sets of CFDFCs (i.e., into CFDFCs obtained from strongly connected components of
the CFG, which do not share any BBs or edges among each other) and to optimize them separately

using the MILP. This procedure maximizes the throughput Θ and satisfies the period constraint
P within the CFDFCs of each disjoint set. Afterward, we need to ensure that the complete circuit

satisfies the period constraint. Hence, we apply the path constraints (i.e., Equations (6) and (7))
on the channels and units that were not covered by any of the CFDFC sets. The buffer placement

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:18 L. Josipović et al.

Fig. 12. Splitting the circuit into disjoint CFDFC sets to ensure MILP scalability. This circuit represented by
the CFG in the figure consists of three CFDFCs that can be grouped into two disjoint sets. Applying the
MILP on each set separately reduces the size of each MILP and decreases overall runtime.

solutions (i.e., the values of Rc) from the CFDFC set optimization are now set as constants to
ensure that the combinational paths across set boundaries are appropriately handled. The channels
optimized in this step do not need to be subject to any throughput constraints as they are of
minimal importance for the overall performance (i.e., they usually belong to paths executed only
a single time as the circuit runs); the sizes of all buffers correspondingly inserted can therefore be
set to 1 (i.e., Nc = 1). The cost function of this final step minimizes the number of inserted buffers:

min :
∑

c

Rc . (17)

Figure 12 illustrates this approach. The dataflow circuit represented by this CFG contains three
CFDFCs—two of them share BBs and need to be optimized together. The third CFDFC (correspond-
ing to BB4 in the figure) can be optimized separately. After solving the MILP for each of the two
independent CFDFC sets, their throughput Θ will be maximized and each set will meet the target
period P. To ensure that the complete circuit respects P, we subsequently need to optimize the
remaining parts of the dataflow circuit (in this case, the channels within BB0 and BB5, as well as
those corresponding to edges e1, e6, and e8) using only the path constraints.

In summary, applying the MILP on disjoint CFDFC sets reduces the problem complexity while
satisfying the desired CP and achieving the same CFDFC throughput as the global MILP solution.
We will show the effectiveness of this approach in Section 6.

6 EVALUATION

In this section, we demonstrate the ability of our optimization technique to maximize throughput
under a given CP constraint. First, we compare our optimization approach with a naive buffer
placement strategy. We then discuss the runtime of our performance optimization algorithm and
present methods to improve it. Next, we investigate the ability of our technique to handle ir-
regular and variable events. We explore the effectiveness of the CP constraint and compare the
pipelining capabilities of our circuits with those produced by a standard HLS tool based on static
scheduling.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:19

Fig. 13. Dynamatic compiler flow, extended with the performance optimization tool presented in this work.
The LLVM IR profiler determines the execution frequencies of the CFG edges. The buffer placement tool uses
these frequencies to identify CFDFCs, as discussed in Section 3.1, and inserts buffers to optimize performance
using the MILP from Section 3.3.

6.1 Methodology

Our performance optimization model is fully integrated into Dynamatic, an open source HLS
tool that produces synchronous dataflow circuits out of C code. The complete tool, with
our modifications as well as the benchmarks we explore in this section, is publicly available
at dynamatic.epfl.ch. Our modifications to the Dynamatic compiler are illustrated in Figure 13.

We profile the intermediate representation of the benchmarks to obtain the execution frequen-
cies of the CFG edges—we insert counters into the IR code to count the control flow decisions
taken in each executed BB and annotate the CFG with the obtained counts. After the IR has been
transformed into a dataflow circuit, we use the information on execution frequencies to identify
the CFDFCs using the ILP from Section 3.1. We then apply the MILP from Section 3.3 to determine
the buffer placement and sizes that satisfy the target CP and maximize the loop throughputs—we
employ the cost function from Equation (14). The weights of each throughput term are propor-
tional to the runtime fraction of the corresponding CFDFC in the program profile and the number
of units it contains (i.e., for CFDFC i , wi = unitsi · freq

i
/freqtot). We choose the constant value of

λ = 10−5 to account for the minimization of buffer sizes. The MILP relies on static timing infor-
mation about the unit delays—we consider exclusively the datapath of each unit. We present our
results for two target periods: 4 ns and 3 ns—in the rest of this section, we denote the corresponding
results as MILP 4 and MILP 3.

To evaluate our technique, we use ModelSim to measure throughput (represented as the average
loop initiation interval, I I = 1/Θ) and to verify functional correctness. We target a Xilinx Kintex-7
FPGA and use Vivado to measure the delays of the units. We obtain the CP and the resource usage
after placement and routing. We use the CBC mixed-integer programming solver [9] and measure
its runtime on an Intel Core i7-8550U CPU (i.e., a standard consumer laptop) at 1.80 GHz.

6.2 Benchmarks

We explore various kernels obtained from the literature [26, 33] and the PolyBench suite [32]. The
benchmarks we consider contain pipelined computational units and exhibit different loop prop-
erties and organizations, as listed in Table 1: (1) Sumi3 is the example kernel from Figure 1(c).
FIR (Finite Impulse Response), MatVec (Matrix-Vector Multiplication), and BiCG (BiCGStab Lin-
ear Solver) are regular kernels implemented as a single loop or loop nest. IIR (Infinite Impulse
Response) and Cordic (Coordinate Rotation DIgital Computer) have loop-carried dependencies that
take multiple cycles to compute and therefore limit the achievable loop initiation interval. Covar

and Covar (f) implement the integer and floating point version of the covariance computation,
with and without multiple-cycle loop-carried dependencies, respectively. These two benchmarks

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

dynamatic.epfl.ch

4:20 L. Josipović et al.

