
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

From C/C++ Code
to High-Performance Dataflow Circuits

Lana Josipović, Andrea Guerrieri, and Paolo Ienne
École Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication Sciences, CH-1015 Lausanne, Switzerland

lana.josipovic@epfl.ch, andrea.guerrieri@epfl.ch, paolo.ienne@epfl.ch

Abstract—High-level synthesis (HLS) tools typically generate
statically scheduled datapaths. Static scheduling implies that the
resulting circuits have a hard time exploiting parallelism in code
with potential memory dependences, with control dependences, or
where performance is limited by long latency control decisions.
In this work, we describe an HLS approach which generates
dynamically scheduled, dataflow circuits out of imperative code.
We detail a complete set of rules to transform a standard
compiler intermediate representation into a high-performance
dataflow circuit that is able to dynamically resolve memory
dependences and adapt its behavior on the fly to particular
control flow decisions and operation latencies. Compared to a
traditional HLS tool, the result is a different trade-off between
performance and circuit complexity: statically scheduled circuits
display the best performance per cost in regular applications,
but general-purpose, irregular, and control-dominated computing
tasks require the runtime flexibility of dynamic scheduling.
Therefore, enabling dynamic behavior in HLS is key to dealing
with the increasing computational demands of new contexts and
broader application domains.

I. INTRODUCTION

The use of FPGAs in datacenters by Microsoft [46], [10]
and Amazon [2] as well as the acquisition of Altera by
Intel [14] signal one of the greatest opportunities for FPGAs
since they were first introduced. One of the many challenges
ahead is whether software programmers will ever manage to
extract enough performance out of FPGAs through modern
programming paradigms. High-Level Synthesis (HLS) tools
generate hardware designs from high-level software descrip-
tions and they are set to play a key role in making FPGAs
accessible to diverse users. While there is conspicuous re-
search activity on this front, HLS tools almost universally
rely on building datapaths that are controlled following static
schedules—that is, the cycle when every operation is executed
is fixed at synthesis-time [19]. Although this approach serves
well applications that are fairly regular, it tends to produce
conservative and low-performance results in irregular and
general-purpose code, thus limiting the usability of HLS only
to particular market segments.

An alternative HLS approach is to implement dynamic
scheduling, where decisions on when each operation should
execute are made in the circuit during runtime, hence achiev-
ing behaviors which are beyond the capabilities of statically
scheduled circuits: apart from the ability to extract more paral-
lelism when control and memory dependences are undecidable
at compile time, dynamic scheduling helps to alleviate the need
for complex loop transformation and the related programmer
hints. Although beyond the scope of this paper, dynamic
scheduling also opens the door to speculative execution [35],

one of the most powerful ideas in computer architecture.
These opportunities to exploit parallelism while minimizing
the programming effort may be critical for FPGAs to compete
with modern CPUs and, ultimately, to deal with the increasing
computational demands of the 21st century.

This paper presents a methodology to automatically gen-
erate high-performance, dynamically scheduled circuits from
C/C++ code. Our approach borrows several ideas from the
asynchronous domain, but produces perfectly synchronous
designs which are directly comparable to standard HLS tech-
niques. The paper is organized as follows: Section II explores
a classic situation where the dynamic extraction of operation-
level parallelism proves essential to performance. Section III
details our circuit generation methodology as implemented in
our open-source HLS tool. Section IV discusses the role of
buffers in dataflow designs and their impact on performance.
The next problem is connecting the design to memory to
handle out-of-order memory accesses, which we describe in
Section V. In Section VI, we provide an overview of our
complete compiler flow and Section VII gives the results of the
comparison of our technique with static HLS. In Section VIII,
we outline what others have done to circumvent some of the
problems of statically scheduled HLS, before concluding the
paper in Section IX. In addition to our previously published
work [34], this article discusses several new aspects of the C-
to-dataflow conversion (e.g., ensuring deterministic behavior)
and details all concepts which are incorporated into our
complete and open-source HLS framework [36].

II. WHY DYNAMIC SCHEDULING?
To illustrate the limitations of standard HLS approaches,

consider the code in Figure 1a. In this loop there is a control
flow decision (if) which depends on the actual data being
read from arrays a[] and b[]. The operation which might
take place in a specific iteration (s = s + d) introduces a
dependency between iterations and delays the next iteration
whenever the condition is true. When pipelining this loop, a
typical HLS tool needs to create a static schedule—that is, a
conservative execution plan for the various operations in the
loop which is valid in every possible case. Such a schedule
is shown in Figure 1b: in this example, the condition is true
only for the second and third iteration but “space” is reserved
in the schedule as if the condition were true everywhere.
An alternative could be to avoid pipelining the loop and
creating a sequential finite-state machine. The result could be
the schedule in Figure 1c, where indeed cycles are spent for
the addition only when needed; however, the decision of not
pipelining the loop has removed one of the foremost potentials



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

.
.
.

float d, s = 0.0;
int i;
for (i=0; i<100; i++){ 

d = a[i] - b[i]; 
if (d >= 0) 

s += d;
} 

a[0]=1.0; b[0]=3.0; 
a[1]=4.0; b[1]=3.0; 
a[2]=2.0; b[2]=2.0; 
a[3]=4.0; b[3]=5.0;

(a)

d = a[0] - b[0]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

d ≥ 0?

C13 C14

4

ld a[0]
ld b[0]

C15 C16 C17

s += d

d = a[1] - b[1] d ≥ 0?
ld a[1]
ld b[1] s += d

d = a[2] - b[2] d ≥ 0?
ld a[2]
ld b[2] s += d

d = a[3] - b[3] d ≥ 0?
ld a[3]
ld b[3] s += d

(b) Static schedule.

d = a[0] - b[0]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

d ≥ 0?

C13 C14

ld a[0]
ld b[0]

C15 C16 C17

d = a[1] - b[1] d ≥ 0?
ld a[1]
ld b[1] s += d

d = a[2] - b[2]
ld a[2]
ld b[2]

(c) Static schedule.

d = a[0] - b[0]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

d ≥ 0?

C13 C14

4

ld a[0]
ld b[0]

C15 C16 C17

d = a[1] - b[1] d ≥ 0?
ld a[1]
ld b[1] s += d

d = a[2] - b[2] d ≥ 0?
ld a[2]
ld b[2] s += d

d = a[3] - b[3] d ≥ 0?
ld a[3]
ld b[3]

(d) Dynamic schedule.

Fig. 1: Limitations of static scheduling. Figure 1a shows a code example where dependences cannot be determined at compile time. Figures 1b
and 1c contrast two static schedules, possible with standard HLS tools (realized as a pipeline and a sequential state machine, respectively),
with a dynamic schedule (Figure 1d), achievable with our approach. The dynamic schedule achieves the best possible parallelism which is
reduced only in the presence of actual loop-carried dependences.

for parallelism (in this case, the memory reads, the subtraction,
and the comparison are perfectly independent across iterations
and could be pipelined). Obviously, a good schedule is the
one in Figure 1d: the operations of different iterations are
overlapped as much as possible and the parallelism is reduced
only when the dependency is actually there (that is, when the
addition is executed). Such behavior is beyond what a statically
scheduled HLS tool can achieve.

This example is representative of one case where gener-
ating a schedule at synthesis time has a negative impact on
performance. Another well-known situation is the presence of
dependences through memory: a write in a previous iteration
may address the same memory location as the read in a
successive one and thus creates a dependency imposing serial-
ization; yet, if these two accesses address different locations,
they can be executed out of order. When an HLS tool is
not able to guarantee independence between two memory
accesses, it must assume the worst-case scenario and thus
limit the exploitable parallelism—exactly as above but for
a different reason. In recent years, many authors have been
exploring workarounds to some cases of potential dependences
through memory—we will discuss them in Section VIII—
but dynamically scheduled circuits represent the most general
solution to the problem.