Table 1. Benchmark Characteristics: Their Set and CFDFC Count, the Main Property of the
Loops That They Contain, and the Total Number of Dataflow Units and channels in the

Corresponding Dataflow Circuit (Prior to Buffer Insertion)

Benchmark Sets CFDFCs Property Units Channels

Sumi3 1 1 Regular 40 55
Fir 1 1 Regular 43 59

MatVec 1 2 Regular 80 113
BiCG 1 2 Regular 91 136

IIR 1 1 Loop-carried dep. 59 85
Cordic 1 1 Loop-carried dep. 91 129
Covar 3 7 Regular 262 378

Covar (f) 3 7 Loop-carried dep. 262 378
Gemver 4 7 Regular 316 483

CDiv 1 2 Conditional execution 135 201

as well as Gemver contain multiple loop nests (i.e., multiple CFDFC sets), as indicated in the table.
Finally, CDiv calculates a complex quotient of complex numbers—the loop contains a noninlined
if-else condition (i.e., it is implemented as two CFDFCs, similar to the example in Figure 8); we
assume a data distribution where the if-condition is taken in 55% of the total loop iterations.

6.3 Comparison with Naive Buffer Placement

We demonstrate the performance superiority of our optimized circuits over equivalent designs
with buffers placed naively, based on an existing heuristic [23] that cuts every combinational cycle
with a single buffer and does not place any FIFOs into the designs.

Tables 2 and 3 show our main results. The circuits produced using the naive strategy (i.e., Naive)
qualitatively correspond to the circuit in Figure 1(a): they contain the minimal number of buffers
to create functional circuits (i.e., circuits with no combinational loops), but there is no way to
control the critical path and backpressure significantly lowers throughput. In contrast, the designs
optimized using our technique (i.e., MILP 4 and MILP 3) are able to achieve maximum throughput
(i.e., the best possible loop II) of the innermost loops. The resource increase (shown in Table 3) is due
to the additional buffers that our technique employ, as indicated under Buffers. The designs with
high throughput require transparent buffers of larger sizes (i.e., FIFOs) to maintain the token rate;
those with a lower target CP need more nontransparent buffers to cut the combinational paths but
use smaller buffer sizes due to the lowered throughput (consider, for instance, the buffer sizes in the
MILP 4 and MILP 3 solutions of Sumi3). Setting a low target CP degrades throughput (as it requires
the insertion of multiple nontransparent buffers on cyclic paths) and, consequently, performance,
in all applications but the IIR, Covar, and Covar (f). In these applications, the throughput is dictated
by the pipelined units on the cyclic paths and not influenced by the additional buffers, so the total
execution time benefits from the lowered CP. The discrepancies between the target and achieved
CP are largely due to the timing variations caused by FPGA place-and-route. Our timing model
could be further refined for greater accuracy without any qualitative change (e.g., by including
setup delays of the buffers and considering the impact of control paths).

6.4 MILP Runtime Analysis

The rightmost column of Table 2 reports the runtime of the MILP for performance optimization.
In all of our benchmarks, the runtime of the ILP for extracting the CFDFC was negligible (i.e.,
less than 1 second) in comparison to the MILP runtime. It is evident from the table that the MILP

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:21

Table 2. Timing of Dataflow Circuits Optimized with Our Strategy, MILP 4 and MILP 3, with a
Target CP of 4 ns and 3 ns, Respectively, Compared to a Naive Buffer Placement (Naive)

Benchmark Method CP (ns) II= 1/Θ
Execution

Time (μs)
Speedup

MILP

Runtime (s)

Sumi3
Naive 4.3 10 43.0 − −

MILP 4 4 1 4.1 10.6× 0.1
MILP 3 3.5 2 7.1 6.1× 1.2

FIR
Naive 4.3 6 25.8 − −

MILP 4 3.9 1 4.0 6.5× 0.1
MILP 3 3.5 2 7.0 3.7× 0.8

MatVec
Naive 5.9 6 31.9 − −

MILP 4 4.8 1 4.5 7.1× 15.7
MILP 3 3.9 2 7.3 4.4× 25.0

BiCG
Naive 6.0 6 32.4 − −

MILP 4 5.9 1 6.4 5.0× 1,328.4
MILP 3 4.1 2 7.7 4.2× 2,195.5

IIR
Naive 5.9 6 35.4 − −

MILP 4 3.9 5 19.5 1.8× 1.1
MILP 3 3.4 5 17.0 2.1× 20.1

Cordic
Naive 5.8 20 116.1 − −

MILP 4 4.5 20 87.8 1.3× 8.1
MILP 3 5 20 97.6 1.2× 8.1

Covar
Naive 6.8 2, 4, 4 698.5 − −

MILP 4 6.5 1, 1, 1 197.5 3.5× 3,600
MILP 3 5.6 2, 2, 2 182.9 3.8× 3,600

Covar (f)
Naive 7.1 11, 11, 17 1,833.6 − −

MILP 4 7.2 11, 1, 11 1,057.2 1.7× 3,600
MILP 3 5.4 11, 2, 11 865.7 2.1× 3,600

Gemver
Naive 7.7 6, 10, 2, 10 180.7 − −

MILP 4 7.4 1, 1, 1, 1 23.5 7.7× 3,600
MILP 3 5.5 2, 2, 2, 2 31.3 5.8× 3,600

CDiv
Naive 10.5 40, 40 787.9 − −

MILP 4 7.5 3, 3 23.3 33.8× 25.4
MILP 3 7.2 5, 5 36.8 21.4× 153.9

Under II, we indicate the initiation intervals of the innermost loops. Although the MILP always finds a solution, the
achieved CP is often larger than the target CP, due to the unavoidable approximation of the pre-synthesis and
pre-place-and-route timing model. The rightmost column indicates the MILP runtime (the value of 3,600 indicates
a timeout of 1 hour).

runtime significantly depends on the size and complexity of the application—larger applications
need a prolonged MILP runtime because the MILP covers the units and channels of the entire
dataflow graph, as discussed in Section 5. It is also interesting to note that the runtime depends
on the optimization constraints (i.e., the target CP) and the achievable throughput—typically, the
inability to achieve the best possible throughput increases the MILP runtime (i.e., MILP 3 solutions
typically require a longer runtime than the corresponding higher-throughput MILP 4 solutions).