A. Dataflow Circuits
The key to avoiding the limitations of static scheduling is to

refrain from triggering the operators through a centralized pre-
planned controller but to make scheduling decisions locally in
the circuit as it runs: as soon as all conditions for execution
are satisfied (e.g., the operands are available or critical control
decisions are resolved), an operation starts. In line with the
computer architecture analogy of the introduction, this is

exactly what dynamically scheduled processors do through
their reservation stations [28]. The rest of this section looks
informally at one dynamically scheduled circuit paradigm to
give the reader a flavor of what we want to achieve.

Figure 2 shows a simplified version of a dataflow cir-
cuit [15] implementing the loop of Figure 1a. Besides normal
datapath units, this circuit uses a few control units labeled
buffer, merge, select, fork, and branch. All directed edges in
the figure represent data signals accompanied by handshake
control signals, which indicate the availability of a new piece
of data from the source unit and the readiness of the target
unit to accept it, respectively. The loop to the left of the figure
shows the part of the circuit which updates the iterator i: At
the beginning, the constant 0 is sent from the entry point. The
merge node takes this value and passes it further. The buffer
node is the register which holds i and distributes it on the
next clock cycle to three consumers through the fork node; all
successors must consume the value before the fork accepts a
new input value. The left branch compares the incremented i
with the loop bound; if the bound is not reached, the new value
of i is sent back to the register by the branch node through
the merge. Meanwhile, the other outputs of the first fork use i
to access a[] and b[] and to compute the subtraction, which
is propagated to the rest of the circuit.

The key to a good execution of this loop is that, ide-
ally, a new value of i should be used to start computing
a[i] - b[i] on every cycle. This is the case in this circuit,
contrary to a conservative statically scheduled one: The cycle
on the left of Figure 2 is completely combinational excluding
the buffer and thus a new value for i can be computed on
every cycle. It is the right part of the circuit which can delay
this: when the if is not taken, the result of the addition is
dumped by the select node as soon as it arrives through the



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

Merge

Buff

1 i

Branch

N

+

<

Fork

Fork

i=0

End

Start BB

End BB

Loop BB
Merge

0

≤

Select

Load a[i] Load b[i]

Buff

ForkFork

FIFO

Fork

End

Branch

s=0

_

+

Fig. 2: A dynamically scheduled, dataflow circuit implementing the
code from Figure 1a and achieving the schedule of Figure 1d.

merge and the old value of s becomes immediately the new
value that is sent back to the adder on the following cycle; if,
on the other hand, the result is needed, the select will wait for
the sum to complete and the adder will be stalled next cycle
waiting for its right operand. Ultimately, a new subtraction
will not be computed and the memory accesses will not be
performed due to backpressure from the adder; the top fork
will not allow a new i to proceed on the right branch. This
slows down the initiation of the loop and is exactly what the
dynamic schedule in Figure 1d shows.

In the rest of this paper, we describe our complete methodol-
ogy to automatically generate dynamically scheduled circuits,
such as the one in Figure 2, from C/C++ programs. Although
the potentials of gain in terms of clock cycles saved in situa-
tions such as the one in this example are at least qualitatively
clear, dynamic scheduling also costs resources and time (i.e.,
the area and delay of the dataflow units in Figure 2). To
evaluate these area-performance tradeoffs, we compare our
circuits with those obtained using a state-of-the-art HLS tool
and we show that dynamic scheduling can reap significant
performance benefits in appropriate situations.

III. SYNTHESIZING DATAFLOW CIRCUITS

In this section, we first outline the dataflow units which
we use in our work. We then describe the process we use to
convert an arbitrary piece of code into a dataflow circuit.

A. Dataflow Units

Latency-insensitive protocols [8], [15] are a natural method
to create synchronous dataflow circuits, capable of making
decisions at runtime. Such circuits are built out of units

Fork

Sink

Join

Source

Branch

Merge Mux CMerge

=

Fig. 3: Dataflow units. All data channels are paired with bidirectional
control signals, which indicate the validity of data and the readiness
of the successor unit to accept it.

that implement latency-insensitivity by communicating with
their predecessors and successors through channels composed
of data lines and paired with handshake control signals: a
valid signal indicates that a unit is sending a valid piece of
data to its successor(s), whereas the ready signal informs the
predecessor(s) that a unit can accept a new piece of data. A
token [42] of data is propagated from unit to unit through a
channel as soon as memory and control dependences allow
it—otherwise, it is stalled by the handshake mechanism.

Figure 3 outlines the dataflow units we use. Their gate-level
descriptions can be found in prior literature [30], [15].

• An eager fork (fork) replicates every token received at
the input to multiple outputs; as soon as one successor
is ready to accept the token, the fork sends it to the
successor; however, the fork can accept a new token only
after all successors have accepted the previous one.

• A lazy fork (lfork) has the same functionality as the eager
fork; however, it distributes a token to all successors at
once (i.e., all successors must be ready for the lazy fork
to send the token).

• A join acts as a synchronizer—its output is triggered only
after all of its inputs become available.

• A branch implements program control-flow statements;
it dispatches a token received at its single input to one of
its multiple outputs based on a condition.

• A merge is a nondeterministic unit which propagates a
token received on any of its input to its single output.

• A mux is a deterministic version of the merge; it prop-
agates to its single output the input token selected by a
control input.

• A control merge (cmerge) is a merge which, apart from
the data output, has an output which indicates which of
the inputs was taken by the merge.

• A source can always issue a valid token to its single
successor (e.g., a constant).

• A sink is always ready to consume tokens from its single
predecessor; the token is simply discarded in the sink.

In addition, we use any functional unit the code requires,
such as integer and floating-point units. Units that require



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

BB0

a Live-out

a = x

b = a + c

BB1

BB2 a Live-in

BB0

a Live-out

a = x

b = a + c

BB1

BB2 a Live-in

a Live-in

a Live-out

(a)

a Live-out

a = x

b = a + c

a Live-in

a Live-out

a = x

b = a + c

a Live-in

a Live-out

BB0

BB1

BB0

BB1

(b)

Fig. 4: Implementing control flow. The left circuits show cases where
a direct conversion of a data and control flow graph into a dataflow
circuit would fail. Coupling data and control to ensure correct token
transfers between BBs is shown on the right: data is propagated
exclusively from each BB to its immediate successor BBs, using
merge and branch units for each BB live-in and live-out, respectively.

multiple operands contain a join to trigger the operation only
when all inputs are available. Our circuits require buffers
which serve as registers in standard synchronous designs—we
discuss their properties and placement in Section IV. Finally,
our circuits interface to memory using read and write ports;
we will address the memory interface in Section V.

B. Implementing Control Flow
The starting point for our circuit generation is a standard

compiler intermediate representation in static single assign-
ment (SSA) form, where every variable is defined only once
and phi nodes are used to define a variable from multiple
definitions along multiple control paths [51]. The control-
flow graph (CFG) of a program is organized into basic
blocks (BBs), i.e., straight pieces of code separated by control
flow decisions. Each BB contains a dataflow graph (DFG) of
program instructions; it receives live-in variables from the pre-
decessor BBs and produces live-out variables for the successor
BBs. Transforming the DFG of each BB into a corresponding
interconnect of dataflow units is relatively straightforward—
we will describe this process in Section III-D), but there are
a couple of problems when implementing control flow and
sending values from one BB to another due to the fundamental
difference between software programs and dataflow circuits.

// Input: CFG (control-flow graph)
// Input: DFG (SSA-based dataflow graph)
// Output: DFG (dataflow graph with coupled
// data propagation and control flow)

// Determine live-ins and live-outs of each BB
liveIns, liveOuts = LivenessAnalysis (CFG)

// Place merge for every live-in in every BB
foreach bb ∈ CFG do

foreach li ∈ liveIns (bb) do
mg = CreateMerge(bb, li ,DFG)
// Connect all operations within the BB
// that use the live-in to the
corresponding merge

foreach op ∈ operations (bb) do
if li ∈ predecessors (op) then

Connect (op,mg)

// Place branch for every live-out in every BB
foreach bb ∈ CFG do

foreach lo ∈ liveOuts (bb) do
br = CreateBranch (bb, lo,DFG)
// Connect branch to corresponding
merges

// in successor BBs
foreach bbsucc ∈ successors (bb) do

mg = FindMerge (lo, bbsucc)
Connect (br ,mg)

Algorithm 1: Implementing control flow.

Figure 4 shows two examples: (1) In Figure 4a, the variable
a is defined in BB0 and used in BB2. A typical representation
in a compiler (left of the figure) propagates the desired
information directly from the source to the destination block
(i.e., a live-in of a basic block comes from a basic block
which is not its immediate predecessor). This flow does not
pose problems in software, as successive values of a would
be stored in a register of a processor or in memory and the
last value used when BB2 is reached. (2) In the example in
Figure 4b, BB1 is the only BB in the body of a loop and uses
a value a produced in BB0. The value of a does not change
during the execution of BB1 and is used at every execution
of BB1. Again, the representation on the left would cause no
problem in a processor—the value would be stored in a register
or memory and read as many times as needed. Similarly, in
both cases, a standard HLS tool would devise a schedule which
ensures that each value is kept in a register as long as it is
needed; values are read from and written into the register in
appropriate (and predetermined) clock cycles.

Directly implementing such connections in a dataflow cir-
cuit would result in incorrect behavior because every generated
value is associated with a token; the number of tokens must
exactly match the number of distinct uses. The cases in the
left of Figures 4a and 4b violate this principle if implemented
literally: (1) In the first case, if the control flow were {BB0-
BB1-BB0-BB1-BB2}, two new values (with the respective
tokens) for a would have been generated and sent to BB2;
yet, BB2 can take only a single token and requires only the
most recent value. The execution would be incorrect or the
circuit would not terminate because the tokens not absorbed by
BB2 would create backpressure to BB0 and stop it indefinitely.
(2) In the second case, BB1 would not be able to execute
repeatedly due to a starving input. Assuming the control flow



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

is {BB0-BB1-BB1}, the first execution of BB1 will consume
the single data token for a and any further execution of BB1
would stall indefinitely waiting for a token.

The solution to both problems is to strictly couple data
propagation with control flow, as shown on the right of
Figures 4a and 4b. The following properties must hold: (1)
every BB must provide a live-out for every live-in of all of
its immediate successor BBs and exclusively to them, and (2)
every BB must receive all of its live-ins from its immediate
predecessor BBs and exclusively from them. We implement
these rules as shown in Algorithm 1: (1) we employ a standard
liveness analysis algorithm [51] to determine the live-ins and
live-outs of each BB, (2) for every BB live-in and live-out, we
place a merge and a branch unit in the BB, respectively, (3)
we connect all operations within a BB that use a live-in to the
appropriate merge of the same BB (i.e., the merge will inject
tokens into the BB to trigger the execution of its operations),
and (4) we connect the outputs of all branches to the inputs
of the corresponding merges in the immediate successor BBs.
In Figure 4a, this strategy results in merges for a in BB1 and
BB2 and branches for a in BB0 and BB1. In Figure 4b, BB0
has a branch for a and BB1 has a merge and a branch.

This strategy guarantees that every piece of data is sent
correctly from BB to BB, following the control flow of the
program. Each BB contains as many merge units as it has
incoming variables and as many branch units as it has outgoing
variables. Some merges correspond to SSA phi nodes—they
propagate into the BB a value chosen from one of the distinct
predecessor values (based on the control flow), whereas other
merges propagate a single value (coming from different control
flow directions) to honor the rules above (this is the case, for
instance, for the merge for variable a in BB1 of Figure 4b. All
branches of a BB share the same condition and send tokens
to the same successor BB based on a control flow decision.

Our strategy allows tokens to independently proceed from
one BB to the succeeding BB (i.e., there is no synchronization
of tokens at the BB output) and ensures correctness by
propagating all tokens strictly following the control flow.
However, in particular cases, this approach may be overly
conservative: a throughput-critical token (e.g., a token carrying
the loop iterator) may be unnecessarily prevented from quickly
propagating through the BBs due to a long-latency BB condi-
tion. Although outside the scope of this paper, systematically
determining when data can bypass a certain BB (i.e., when a
token propagation is independent of a particular BB condition)
would further simplify the dataflow network and may, in
particular applications, improve the achievable throughput.

C. Ensuring Determinism

Although different operations in a dataflow circuit may
execute out-of-order, tokens arrive to each individual operator
strictly in order. Yet, there is one particular case in which this
property may not hold and which we discuss in this section.

The execution of our dataflow circuits is triggered by
injecting a single token for each input (i.e., program argument)
into the start BB. The tokens propagate through the BBs,
following the control flow of the program—the BBs are
triggered in exactly the same order as the software execution

BB1

Branch

+

5 5

Merge

Store a[i]

i
cond

i

x1 x2

long 
latency

short 
latency

BB2 BB3

BB4

for (i=0; i<N; i++)
if (cond) 

x = 5*i;
else 

x = 5+i;
a[i]=x;

x = x2, x1

*

Fig. 5: Nondeterministic behavior at SSA phi nodes. The token
entering BB4 is produced either by BB2 or BB3; since these values
are produced independently, the merge in BB4 may receive its inputs
out-of-order.

of the unmodified original program. When a single value
propagates through the BBs, a token will always enter each
BB from its single active predecessor—once the token enters
through a merge, no other source can reinject a token into the
merge until the merge itself produces a token, hence there is
nothing that can interfere with the token ordering at the BB
input. Tokens will never reorder inside a BB as it contains
only straight and unconditional dataflow computation.

However, the situation is different in BB entry points
where a value is redefined (i.e., when a token enters a BB
through a merge which corresponds to SSA phi node)—as
each input represents a distinct and, potentially, uncorrelated
value, the input tokens may arrive in an order different than
specified in the original program. An example of such a
case is illustrated in Figure 5, which shows the CFG and a
simplified datapath of the code in the figure. Assuming that the
control flow is {BB1-BB2-BB4-BB1-BB3-BB4} (determined
by the condition cond in BB1), the iterator from BB1 will
first be sent to BB2 to compute the value of x1. This value
takes multiple cycles to compute, but the iterator can quickly
propagate through BB4 and BB1 (the iterator path is omitted
from the figure; as described in the previous section, it follows
the control flow of the program). It will then enter BB3 which
will trigger the short computation producing x2—this value
may arrive to the merge in BB4 before the value of x1; the
merge would send the values to the store out of order which
would then produce incorrect results. In standard HLS, this
problem is addressed through static scheduling, which enforces
in-order execution and dictates phi input ordering.

To ensure that tokens never enter a BB out of order, we
replace every merge which corresponds to an SSA phi node
with a mux unit described in Section 3. We generate an in-
order control path that follows the control flow of the program
through the BBs—essentially, a data-less variable which is a
live-in and live-out of each and every BB. This path enters



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

BB1

Branch

+
*

5 5

Mux

Store a[i]

i
cond

ix

BB2 BB3

BB4

CMerge

CMerge

Branch

Branch

Mux CMerge

x1 x2

in1, in2
Merge

x1 x2

x1
x2

x2
x1 ꭗ 

in1 in2

Fig. 6: Ensuring determinism. We extend the circuit from Figure 5
with a specialized in-order control network that follows the control
flow of the program—the cmerges of this network communicate with
the muxes of the same BB to indicate the correct input ordering.

each BB through a cmerge, which connects to the muxes of the
same BB and indicates the ordering of the inputs from which
they will receive data. The extended circuit from Figure 5 is
shown in Figure 6: in the previously discussed control flow
sequence, the cmerge in BB4 would first receive a value on
input in1, coming from BB2, and then on input in2, coming
from BB3—it would indicate this ordering to the mux which
would then not accept the value of x2 before it has received
the value of x1. This way of building dataflow circuits implies
the following properties:

1) Determinism. The strict ordering of BBs reflected in
the in-order control path guarantees that the execution
is race-free.