MILP solvers tend to find an acceptable solution (i.e., a near-optimal cost function value) early
on and then spend a long time attempting to improve it. This effect is evident from Figure 14(a),
which shows the obtained cost function value (i.e., the sum of the weighted CFDFC throughputs,
as given in Equation (14)), relative to the optimal cost function value for a given target CP. The
graph depicts only the results of the benchmarks that take longer than 1 second to converge to the
optimum value of 1. Although it is clear that the convergence time is lower than the overall MILP

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:22 L. Josipović et al.

Table 3. Resources (i.e., LUTs, FFs, and DSPs) of Dataflow Circuits Optimized with Our
Strategy, MILP 4 and MILP 3, with a Target CP of 4 ns and 3 ns, Respectively, Compared to a

Naive Buffer Placement (Naive)

Benchmark Method LUTs FFs DSPs Buffers

Sumi3
Naive 287 331 6 3 N2

MILP 4 402 (+40%) 403 (+22%) 6 8 N1-2, T4, 2 T9
MILP 3 413 (+44%) 522 (+58%) 6 10 N1-2, 2 T1-2, 2 T5

FIR
Naive 380 384 3 3 N2

MILP 4 428 (+13%) 504 (+31%) 3 5 N1-2, 2 T6-7
MILP 3 628 (+65%) 688 (+79%) 3 7 N1-2, 2 T4-5

MatVec
Naive 626 517 3 6 N2

MILP 4 808 (+29%) 724 (+40%) 3 11 N1-2, 5 T3-8
MILP 3 947 (+51%) 849 (+64%) 3 16 N1-2, N4, 6 T1-3

BiCG
Naive 831 758 6 6 N2

MILP 4 1,144 (+38%) 1,157 (+53%) 6 16 N1-3, 7 T1-3, 4 T5-7
MILP 3 1,140 (+37%) 1,255 (+66%) 6 14 N1-2, 2 N4-5, 8 T1-3

IIR
Naive 648 663 6 5 N2

MILP 4 745 (+15%) 1,096 (+65%) 6 10 N1-2, 6 T1-2
MILP 3 772 (+19%) 1,094 (+65%) 6 12 N1-2, 5 T1-2

Cordic
Naive 1,950 2,754 24 7 N2

MILP 4 2,075 (+6%) 3,086 (+12%) 24 16 N1-2, 9 T1-2
MILP 3 2,145 (+10%) 3,016 (+10%) 24 17 N1-2, 9 T1-2

Covar
Naive 2,347 1,801 3 23 N2

MILP 4 3,882 (+65%) 3,024 (+68%) 3 44 N1-3, 16 T1-3, 6 T4-19
MILP 3 3,953 (+68%) 3,388 (+88%) 3 54 N1-3, 20 T1-3, 3 N4-9

Covar (f)
Naive 3,493 3,795 9 23 N2

MILP 4 4,298 (+23%) 4,727 (+25%) 9 43 N1-3, 18 T1-3, 3 N6-10, 4 T6-20
MILP 3 4,558 (+30%) 5,196 (+37%) 9 46 N1-3, 24 T1-3, 2 N5-6, 6 T4-13

Gemver
Naive 3,098 2,903 18 30 N2

MILP 4 4,076 (+32%) 3,990 (+37%) 18 60 N1-3, 7 T1-3, 8 N5-12, 5 T4-10
MILP 3 4,066 (+31%) 4,353 (+50%) 18 58 N1-3, 29 T1-3, 3 T4-7, 2 N5-7

CDiv
Naive 14,461 14,081 18 6 N2

MILP 4 15,197 (+5%) 14,780 (+5%) 18 11 N1, 6 T1-2, 8 T11-26, 8 N13-26
MILP 3 15,164 (+5%) 14,946 (+6%) 18 12 N1, 8 T1, 16 T6-16

The types of instantiated buffers are shown under Buffers, where N denotes that a buffer is nontransparent and T

denotes that a buffer is transparent (e.g., 3 N2-4 indicates the usage of three nontransparent buffers with two to
four slots).

runtime reported in Table 2, it is still nonnegligible in certain cases (e.g., Gemver requires at least
30 minutes of MILP runtime to find a good solution).

We investigate the effectiveness of the heuristic from Section 5 to reduce the MILP runtime.
We organize the CFDFCs into independent sets and employ the MILP on each set separately. The
results we obtain are plotted in Figure 14(b), which compares the obtained cost function result to
the optimal result, exactly as in the previous graph. Contrasting the two graphs indicates that this
method successfully lowers the time needed for the MILP to converge.