2) One token per loop. On a cyclic path, there can be
only a single token at a time (a token enters a BB on a
cycle through a merge; as this BB determines the next
control flow decision, it is the only block that can send
the token back into the merge).

3) Strict token ordering on a path. If there are multiple
tokens on an acyclic path, they could only be injected
into it by repeatedly forking at every passage the single
token of a cycle and the cyclic propagation of this token
is determined by the in-order control flow decision.

D. Constructing the Datapath

Once the control flow is correctly handled, the BB internals
are straightforward to design—each instruction is literally
converted into its dataflow unit (i.e., a functional unit with
inputs and outputs accompanied by handshake signals). When

Store a[0] = 1

Store triggered only 
when BB active 

Store triggered while 
BB inactive ꭗ

Store a[0] = 1

10 10

CMerge

SourceSource Source
…

Fork

Fig. 7: Triggering constants. Setting constants as always valid (e.g.,
using a source) may incorrectly trigger operations even when their
execution is not determined by the control flow (in this example, the
store would constantly store data to memory). In such cases, at least
one constant should be connected to the in-order control network, thus
ensuring that the constant is triggered only when its BB is active.

a unit has more than one direct successor, we place a fork
to replicate the token into an individual token for each of the
successors (i.e., for each point-to-point data transfer). Unused
unit outputs (e.g., branch outputs without successors) connect
to sinks which discard the unused tokens.

Some units (e.g., constants) do not have any inputs; we
must ensure that they are appropriately triggered and executed.
Keeping units without inputs always active (e.g., by setting a
source as their input) may result in incorrect behavior, as they
could trigger operations which are not supposed to execute. An
example is shown in Figure 7: a store with a constant address
and data would constantly send data to memory, regardless
of the number of store executions specified by the program.
Another case is that of a branch with a constant data input and
a constant condition, which would constantly trigger a merge
of some successor BB, even if this is not decided by the control
flow. For this purpose, we exploit the in-order control network
described in Section III-C and used to ensure determinism—
we fork the token from this network and use it to trigger
operations with no inputs only and as many times as their BB
becomes active, as shown on the right of Figure 7. Whenever
a constant is an input to a unit that is triggered only when
the BB is active (i.e., at least one of the unit predecessors is a
live-in of the BB), the connection of the constant to the control
path can be omitted and it can be triggered by a source instead,
which reduces the complexity of the dataflow network. This
is the case for the constants in BB2 and BB3 in Figure 5—the
computational units will receive a data input and trigger the
computation only if the corresponding BB becomes active, so
both constants can be triggered with a source. Similarly, only
one of the constant inputs to the store in Figure 7 requires a
connection to the control network.

IV. BUFFERS IN DATAFLOW CIRCUITS

The circuits produced by the compilation strategy described
in the previous section do not contain any buffers (i.e.,
registers). In this section, we discuss buffer properties and their
importance in obtaining high-performance dataflow circuits.

A. Buffer Properties
Dataflow circuits require buffers which serve as registers

in standard synchronous designs. Buffers store either tokens



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

FIFO

1-slot N-buff 5-slot T-buff

stall

FIFO

ready

Fig. 8: Buffer properties. The figure contrast a 1-slot nontransparent
buffer, which breaks the combinational path and can store a single
token, with a 5-slot transparent buffer, which can send data combina-
tionally from input to output or store up to five tokens if the successor
is not ready to take them.

(i.e., valid data) or bubbles (i.e., invalid data). A buffer can
hold a token or a bubble—each time a token moves forward, a
bubble moves in the opposite direction, similar to electrons and
holes in semiconductors [26]. Every cycle of our circuit will
always contain at most one token (see Section III-C), whereas
bubbles can be freely allocated by adding buffers. The buffers
are characterized with two properties: (1) transparency, which
indicates whether a buffer adds sequential delay onto a path; a
nontransparent buffer is used to break the combinational delay
and implies a 1-cycle latency (therefore potentially damaging
throughput), whereas a transparent buffer is implemented as a
pass-through element and does not increase cycle count (but
may deteriorate the combinational delay due to the bypass
multiplexer at its output), and (2) capacity (i.e., number of
slots), which is used to regulate throughput. These properties
are illustrated in Figure 8: a single-slot nontransparent buffer
is equivalent to a register in a standard synchronous circuit; a
common FIFO of size N with a combinational path between
input and output is here an N-slot transparent buffer.

B. Buffers and Circuit Functionality

Dataflow systems use distributed handshake signals to con-
trol the flow of data in the datapath. These signals implicitly
take care of stalling early data items when they need to
synchronize with later items [23]. Although buffers shift the
values in time, their presence or absence does not affect the
functional correctness of the system, as any consumer of multi-
ple values synchronizes the corresponding valid tokens. Hence,
contrary to registers in traditional synchronous designs, buffers
can be placed on any channel of the dataflow circuit—due to
its latency-insensitivity, this insertion will not compromise the
functionality [5], [34], but may impact timing and throughput.

C. Buffers and Avoiding Deadlock

The following conditions are necessary to ensure deadlock-
free execution of dataflow systems: (1) Each combinational
cycle must be broken with at least one nontransparent buffer;
this requirement is analogous to that in standard synchronous
circuits, where each combinational cycle needs to be broken
using a register, and (2) each cycle in must contain at least
one token and one bubble [16]; this requirement ensures that a
token and a bubble can always exchange places and tokens can

valid

ready

ready

readyvalid

stall

stall

stall

stall

stall

stall

valid

valid

Merge

1

Branch

+

Merge

1

Branch

+

N1-buff

Merge

1

Branch

+

(a) No buffer on 
cycle: deadlock

(c) 2-slot buffer on 
cycle: no deadlock

(b) 1-slot buffer on 
cycle: deadlock

N2-buff

Fig. 9: Adding buffers. A combinational cycle without buffers or
with a single buffer slot will cause deadlock, as the token will not
be able to propagate through the cycle. At least two buffer slots are
necessary to ensure deadlock-free execution.

propagate through the cycle. As our circuit generation strategy
guarantees that each cycle will have exactly one token, our
combinational cycles will require at least two buffer slots to
accommodate for the token and (at least) one bubble.

Figure 9 contrasts a combinational cycle of a dataflow
circuit without a buffer, with a single-slot nontransparent
buffer (satisfying the first requirement above), and with a two-
slot nontransparent buffer (satisfying both of the requirements
above). In the first case, a token at the input of the merge
cannot propagate through the cycle due to the combinational
relationship of the valid and ready handshake signals on the
cycle. Adding a buffer breaks the combinational path and
enables the token to enter the cycle, but there is no empty
buffer slot (i.e., bubble) for the token to loop back through
the merge. A 2-slot buffer (N2-buff) ensures deadlock-free
execution as a token and a bubble can always exchange places.

D. Buffers and Performance

The circuit in Figure 10a satisfies the correctness properties
described in the previous sections, but it fails to address two
important performance aspects:

1) Critical path. The buffers are placed without any con-
sideration for the combinational delays of the nodes (all
non-zero delays are indicated in the figure) and therefore
do not control the critical path in any way.

2) Throughput. Some paths may take a longer time to
process data and prevent the faster paths from consum-
ing tokens at a higher rate. This effect may restrict loop
pipelining—even if the need for another iteration can be
decided very fast, new tokens may not be able to trigger
the following loop operations because tokens from the
previous iterations are stalled in the loop units.