The two versions of the MILP that we have considered so far optimized all CFDFCs of the pro-
gram. Our next experiment is based on the intuition that some CFDFCs do not contribute signifi-
cantly to the execution time of the application (e.g., the outermost loop of a nested loop)—they can
be removed from the cost function without a notable performance penalty. We demonstrate this
effect in Figure 14(c), where we compare the cost value of the MILP that optimizes the throughput

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:23

Fig. 14. Runtime comparison of the full MILP with the MILP applied on individual CFDFC sets, described
in Section 5.

of a single, most important CFDFC per set, with the optimal MILP cost value, as in the previous
graphs. This MILP converges rapidly and, in most cases, obtains a near-optimal value, as the re-
moved CFDFCs contributed to the cost function with a negligible weight factor. However, some
applications such as CDiv suffer from this simplification: this application has two CFDFCs with
similar contributions (i.e., 55% and 45%) to execution time; optimizing the throughput of only one
CFDFC lowers the obtainable cost function value and, consequently, application performance.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:24 L. Josipović et al.

Fig. 15. Comparison of solutions obtained by applying the MILP on individual CFDFC sets with the optimal
MILP solutions (i.e., solutions obtained by employing the MILP on the entire circuits).

The results of our runtime analysis can therefore be summarized as follows: (1) it seems possible
to rely on timeouts to find good solutions in reasonable runtime, (2) the heuristic from Section 5
helps in further reducing the MILP runtime, and (3) not all CFDFCs play an important role in
achievable application performance. It is possible to simplify the MILP to account for this fact and
to further reduce its runtime at a negligible penalty.

6.5 Comparison of MILP Solutions

To complement our runtime analysis from the previous section, we evaluate the quality of solutions
obtained in the following manner: (1) we choose a timeout of 1 minute to terminate the MILP, (2) we
split the CFDFCs into sets to employ the heuristic from Section 5, and (3) in the cost function of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:25

Table 4. Irregular Benchmark Characteristics: Their Set and CFDFC Count, the Main
Property of the Loops That They Contain, and the Total Number of Dataflow Units and

channels in the Corresponding Dataflow Circuit (Prior to Buffer Insertion)

Benchmark Sets CFDFCs Property Units Channels

Histogram 1 1 Irregular memory accesses 51 70
Matrix Power 1 2 Irregular memory accesses 81 110

If loop add 1 1 Irregular control flow 46 64
If loop mul 1 1 Irregular control flow 46 64

each set, we include all CFDFCs, starting from the one with the highest weight, until there is at least
an order of magnitude difference in the cost term weight between the last one included and the first
one not included. This ensures that the most relevant CFDFCs of each set are optimized (e.g., the
innermost loops of our benchmarks; in CDiv, this approach includes the throughput optimization
of both the if and the else branch).

Figure 15 shows the cycle count, total execution time, and resource consumption of the solu-
tions obtained in such a manner, relative to the optimal MILP solutions from Tables 2 and 3. In
applications that have a single CFDFC per set, the obtained cycle count is equal to the optimal
because our heuristic covers the entire application; in others (i.e., applications with nested loops),
the count slightly increases because the throughput of the outer loops is not optimized. The total
execution time varies due to the changes in obtained frequency (largely caused by FPGA place-
and-route, as discussed earlier). In most cases, these solutions require fewer resources than the
optimal MILP solutions—as the throughputs of certain loops are not optimized, fewer FIFOs are
instantiated. All of these variabilities are expected and in an acceptable range for the significant
MILP runtime reduction that this heuristic approach offers.

In summary, to easily exploit different runtime and solution tradeoffs, Dynamatic currently pro-
vides the following optimization options: (1) solving a single and complete MILP on the entire
dataflow graph, (2) decoupling the graph into independent sets where the MILP is applied sepa-
rately, and (3) decoupling the graph while optimizing only the most relevant loops (as described in
this section). The default compiler option is (3), as it achieves near-optimal results at an extremely
affordable runtime; the user can optionally trade off runtime and result quality by enabling one of
the other optimization options using an intuitive directive-based environment. The appropriate op-
timizations and analysis (e.g., decoupling the graph and analyzing the performance impact of each
loop) are then performed automatically by the compiler, without requiring any user modifications.

6.6 Variable Latency, II, and If-Conversion

In this section, we investigate the effectiveness of our method to model units with variable latency
and II, as well as if-conversion. The benchmarks we evaluate, whose properties are summarized in
Table 4, exhibit data-dependent and variable behavior: Histogram and Matrix Power have memory
access patterns that cannot be determined at compile time and hence require an LSQ at the mem-
ory interface; the LSQ exhibits variable latency and II depending on the runtime-determined data
dependencies. If loop add and If loop mul have a potential dependency across loop iterations; the
data to send to the following iteration is selected using a Select unit based on a data-dependent
condition, determined during program execution. These kernels are typical examples of situations
where dataflow circuits excel in contrast to statically scheduled HLS circuits [23].

We follow the rules from Sections 4.2, 4.3, and 4.4 to model the behavior of these kernels
and compare them to the same kernels where buffers are placed naively. Our results are shown
in Table 5. As the average II and execution time in all kernels depend on the input data, we

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:26 L. Josipović et al.