In Figure 10a, the token carrying the array value a is forked
into two pipelined multipliers, but the lower multiplier cannot
accept the token until the upper multiplier is done computing
(i.e., after 3 clock cycles). Similarly, the store can accept
the iterator from the fork only after the two chained 3-stage
multipliers produce a result. Because of backpressure in these
paths, the iterator cannot be issued through the loop at a high
rate, which lowers the loop initiation interval.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

Merge

N2-buff

1
i

Fork

Load a[i]

Branch

N

d = 2 ns

dout = 3 ns

d = 2 ns

+

<

Store a[i]

Fork

din = 3 ns

Fork

i=0

End

Start BB

End BB

Loop BB

stall

stall

*3 stages

*
3 stages

(a)

Merge

N2-buff

1
i

Fork

Load a[i]

Branch

N

d = 2 ns

dout = 3 ns

d = 2 ns

+

<

Fork

din = 3 ns

i=0

End

Start BB

End BB

Loop BB

N1-buff

T4-buff

Store a[i]

T8-buff 

stallstall

Fork

*3 stages

*
3 stages

(b)

int i = 0;
for (i = 0; i < N; i++)

a[i]=a[i]*a[i]*a[i];

(c)

Fig. 10: The circuit in Figure 10a, implementing the code from Figure 10c, is functionally correct and deadlock-free, but it is not optimized
for performance. The optimized circuit in Figure 10b has buffers placed strategically: nontransparent buffers (i.e., N1- and N2-buff) control
the critical path and larger-capacity transparent buffers (i.e., T4- and T8-buff) in the slow paths mitigate backpressure to maximize throughput.

// Input: CFG (control-flow graph)
// Input: DFG (dataflow graph)
// Output: buffers (list of dataflow channels
// characterized with buffer capacity and
// transparency)

// 1. Identify choice-free subgraphs of the
dataflow graph

profile = ProfileApplication (CFG)

// ILP for iterative cycle extraction
cycles = ExtractCycles (CFG, profile)

// Find dataflow subgraph of each cycle
foreach c ∈ cycles do

subgraph (c) = FindDataflowSubgraph (c,DFG)

// 2. Optimize performance
foreach c ∈ cycles do

// Choice-free subgraph throughput
th.add(ThroughputConstraints(subgraph(c)))

foreach u ∈ DFG do
// CP of entire dataflow graph
cp.add(PeriodConstraints(u, e))

// MILP to max. throughput under CP constraint
buffers = MILP (th, cp,CPtarget )

Algorithm 2: Performance optimization.

Figure 10b shows a possible circuit configuration with
optimal throughput and the critical path constrained to 4 ns.
The additional nontransparent buffer lowers the critical path
by breaking the combinational delay of 6 ns between the
multipliers. Inserting transparent buffers of larger capacity
increases effective parallelism, as accumulating data in these
buffers allows to trigger the faster paths at a higher rate and,
in this case, achieves the ideal loop initiation interval of 1.

We developed an optimization approach [37] which allows
for resource-optimal buffer placement and sizing, with the
purpose of maximizing throughput of the performance-critical
loops at the desired clock frequency. Our optimization strategy
consists out of two main steps, as illustrated in Algorithm 2:
(1) we profile the application and employ an integer linear
programming model to identify performance-relevant choice-
free subgraphs of the dataflow graph and (2) we employ a
mixed-integer linear programming model based on Petri net
theory [42] which strategically places and sizes buffers to
optimize the throughput of each choice-free subgraph, while
ensuring that the entire dataflow graph meets the target clock
period constraint. The resulting circuits correspond to the one
in Figure 10b: larger transparent buffers regulate throughput
and smaller nontransparent buffers control the critical path.

Analogous to static HLS, where the decision on how many
units to employ is made together with operation scheduling,
our performance optimization model can also decide which
operations can share a functional unit: the obtained throughput
directly determines the rate of token propagation through each
unit and identifies underutilized units which may be shared
without a performance degradation. Appropriately multiplex-
ing the incoming tokens at the shared unit inputs avoids unit
starvation and ensures the absence of deadlock [31].

V. CONNECTING TO MEMORY

Thanks to their latency-insensitivity and in contrast to stat-
ically scheduled designs, dataflow circuits can easily connect
to any memory interface and hierarchy without requiring
memory-specific modifications; the handshake logic will en-
sure that the execution naturally adapts to any memory latency



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

Memory access
sequential order

BB1
BB is starting

Store 

LSQ

Load 

Store 

Load 

Store 

Memory

Load

Fig. 11: The load-store queue required for correct out-of-order
memory accesses. In addition to load and store ports, the LSQ
requires a specialized signal indicating the start of each BB in the
program-determined order.

and variability (e.g., variable latency of a DRAM memory
controller or a cache). Connecting every load or store operation
to a read and write port respectively seems a natural decision,
but the result may be incorrect. Access requests will arrive
to the memory interface in an arbitrary order. In general,
this is the dynamic out-of-order feature that we desire—
in contrast, statically scheduled circuits must conservatively
serialize possibly dependent accesses, resulting in suboptimal
performance. Yet, this out-of-order execution may lead to the
violation of memory dependences: for instance, if a write
happens at the same address as some successive read, and if
the read token arrives in the dataflow circuit before the write
token, the result of the read will be incorrect.

The solution is to use a load-store queue (LSQ) similar
to those present in dynamically scheduled processors. Yet, we
have shown that building an LSQ for dataflow circuits has one
fundamental difference [33]: the LSQ must be given explicit
information on the original program order of the memory
accesses, so that it can allocate them into the queue in the
right order and thus resolve them in a semantically correct
way. The details are beyond the scope of this paper; it suffices
to say that the key condition for the LSQ to execute correctly
is to receive tokens which follow the actual order of execution
of the basic blocks of the circuit. This ordering enables the
LSQ to determine and resolve dependences as memory access
arguments from different basic blocks arrive out-of-order.

Consider a program containing a single BB with a poten-
tially dependent read and write access, as shown in Figure 11.
Apart from the read and write port communicating with the
LSQ, an additional signal indicates to the LSQ the start of
the particular execution of the BB. Each BB with accesses
targeting the same memory will employ such a signal—the
ordering of these tokens enables the LSQ to appropriately
handle out-of-order memory accesses. In the example in the
figure, the second read request may arrive before the previous
store has completed; the LSQ will appropriately stall its
execution if it is dependent on the store or allow the accesses
to execute out-of-order otherwise.

Apart from the allocation strategy, which is unique for our
dataflow approach, the remainder of our LSQ implementation
qualitatively corresponds to a standard processor LSQ, as
Figure 12 suggests. Our challenge here is to guarantee that
the signals coming from the BBs to the LSQ are produced
in order by a circuit which we have otherwise designed to
be as aggressively out-of-order as we could. To this end,
we exploit the in-order control path which we introduced in

As in a processor LSQ

Unique for our 
dataflow approach

BB Allocator
BB 

ALLOCATE

Fig. 12: LSQ structure. Apart from the allocation strategy, our LSQ
is essentially identical to that of a common processor.

Section III-C. The tokens in this path trigger the allocation
of BBs as soon as the control flows there (i.e., as soon as a
decision is made to enter a particular BB). However, applying
the standard dataflow circuit design strategy described in the
previous sections might result in the incorrect order of token
arrival to the LSQ. Figure 13 shows two example situations
leading to a potentially wrong execution: (1) If the token is
forked to the LSQ using the typical eager fork, one of the
fork outputs might send a token to the next BB before the
LSQ has accepted a token from its predecessor (Figure 13a).
(2) Although placing buffers in dataflow circuits has no impact
on correctness (as discussed in Section IV), a buffer on the
fork output connected to the LSQ might compromise the order
of token arrival to the queue—if the token remains stored in
the buffer, the successor BB could send a new token before
the prior allocation has been completed (Figure 13b).

The correct way to connect the LSQ to the dataflow circuit
is shown in Figure 13c: (1) The forks used to send the
tokens to the LSQ are lazy forks (lforks)—if one of the fork
outputs is stalled, the other one will stall as well. (2) No
sequential elements (i.e., buffers) are allowed on the fork
outputs connected to the LSQ. This ensures that a token can
be passed to the successor BB only when the allocation of
its predecessor BB has been completed—if an allocation is
deferred (e.g., due to limited space in the LSQ), the token
stalls and no further allocation requests reach the LSQ.

To connect our datapaths to memory, we leverage com-
piler analysis to simplify our memory interface. Whenever
the compiler can disambiguate memory accesses, groups of
accesses that cannot mutually conflict use separate LSQs,
while accesses which cannot have dependences with any other
accesses are connected to simple memory interfaces [32].