Table 5. Timing and Resources of Kernels That Contain Computational Units with Variable Latency
and II, as Well as If-Conversion

Benchmark Method
CP
(ns)

II = 1/Θ
Execution
Time (μs)

Speedup LUTs FFs DSPs
MILP

runtime (s)

Histogram
Naive 6.1 2.0–12.0 12.2–73.2 − 16,627 3,529 2 −

MILP 4 6.3 1.0–12.0 6.4–75.6 1.9−1.0× 16,879 3,562 2 0.1
Matrix
Power

Naive 6.0 3.5–11.7 8.1–26.7 − 16,870 3,696 5 −
MILP 4 6.2 2.0–11.5 4.9–27.2 1.7−1.0× 16,955 3,744 5 23.2

If loop add
Naive 4.9 12.0–20.0 58.8–98.0 − 903 1,284 4 −

MILP 4 5.0 1.0–10.0 5.1–50.1 11.6−2.0× 960 1,318 4 0.2

If loop mul
Naive 5.0 12.0–16.0 60.0–80.0 − 858 1,091 5 −

MILP 4 5.2 1.0–6.0 5.3–31.3 11.4−2.6× 892 1,127 5 0.2

We compare kernels optimized with our strategy (MILP 4) to those with a naive buffer placement (Naive). The II and
execution time are shown as a range from the best-case to the worst-case behavior, as determined by data dependencies.
The rightmost column indicates the MILP runtime.

Fig. 16. Speedup of the optimized kernels with respect to the naive kernels for varying data and control
dependencies. (a) We change the number of iterations between dependent read and write accesses. (b) We
change the percentage of short loop iterations (i.e., the percentage of loop iterations where the long-latency
if-condition is not taken).

indicate these values as a range from their minimum to their maximum value. In the kernels
with the LSQ, the best-case scenario (i.e., with the smallest II and execution time) corresponds
to a situation where there are no RAW dependencies among loop iterations; in the kernels with
the Select unit, the same is achieved when there are no loop-carried dependencies. The other
extreme is obtained when every pair of loop iterations has a RAW dependency and a loop-carried
dependency, respectively. All other possible data points fall in the middle of the shown ranges.

In Figure 16, we show the speedup (i.e., execution time ratio) of the optimized kernels with
respect to the naive kernels for a varying number of data or control dependencies (i.e., the data
points that are within the execution time range shown in Table 5). In Figure 16(a), we explore
the execution time of Histogram and Matrix Power for a varying number of iterations between
dependent read and write accesses (e.g., distance 2 indicates that a load reads a value that is stored
into memory two iterations ago). In Figure 16(b), we explore If loop add and If loop mul while
changing the percentage of short loop iterations—that is, the iterations where the if-condition is
not taken and there is no loop-carried dependency.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:27

Table 6. Exploration of the Effectiveness of the CP Constraint on a Tree of
Combinational Adders

Target

CP (ns)

Achieved

CP (ns)

II =

1/Θ
Execution

Time (μs)
LUTs FFs

− 9.1 2 15.7 1,578 1,665
8 7.7 1 7.7 1,632 1,742
6 5.7 1 5.7 1,661 1,810
4 4.1 1 4.1 1,853 2,084
3 3.6 2 7.2 2,188 2,696

As Table 5 and Figure 16 illustrate, the naive technique achieves only limited pipelining, whereas
the kernels optimized with our approach are able to achieve the highest possible throughput. In
these examples, the achievable throughput is variable and dependent on the actual data depen-
dencies: when a large number of dependencies is present, the II increases to honor them; still, the
optimized kernels typically achieve higher throughput than the naive kernels, which suffer from
backpressure and suboptimal buffering even in those cases. As the number of dependencies de-
creases (i.e., the iteration distance between RAWs or the percentage of short iterations grows), the
kernels become more pipelineable; the optimized designs benefit from the appropriate buffering to
achieve better performance and larger speedups. When there are no dependencies, all optimized
kernels achieve the best possible II. Although the techniques for ensuring scalability, presented
in Section 5 and analyzed in Section 6.4, are generally applicable in benchmarks with irregular
and variable behavior, they are not required in the explored benchmarks, as the MILP runtime is
already low (as reported in the rightmost column of Table 5).

The resource trends in Table 5 follow the ones we discussed in Section 6.3 and depend on the
number and the capacity of the inserted buffers; the overheads of our technique are minor and
probably acceptable for the significant performance benefits, which indicates that our technique
is critical to truly capture the variable and dynamic behavior of dataflow circuits.

6.7 Effectiveness of the CP Constraint

In this section, we further explore the capabilities of our model to control the critical path. We
analyze the effects of the CP constraint on an unrolled accumulator, implemented as a binary tree
of adders with 16 inputs; this example gives more room for CP exploration than the benchmarks
from the previous section. We present the results in Table 6. The naively obtained CP corresponds
to the combinational path through the entire adder tree. Lowering the constraint inserts buffers
between different tree stages. Although the achieved CP tracks well the constraint in most cases,
the maximum frequency cannot be reached. This effect is most likely due to the control paths that
are not included in our timing model and become dominant with tighter CP constraints. Our future
work will refine the timing model to account for these effects as well.

6.8 Throughput Comparison with Statically Scheduled HLS

In the previous sections, we have shown that our performance optimization technique effectively
lowers the II (i.e., maximizes throughput) and increases dataflow circuit performance in compari-
son to naively buffered dataflow circuits. In this section, we compare the pipelining capabilities of
our approach with that of a standard statically scheduled HLS tool.

We synthesized the benchmarks from Sections 6.3 and 6.6 with Vivado HLS while employing
the pipelining directive in the innermost loops. The tool optimizes the synthesized circuits for a
minimal II, hence qualitatively matching the strategy of our performance optimizer. We employ

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:28 L. Josipović et al.