VI. A COMPLETE FLOW

In the previous sections, we have shown how an arbitrary
program described in a high-level language can be transformed
into a dynamically scheduled, dataflow circuit, that executes
operations out-of-order, naturally implements pipelining, and
efficiently handles potential memory dependences.

The presented flow is implemented in Dynamatic, our open-
source HLS compiler [36]. The basic flow of Dynamatic
is shown in Figure 14. It takes as input C or C++ code



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

Merge Merge CMerge

Fork

cond.

Fork

Branch

Merge Merge CMerge

Fork

cond.

Fork

BranchBranch Branch

Branch Branch

BB1 allocate

BB2 allocate

Only one Fork output is stalled -> token enters BB2 before 
BB1 allocate is completed -> incorrect allocation order

ꭗ LSQ stall

No 
allocation

Allocation

LSQ ready

(a)

Merge Merge CMerge

Fork

cond.

LFork

Branch

Merge Merge CMerge

Fork

cond.

Fork

BranchBranch Branch

Branch Branch

BB1 allocate

BB2 allocate

Token from LFork stored in buffer -> token enters BB2 before 
BB1 allocate is completed -> incorrect allocation order

B
u

ff

Allocation

No 
allocation

LSQ ready

LSQ stall

(b)

Merge Merge CMerge

Fork

cond.

LFork

Branch

Merge Merge CMerge

Fork

cond.

Fork

BranchBranch Branch

Branch Branch

LSQ stall

LSQ ready

BB1 allocate

BB2 allocate

Both outputs of LFork are stalled -> no token entering BB2 
until BB1 allocate is completed -> correct allocation order

No 
allocation

No 
allocation

ꭗ ꭗ

(c)

Fig. 13: Connecting the dataflow circuit to the memory interface. Figures 13a and 13b give examples of incorrect connections. In Figure 13a,
the eager fork may send an allocation to BB2 before the allocation of BB1 completes. In Figure 13b, the allocation order may be reversed
due to the storage element on the control line between the circuit and the LSQ. Figure 13c shows the correct way to connect the LSQ—an
allocation cannot occur unless all predecessor allocations have been completed.

Fig. 14: Dynamatic HLS compiler: software-to-hardware flow.

and produces a synthesizable hardware description of the
corresponding dataflow circuit. The first two steps of the flow,
analysis and elaboration, preprocess the C files by prechecking
code correctness, adding metainformation, and formatting it
for the rest of the flow. The synthesis step relies on the LLVM
framework [40]: the clang frontend parses the C/C++ program
and produces an SSA intermediate representation (LLVM IR),
which is then optimized using standard LLVM transformation
and analysis passes. The optimized IR is then given as input to
a set of our custom passes. The main pass adds dataflow units
from Section III-A, following the transformations described
in Sections III-B, III-C, and III-D to produce a functionally
correct dataflow circuit; additional passes perform analysis
and optimizations (e.g., memory access analysis to create the
memory interfaces from Section V). The output is a dataflow
graph in the form of a DOT netlist. This netlist is then provided
to the optimizer—it uses a MILP solver [22] to find the optimal
buffer placement and sizes for a user-defined clock period
constraint, as indicated in Section IV. This step produces
an optimized DOT netlist. Finally, the DOT describing the
dataflow circuit is converted into a VHDL netlist of dataflow
units. This netlist, in conjunction with a predefined library
of dataflow units, can be synthesized and implemented on

an FPGA. The generated circuit is packaged as an IP and
integrated as a hardware accelerator into a heterogeneous
FPGA design which includes a soft or hard CPU core and
communicates through an AXI interface. Dynamatic currently
targets Xilinx and Intel FPGAs; our component library is
easily extensible to target other platforms. Thanks to their
flexible handshake logic, dataflow circuits can easily adapt
their execution to units with different timing properties; yet,
their timing may impact circuit performance and, therefore,
must be considered by our performance optimization model.
Hence, we characterize each unit in our unit library with its
latency, II, and critical path (determined based on static timing
analysis of the unit); based on the target FPGA, we choose the
units to employ in the circuit and include the corresponding
timing values in our performance optimizer.

VII. EVALUATION

In this section, we compare the dynamically scheduled
circuits produced by Dynamatic with a commercial HLS tool.
We give an overview of our methodology and benchmarks
before presenting our results. Our complete HLS tool and our
benchmarks are publicly available at dynamatic.epfl.ch.

dynamatic.epfl.ch


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

Benchmark IIavg CP (ns) Exec. time (us) Slices LUTs FFs DSPs
STAT DYN STAT DYN STAT DYN STAT DYN STAT DYN STAT DYN STAT DYN

Histogram 13.0 2.3 3.5 4.9 45.5 11.1 129 220 + 1073 254 4294 510 2033 2 2
Matrix power 13.0 2.7 3.4 4.9 16.8 4.9 200 295 + 1020 340 4463 735 2055 5 5
Matching 16.0 9.0 3.3 5.1 21.1 18.4 141 296 + 104 336 1087 446 1084 0 0
If loop add 10.0 1.1 3.2 5.0 32.0 5.5 141 393 315 960 525 1318 2 4
If loop mul 7.0 1.1 3.2 5.2 22.4 5.5 177 348 334 892 655 1127 5 5
FIR 1.0 1.0 2.9 3.5 2.9 3.5 47 221 83 575 176 628 3 3
Matvec 1.0 1.0 3.2 4.0 2.9 3.6 63 309 119 903 221 699 3 3

TABLE I: Dynamically scheduled results (our dataflow circuits) contrasted to statically scheduled results (Vivado HLS). The slice count
for the kernels with the LSQ is shown as slices of kernel + slices of LSQ.

A. Methodology

To demonstrate the benefits of using dynamic scheduling
in HLS, we compare our circuits with designs generated by
Vivado HLS [55], a state-of-the-art commercial HLS tool. In
all Vivado designs, we apply the pipelining optimization direc-
tive. Although supported by our approach, we do not employ
unrolling as this code restructuring optimization is orthogonal
to the scheduling paradigm and would affect similarly Vivado’s
results and ours. To provide a fair comparison, we employ
the same arithmetic units (with custom wrappers employing
handshake signals) and RAM blocks used by Vivado in our
designs. When our compiler cannot disambiguate memory
accesses, we employ the LSQ in our designs and connect
it to the RAM interface; otherwise, we connect the dataflow
read/write ports to the RAM through a simple memory arbiter.

We functionally verify the designs in ModelSim [41]. We
obtain the average loop initiation interval (II) from the simu-
lation and the clock period (CP) from the post-routing timing
analysis to calculate the total execution time. Placing and
routing the designs using Vivado gives us the resource usage
(i.e., the number of CLB slices, with the corresponding LUT
and FF count, as well as the number of DSP units).

B. Benchmarks

The designs that we discuss in this section are simple
kernels which represent typical cases where static scheduling
is known to run into its fundamental limits while dynamic
scheduling should make a significant difference. We also
consider kernels where static scheduling is fully successful, to
show that dynamically scheduling achieves virtually the same
result with acceptable overheads.

• Histogram reads an array of features and increases the
value of the corresponding histogram bins. The memory
access pattern cannot be determined at compile time—
the loop may contain read-after-write dependences if the
same bin is updated in neighboring iterations.

• Matrix Power performs a series of matrix-vector multipli-
cations. Each iteration of a nested loop reads a row and a
column coordinate and updates the corresponding matrix
element. At compile time, it is not possible to determine if
successive iterations perform conflicting writes and reads.

• Matching performs the maximal matching algorithm,
which iterates through the edges of a graph and checks
whether their endpoint vertices are marked; if this is not
the case, the vertices are updated using conditional stores.

There are potential read-after-write dependences between
the stores and the loads from the following iterations.

• If loop add is the kernel discussed in Section II, with a
potential dependency across loop iterations.

• If loop mul is a variation of the previous kernel where we
replace the conditional addition with a multiplication of
the same variables and which we will contrast with the
previous kernel in terms of resource utilization.

• FIR is an ordinary FIR filter calculating the output based
on the inputs and the coefficients. The memory reads and
writes are independent and disambiguated at compilation.

• Matvec is a standard matrix-vector multiplication; as in
the previous case, all memory accesses can be disam-
biguated during compilation.

C. Results: Comparison with Static HLS
Table I summarizes the timing and resource results for all

kernels and Figure 15 shows our results relative to those from
Vivado HLS (results to the left or below the red square, which
represents all Vivado designs, are better).

Timing. Avoiding conservative assumptions on memory and
control dependences results in a significant improvement of
the throughput and, consequently, execution time in all of
the corresponding benchmarks (note that the dynamic results
are data-dependent: the best possible II is achieved when
there are no dependences and the worst possible II when all
neighboring iterations are dependent; this II corresponds to
the statically computed one). The additional dataflow control
logic (i.e., the merge, branch, fork, and join units which we
insert into the design) typically have an acceptable impact on
the CP. The critical path of the LSQ is extremely sensitive to
the number of queue entries [33], hence it also impacts the
achieved CP. Although this timing overhead is quite tangible,
it is still conspicuously small when compared to the potential
improvement in II and, consequently, the net performance.
On the FIR and Matvec benchmarks, static HLS techniques
produce highly optimized pipelines because memory accesses
can be disambiguated at compile time. The static HLS tool
depends on techniques such as modulo scheduling [48] to
restructure and pipeline the loop, whereas we effortlessly
compile the LLVM IR into a dataflow circuit as-is: although
both the static and dynamic design achieve the ideal II of 1,
these are the only cases where our results are Pareto-dominated
by the static results due to the increase in CP.

Resource utilization. The right of Table I contrasts the
resource utilization of statically and dynamically scheduled



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

Pareto-
dominated by 

the static design

Histogram

Matrix power

FIR

Matvec

If loop add

If loop mul

Matching

Unpredictable 
memory 

dependences

Regular kernels

Irregular 
control flow

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Sl
ic

e
s,

 n
o

rm
al

iz
e

d

Execution time, normalized

Dynamic Static (all points)

Fig. 15: Resource utilization and execution time of the dynamically
scheduled designs, normalized to the corresponding static designs
produced by Vivado HLS.

circuits. The overhead in slices of the dynamic designs, notable
across all benchmarks, is partially due to the control logic that
the dataflow circuits contain and which allows them to achieve
the latency-insensitivity which we desire. The overhead of the
FIFOs that we introduced to increase throughput, as discussed
in Section IV-D, is probably overblown by the simplicity of
the examples with only a few functional units. Additionally,
Vivado employs allocation and binding algorithms to share
(i.e., time-multiplex) functional units among operators; sharing
is possible without a performance penalty due to the low
throughput which the static designs achieve. Since all the
dynamic designs achieve high-throughput pipelines, sharing
units is not possible without compromising throughput; we
therefore allocate a new unit per operator, which contributes to
the resource difference between the static and dynamic design.
For instance, our If loop add design requires two functional
units to perform the addition and the subtraction whereas
Vivado HLS time-multiplexes the same one (as evident from
the DSP usage). By replacing one of the operations with a
multiplication (i.e., If loop mul), we verified that the DSP count
is now equal and the overall resource difference is smaller.

It is immediately visible from Figure 15 that the circuits
requiring an out-of-order memory interface demand significant
additional resources. Although others have accelerated similar
kernels to a qualitatively comparable extent and with only
insignificant overhead [18], their solution is highly specific
and solves only a subset of problems discussed in this work.
It should be emphasized that the resource and timing overhead
could be minimized by implementing the LSQs as hard-
macros, in the same way as other memory hierarchy com-
ponents might be in the future (e.g., caches and TLBs).

VIII. RELATED WORK

Standard commercial (e.g., Vivado HLS [55]) and academic
(e.g., LegUp [7], PandA [45]) HLS tools rely on a static
schedule, determined at compile time; this schedule dictates
the clock cycle in which each operation will execute. Pipelin-
ing is typically achieved through modulo scheduling [48],
[6], [56]: the aim is to minimize the loop initiation interval

under the given clock and resource constraints. In regular ap-
plications, this approach results in high-throughput pipelines;
however, when memory accesses or control decisions are not
determinable during code compilation, the HLS must make
pessimistic scheduling assumptions, often yielding inferior
schedules and lower performance.

Recent advances in HLS have explored methods to over-
come the conservatism in static scheduling. Several tech-
niques [1], [39] generate multiple schedules which are dynami-
cally selected during runtime, once the values of all parameters
are known; they rely on the capabilities of current HLS tools
by replicating the source code and dynamically selecting the
code copy to execute. Tan et al. [50] describe an approach
called ElasticFlow to apply loop pipelining on a particular
class of irregular loops. Dai et al. [17] propose methods for
pipeline flushing by performing scheduling for multiple initia-
tion intervals of the pipeline; they later developed application-
specific dynamic hazard detection circuitry [18] and have
shown the ability of speculation but with stringent constraints
(e.g., state-less inner-loop datapath). Nurvitadhi et al. [44]
perform automatic pipelining, assuming that the datapath is
already partitioned into pipeline stages. To effectively tolerate
variable memory latencies, several authors propose prefetching
and access/execute decoupling; they rely on complex compi-
lation techniques to automatically separate data access and
address calculations from value computations [12], [27]. still
based on static scheduling adapted to enable some level of
dynamic behavior, which limits the achievable performance
improvements only to some particular cases.

Different authors exploited latency-insensitive protocols [8],
[15], [21] to construct synchronous and asynchronous dataflow
circuits. Elastic circuits [15] are probably the best-studied
form of latency-insensitivity, but the original paradigm is too
restrictive for HLS. Several approaches [29], [11] extended
the SELF protocol [15] with constructs similar to the branch
and merge which we use in this work. Kam et al. [38] show
the ability of elastic circuits to create dynamic pipelines, but
do not provide generic transformations to create them out of
high-level descriptions. Efforts in the asynchronous domain,
such as Balsa [20] and Haste/TiDE [43], applied syntax-
driven approaches for mapping a program into a structure
of handshake components [49]; a synchronous backend for
Haste/TiDE has later been developed. Putnam et al. [47] also
explored synthesizing dataflow-like circuits from high-level
specifications. Townsend et al. [52] synthesized dataflow net-
works from functional programming representations. Dataflow
circuits, with their handshake signals, bring to mind Bluespec
and its firing rules [53]. However, all these approaches provide
little information on some critical conversion aspects which
are at the heart of this paper; to our best knowledge, these
approaches have never been contrasted to modern HLS tools.

The efforts closest to ours are the work by Huang et al. [30]
and Budiu et al. [4], [3]). Huang et al. mapped dataflow
circuits generated from C code to a coarse-grain reconfigurable
array [30]. Their circuit generation differs from ours in two
aspects: (1) They use a single branch node per BB, thus
synchronizing all the BB outputs and preventing pipelining.
(2) They do not employ an LSQ; all memory accesses which
may conflict need to be conservatively sequentialized. Budiu et



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

al. described a compiler for generating asynchronous circuits
from C code [4], [3]. Although their final circuits are funda-
mentally different from ours (our circuits are synchronous and
avoid the traditional difficulties of asynchronous design), the
generation strategy is similar to ours. Unfortunately, the exact
methodology is never described in full detail; although they
also employ an LSQ to handle memory dependences, their
allocation policy is more conservative than ours.