Table 7. Throughput Comparison with Static HLS (i.e., Pipelined Vivado HLS Designs)

Benchmark Property Naive II MILP 4 II Static II

Sumi3 Regular 10 1 1
Fir Regular 6 1 1

MatVec Regular 6 1 1
BiCG Regular 6 1 1

IIR Loop-carried dep. 6 5 6
Cordic Loop-carried dep. 20 20 22
Covar Regular 2, 4, 4 1, 1, 1 1, 1, 1

Covar (f) Loop-carried dep. 11, 11, 17 11, 1, 11 10, 1, 10
Gemver Regular 6, 10, 2, 10 1, 1, 1, 1 1, 1, 1, 1

CDiv Conditional execution 40, 40 3, 3 1
Histogram Irregular memory accesses 2−12 1−12 13

Matrix Power Irregular memory accesses 3.5−11.7 2−11.5 13
If loop add Irregular control flow 12−20 1−10 10
If loop mul Irregular control flow 12−16 1−6 7

The Property column summarizes the relevant loop property. Columns Naive II and MILP 4 II repeat the results
from Tables 2 and 5; here we compare them to the corresponding static HLS solutions.

the same arithmetic units and RAM memory interfaces as in our dataflow circuits; therefore, we
can directly compare the achieved IIs.

Table 7 summarizes the loop IIs of naively optimized dataflow circuits (Naive design points from
Tables 2 and 5), dataflow circuits optimized with our MILP (MILP 4 design points from Tables 2
and 5, with a target CP of 4 ns), and Vivado HLS points for the same target CP of 4 ns (indicated
as Static in this table). In most regular benchmarks, the II of the MILP 4 designs matches that
of the static designs. Benchmarks with a long-latency loop-carried dependence exhibit a minor
discrepancy in II due to the differences in the timing models of the two HLS approaches: in IIR

and Cordic, Vivado HLS inserts additional registers on the long-latency critical loops, whereas our
approach does not; the exact opposite happens in Covar (f). The II difference in CDiv is due to
a difference in the HLS compilation process: while Vivado HLS inlines the if-else condition and
achieves a single loop body, pipelineable with II=1, Dynamatic keeps the if-else structure of the
CFG, as shown in Figure 8; the corresponding dataflow circuit contains restrictive synchronization
logic that prevents complete loop pipelining. This effect is due to the dataflow circuit construction
strategy of Dynamatic, detailed in prior work [23], and completely orthogonal to our contribution.

Our performance optimization strategy enables us to fully benefit from the flexibility of dynamic
scheduling in irregular benchmarks (Histogram, Matrix Power, If loop add, and If loop mul); as
discussed before, the corresponding dataflow circuits are perfectly pipelined thanks to our strategy
and their II varies with the actual data and control decisions. In contrast, static scheduling makes
conservative assumptions on data and control dependencies, thus always resulting in a high II and
low performance.

We demonstrated in Tables 2 and 5 that our dataflow circuits do not always meet the target
CP; in contrast, Vivado HLS designs successfully achieve the target of 4 ns in all explored cases.
As suggested before, this issue is not fundamental for our approach; just like in Vivado HLS, our
timing models could be further refined to account for backend particularities of FPGA synthesis,
placement, and routing. Dataflow circuits exhibit notable resource overheads compared to the cor-
responding static solutions: in benchmarks that do not require an LSQ at the memory interface
(i.e., all benchmarks apart from Histogram and Matrix Power), we measured an average increase

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:29

of 5× in LUT utilization and 2.8× in FF utilization. These values further increase in benchmarks
that use an LSQ due to its architectural complexity: Histogram requires 16.9× LUTs and 4× FFs,
and Matrix Power requires 13.1× LUTs and 2.8× FFs of the corresponding static solutions. These
observations are orthogonal to our contribution (i.e., providing a systematic methodology to opti-
mize dataflow circuit performance) and consistent with previous findings; we refer the interested
reader to prior work [22–24] for a detailed discussion on the area-performance tradeoffs of static
and dynamic scheduling.

In summary, all of these results point to the effectiveness of our performance optimization strat-
egy: in regular benchmarks, our pipelining capabilities qualitatively correspond to those of a state-
of-the-art HLS tool, whereas in irregular benchmarks, our dataflow circuits achieve flexible high-
throughput pipelines that outperform their static counterparts.

7 RELATED WORK

In HLS, timing optimizations are crucial for achieving high-performance circuits. In standard, stat-
ically scheduled HLS, such optimizations are typically performed in conjunction with modulo
scheduling [5, 36, 44]: the aim is to create pipelines with the best possible loop initiation inter-
vals under the given clock and resource constraints. Dataflow circuits [2, 23] are fundamentally
different—their schedules are not predetermined at compile time but devised as the circuit runs. Yet,
as in standard HLS, the ultimate goal is to create timing-efficient, high-throughput pipelines—we
investigate this objective in this work.

Latency-insensitive protocols [7, 14] have been extensively used to create synchronous and
asynchronous dataflow circuits; their timing properties can be analyzed using Petri net the-
ory [3, 4, 34, 35]. Several approaches in asynchronous dataflow design have explored slack match-
ing (i.e., adding pipeline buffers to prevent stalls). Venkataramani and Goldstein [39] present a
heuristic to avoid performance bottlenecks by inserting buffers to balance reconverging paths in
asynchronous circuits. Najibi and Beerel [30] describe slack matching for asynchronous circuits
with conditional computation and communication, where the conditions correspond to different
circuit operation modes; they employ a MILP based on Markov chains, a wide class of Petri nets, to
balance asynchronous pipelines while reducing the number of slack-matching buffers. In contrast
to these works, our model considers retiming and slack matching simultaneously—we target syn-

chronous dataflow circuits, so the CP must be optimized in conjunction with the throughput. Fur-
thermore, our method accepts generic control flow schemes that commonly appear in high-level
languages (e.g., nested loops) and accounts for typical HLS features (e.g., pipelined computational
units and if-convertible control flow).

Standard HLS tools support task-level pipelining (referred to as dataflow optimization [42]),
which allows functions and loops to overlap in execution to increase throughput and concurrency.
The tasks are connected via channels, implemented as ping-pong buffers or FIFOs, that allow
the consumer function or loop to start operation before the producer task has completed. The
buffers are typically sized in a conservative manner so that they have the capacity to hold all data
exchanged between tasks. Task-level pipelining is usually applicable only to tasks that do not
have bypass, feedback, or conditionals between each other. In our work, we explore finer-grain
dataflow design (i.e., scheduling individual loop and function datapaths); as we have demonstrated
in our results, our approach successfully supports cyclic behavior and conditionals and is able to
compute the required FIFO sizes even in those cases. Other HLS efforts also explore coarse-grain
dataflow and the related buffer sizing problems. Cheng and Wawrzynek [12] describe sequential
programs as networks of processes in which hardware accelerators exchange data via FIFOs. To
avoid deadlock, they analyze the static schedule of each accelerator and size the FIFOs accordingly.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

4:30 L. Josipović et al.

Yet, this approach does not always provide a global optimal solution for cases with multiple
deadlock-causing cycles. Govindarajan et al. [17] target large-grain, multi-rate actor graphs and
present an approach to minimize buffer storage while executing at the optimal computation rate.
In contrast to our contribution, this approach does not consider constraining the CP and it does
not guarantee the optimality of the buffer placement.

8 CONCLUSION

In this work, we present a performance optimization model for dataflow circuits obtained out
of C code. Our MILP model is based on the theory of marked graphs and allows for resource-
optimal buffer placement and sizing, with the purpose of maximizing throughput at the desired
clock frequency. In addition to the exact model formulation, we propose a computationally effi-
cient heuristic that achieves near-optimal results; its ability to handle large benchmarks makes
our approach applicable to real-world and complex workloads. On benchmarks obtained out of C
code, we demonstrate the ability of our approach to achieve high-throughput, pipelined dataflow
circuits. We show that our approach effectively handles different HLS features such as pipelined
computational units, variable-latency memory interfaces, and if-converted code. We believe that
optimization techniques such as this one are the key to making dynamic scheduling truly compet-
itive with existing HLS techniques.

REFERENCES

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison Wesley
Longman.

[2] Mihai Budiu, Pedro V. Artigas, and Seth Copen Goldstein. 2005. Dataflow: A complement to superscalar. In Proceedings

of the IEEE International Symposium on Performance Analysis of Systems and Software. 177–186.
[3] Dmitry Bufistov, Jordi Cortadella, Mike Kishinevsky, and Sachin Sapatnekar. 2007. A general model for performance

optimization of sequential systems. In Proceedings of the International Conference on Computer-Aided Design. 362–369.
[4] J. Campos, G. Chiola, J. M. Colom, and M. Silva. 1992. Properties and performance bounds for timed marked graphs.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 39, 5 (May 1992), 386–401.
[5] Andrew Canis, Stephen D. Brown, and Jason H. Anderson. 2014. Modulo SDC scheduling with recurrence minimiza-

tion in high-level synthesis. In Proceedings of the 23rd International Conference on Field-Programmable Logic and Ap-

plications. 1–8.
[6] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz Czajkowski, Stephen D.

Brown, and Jason H. Anderson. 2013. LegUp: An open-source high-level synthesis tool for FPGA-based processor/ac-
celerator systems. ACM Transactions on Embedded Computing Systems 13, 2 (Sept. 2013), Article 24, 27 pages.

[7] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli. 2001. Theory of latency-insensitive
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems CAD-20, 9 (Sept. 2001), 1059–
1076.

[8] Mario R. Casu and Luca Macchiarulo. 2009. Adaptive latency insensitive protocols and elastic circuits with early
evaluation: A comparative analysis. Electronic Notes in Theoretical Computer Science 245 (Aug. 2009), 35–50.

[9] GitHub. n.d. CBC Mixed-Integer Linear Programming Solver. Retrieved September 20, 2021 from https://github.com/
coin-or/Cbc.

[10] Satrajit Chatterjee, Michael Kishinevsky, and Umit Y. Ogras. 2012. xMAS: Quick formal modeling of communication
fabrics to enable verification. IEEE Design & Test of Computers 29, 3 (June 2012), 80–88.

[11] Shin-Kai Chen, Chih-Wei Liu, Tsung-Yi Wu, and An-Chi Tsai. 2013. Design and implementation of high-speed and
energy-efficient variable-latency speculating booth multiplier (VLSBM). IEEE Transactions on Circuits and Systems 60,
10 (Sept. 2013), 2631–2643.

[12] Shaoyi Cheng and John Wawrzynek. 2016. Synthesis of statically analyzable accelerator networks from sequential
programs. In Proceedings of the International Conference on Computer-Aided Design. 126–133.

[13] Jordi Cortadella and Mike Kishinevsky. 2007. Synchronous elastic circuits with early evaluation and token counterflow.
In Proceedings of the 44th Design Automation Conference. 416–419.

[14] Jordi Cortadella, Mike Kishinevsky, and Bill Grundmann. 2006. Synthesis of synchronous elastic architectures. In
Proceedings of the 43rd Design Automation Conference. 657–662.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

https://github.com/coin-or/Cbc

Buffer Placement and Sizing for High-Performance Dataflow Circuits 4:31

[15] Doug Edwards and Andrew Bardsley. 2002. Balsa: An asynchronous hardware synthesis language. Computer Journal

45, 1 (Jan. 2002), 12–18.
[16] Stephen A. Edwards, Richard Townsend, and Martha A. Kim. 2017. Compositional dataflow circuits. In Proceedings

of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design. 175–184. https://doi.
org/10.1145/3127041.3127055

[17] Ramaswamy Govindarajan, Guang R. Gao, and Palash Desai. 2002. Minimizing buffer requirements under rate-optimal
schedule in regular dataflow networks. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology

31, 3 (July 2002), 207–229.
[18] Mark R. Greenstreet and Kenneth Steiglitz. 1990. Bubbles can make self-timed pipelines fast. Journal of VLSI Signal

Processing 2, 3 (Nov. 1990), 139–148.
[19] Greg Hoover and Forrest Brewer. 2008. Synthesizing synchronous elastic flow networks. In Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition. 306–311.
[20] Hans M. Jacobson, Prabhakar N. Kudva, Pradip Bose, Peter W. Cook, Stanley E. Schuster, Eric G. Mercer, and Chris J.

Myers. 2002. Synchronous interlocked pipelines. In Proceedings of the 8th International Symposium on Advanced Re-

search in Asynchronous Circuits and Systems. 3–12.
[21] Donald B. Johnson. 1975. Finding all the elementary circuits of a directed graph. SIAM Journal on Computing 4, 1

(March 1975), 77–84.
[22] Lana Josipović, Philip Brisk, and Paolo Ienne. 2017. An out-of-order load-store queue for spatial computing. ACM

Transactions on Embedded Computing Systems 16, 5s (Sept. 2017), Article 125, 19 pages. https://doi.org/10.1145/3126525
[23] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically scheduled high-level synthesis. In Proceedings of

the 26th ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 127–136.
[24] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2019. Speculative dataflow circuits. In Proceedings of the 27th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 162–171.
[25] Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and Jordi Cortadella. 2020. Buffer placement and

sizing for high-performance dataflow circuits. In Proceedings of the 28th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays. 186–196.
[26] Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer. 2018. Parallel programming for FPGAs. ArXiv e-prints

arXiv:1805.03648 (May 2018).
[27] Charles E. Leiserson and James B. Saxe. 1991. Retiming synchronous circuitry. Algorithmica 6, 1–6 (June 1991), 5–35.
[28] Rajit Manohar and Alain J. Martin. 1998. Slack elasticity in concurrent computing. In Proceedings of the 4th Interna-

tional Conference on the Mathematics of Program Construction. 272–285.
[29] Tadao Murata. 1989. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77, 4 (April 1989), 541–

580.
[30] Mehrdad Najibi and Peter A. Beerel. 2013. Slack matching mode-based asynchronous circuits for average-case perfor-

mance. In Proceedings of the 32nd International Conference on Computer-Aided Design. 219–225.
[31] Mauro Olivieri. 2001. Design of synchronous and asynchronous variable-latency pipelined multipliers. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems 9, 2 (April 2001), 365–376.
[32] Louis-Noël Pouchet. 2012. Polybench: The Polyhedral Benchmark Suite. Retrieved September 20, 2021 from http:

//www.cs.ucla.edu/pouchet/software/polybench.
[33] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 2007. Numerical Recipes: The Art of

Scientific Computing (3rd ed.). Cambridge University Press.
[34] C. V. Ramamoorthy and Gary S. Ho. 1980. Performance evaluation of asynchronous concurrent systems using Petri

nets. IEEE Transactions on Software Engineering 6, 5 (Sept. 1980), 440–449.
[35] C. Ramchandani. 1974. Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. Technical Report Project

MAC Technical Report 120. Massachusetts Institute of Technology, Cambridge, MA.
[36] B. Ramakrishna Rau. 1996. Iterative modulo scheduling. International Journal of Parallel Programming 24, 1 (Feb. 1996),

3–64.
[37] Jens Sparsø. 2009. Current trends in high-level synthesis of asynchronous circuits. In Proceedings of the 16th IEEE

International Conference on Electronics, Circuits, and Systems. 347–350.
[38] Linda Torczon and Keith Cooper. 2011. Engineering a Compiler (2nd ed.). Morgan Kaufmann.
[39] Girish Venkataramani and Seth C. Goldstein. 2006. Leveraging protocol knowledge in slack matching. In Proceedings

of the 25th International Conference on Computer-Aided Design. 724–729.
[40] Ajay K. Verma, Philip Brisk, and Paolo Ienne. 2008. Variable latency speculative addition: A new paradigm for arith-

metic circuit design. In Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition. 1250–1255.
[41] Muralidaran Vijayaraghavan and Arvind. 2009. Bounded dataflow networks and latency-insensitive circuits. In Pro-

ceedings of the 9th International Conference on Formal Methods and Models for Codesign. 171–180.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

https://doi.org/10.1145/3127041.3127055
https://doi.org/10.1145/3126525
http://www.cs.ucla.edu/pouchet/software/polybench

4:32 L. Josipović et al.

[42] Xilinx Inc. 2018. Vivado Design Suite User Guide: High-Level Synthesis. Xilinx Inc. Retrieved September 20, 2021 from
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf.

[43] Xilinx Inc. 2018. Vivado High-Level Synthesis. Xilinx Inc. Retrieved September 20, 2021 from http://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html.

[44] Zhiru Zhang and Bin Liu. 2013. SDC-based modulo scheduling for pipeline synthesis. In Proceedings of the 32nd Inter-

national Conference on Computer-Aided Design. 211–218.

Received July 2020; revised May 2021; accepted July 2021

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 1, Article 4. Publication date: November 2021.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