Several HLS approaches explore coarse-grained dataflow
design. Commercial HLS tools support task-level pipelining
(i.e., “dataflow optimization” [54]), which overlaps functions
and loops, connected via FIFOs, to increase throughput and
concurrency. The FIFOs are typically sized conservatively by
the HLS tool so that they can hold all data exchanged between
tasks; it is up to the user to identify and manually specify
the appropriate FIFO sizes such that the resource utilization
is minimal and that deadlock never occurs. Furthermore,
the optimization is applicable only to tasks without bypass,
feedback, or conditionals between each other. In contrast, our
approach successfully supports cyclic behavior and condition-
als and is able to compute the required FIFO sizes even in
those cases, while at the same time ensuring the absence
of deadlock. Cheng et al. [13] describe sequential programs
as networks of processes in which hardware accelerators
exchange data via FIFOs. Geilen et al. [24] use model check-
ing to minimize buffer requirements in coarser Synchronous
Dataflow Graphs (SDFs). Govindarajan et al. [25] target large-
grain actor graphs and present an approach to minimize
buffer storage while executing at the optimal computation
rate. Castellana et al. [9] present an HLS flow for generat-
ing dynamically scheduled accelerators that use an adaptive
distributed controller to implement coarse-grained parallelism,
concurrent function calls, and variable-latency operations. In
contrast to all these works, we explore fine-grained dataflow
design (i.e., scheduling individual loop and function datapaths)
and focus on methods to exploit instruction-level parallelism
in the presence of irregular memory accesses and control
flow. Our circuit generation strategy supports constructs that
typically appear in imperative high-level languages, our buffer
placement method guarantees optimality and the absence of
deadlock, and our memory interface dynamically resolves
dependences that are undeterminable at compile time.

IX. CONCLUSIONS

With FPGAs finding their way into datacenters, HLS tools
are set to play a key role in the future of reconfigurable
computing. Yet, generating good static circuits from high-
level languages requires peculiar code restructuring algorithms
(e.g., modulo scheduling), demands expert user interaction
(e.g., pragmas and code restructuring), forces worst-case as-
sumptions on important issues (e.g., memory and control
dependences), and precludes key performance optimizations
(e.g., general forms of speculative execution). In this paper, we
have described a dynamically scheduled form of HLS which
produces dataflow circuits, able to resolve dependences as the
circuit runs. When static HLS exploits the maximum paral-
lelism available, our technique achieves similar results with
minimal degradation in cycle time; when static HLS misses
some key performance optimization opportunities, our circuits

seize them, achieving large performance improvements with
the investment of more resources. We believe that this avenue
of HLS has potential to open new doors for reconfigurable
computing and its applications.

REFERENCES

[1] M. Alle, A. Morvan, and S. Derrien. Runtime dependency analysis
for loop pipelining in high-level synthesis. In Proceedings of the 50th
Design Automation Conference, pages 1–10, Austin, Tex., June 2013.

[2] Amazon.com, Inc. Amazon EC2 F1 Instances, 2017.
[3] M. Budiu, P. V. Artigas, and S. C. Goldstein. Dataflow: A complement

to superscalar. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, pages 177–86, Austin,
Tex., Mar. 2005.

[4] M. Budiu and S. C. Goldstein. Pegasus: An efficient intermediate
representation. Technical Report CMU-CS-02-107, Carnegie Mellon
University, May 2002.

[5] D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar. A
general model for performance optimization of sequential systems. In
Proceedings of the International Conference on Computer-Aided Design,
pages 362–369, San Jose, Calif., Nov. 2007.

[6] A. Canis, S. D. Brown, and J. H. Anderson. Modulo SDC scheduling
with recurrence minimization in high-level synthesis. In Proceedings
of the 23rd International Conference on Field-Programmable Logic and
Applications, pages 1–8, Munich, Sept. 2014.

[7] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson. LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems. ACM
Transactions on Embedded Computing Systems (TECS), 13(2):24:1–
24:27, Sept. 2013.

[8] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, CAD-20(9):1059–76,
Sept. 2001.

[9] V. G. Castellana and F. Ferrandi. An automated flow for the high level
synthesis of coarse grained parallel applications. In Proceedings of
the IEEE International Conference on Field Programmable Technology,
pages 294–301, Kyoto, Dec. 2013.

[10] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Mas-
sengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou,
and D. Burger. A cloud-scale acceleration architecture. In Proceedings
of the 49th International Symposium on Microarchitecture, pages 1–13,
Taipei, Taiwan, Oct. 2016.

[11] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras. xMAS: Quick formal
modeling of communication fabrics to enable verification. IEEE Design
& Test of Computers, 29(3):80–88, June 2012.

[12] T. Chen and G. E. Suh. Efficient data supply for hardware accelerators
with prefetching and access/execute decoupling. In Proceedings of the
49th International Symposium on Microarchitecture, pages 1–12, Taipei,
Oct. 2016.

[13] S. Cheng and J. Wawrzynek. Synthesis of statically analyzable ac-
celerator networks from sequential programs. In Proceedings of the
International Conference on Computer-Aided Design, pages 126–33,
Austin, Tex., Nov. 2016.

[14] D. Chiou. Intel acquires Altera: How will the world of FPGAs
be affected? In Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, page 148, Monterey,
Calif., Feb. 2016.

[15] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of
synchronous elastic architectures. In Proceedings of the 43rd Design
Automation Conference, pages 657–62, San Francisco, Calif., July 2006.

[16] J. Cortadella, M. G. Oms, M. Kishinevsky, and S. S. Sapatnekar. RTL
synthesis: From logic synthesis to automatic pipelining. Proceedings of
the IEEE, 103(11):2061–75, Nov. 2015.

[17] S. Dai, M. Tan, K. Hao, and Z. Zhang. Flushing-enabled loop pipelining
for high-level synthesis. In Proceedings of the 51st Design Automation
Conference, pages 1–6, San Francisco, Calif., June 2014.

[18] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang.
Dynamic hazard resolution for pipelining irregular loops in high-level
synthesis. In Proceedings of the 25th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, pages 189–194, Monterey,
Calif., Feb. 2017.

[19] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, New York, 1994.

[20] D. Edwards and A. Bardsley. Balsa: An asynchronous hardware
synthesis language. The Computer Journal, 45(1):12–18, Jan. 2002.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3105574, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

[21] S. A. Edwards, R. Townsend, and M. A. Kim. Compositional dataflow
circuits. In Proceedings of the 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design, pages 175–184,
Vienna, Sept. 2017.

[22] J. Forrest, T. Ralphs, S. Vigerske, LouHafer, B. Kristjansson, jpfasano,
EdwinStraver, M. Lubin, H. G. Santos, rlougee, and M. Saltzman. coin-
or/cbc: Version 2.9.9, July 2018.

[23] M. Galceran-Oms, J. Cortadella, and M. Kishinevsky. Speculation
in elastic systems. In Proceedings of the 46th Design Automation
Conference, pages 292–95, San Francisco, Calif., July 2009.

[24] M. Geilen, T. Basten, and S. Stuijk. Minimising buffer requirements
of synchronous dataflow graphs with model checking. In Proceedings
of the 42nd Design Automation Conference, pages 819–24, Anaheim,
Calif., June 2005.

[25] R. Govindarajan, G. R. Gao, and P. Desai. Minimizing buffer re-
quirements under rate-optimal schedule in regular dataflow networks.
Journal of VLSI signal processing systems for signal, image and video
technology, 31(3):207–229, July 2002.

[26] M. R. Greenstreet and K. Steiglitz. Bubbles can make self-timed
pipelines fast. Journal of VLSI Signal Processing, 2(3):139–148, Nov.
1990.

[27] T. J. Ham, J. L. Aragón, and M. Martonosi. Decoupling data supply
from computation for latency-tolerant communication in heterogeneous
architectures. ACM Transactions on Architecture and Code Optimiza-
tion, 14(2):1–27, June 2017.

[28] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, fifth edition, 2011.

[29] G. Hoover and F. Brewer. Synthesizing synchronous elastic flow
networks. In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pages 306–11, Munich, Mar. 2008.

[30] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu. Elastic CGRAs. In
Proceedings of the 21st ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 171–80, Monterey, Calif., Feb. 2013.

[31] L. Josipović. High-level synthesis of dynamically scheduled circuits.
PhD thesis, EPFL, Lausanne, Nov. 2020.

[32] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne. Shrink it or
shed it! minimize the use of LSQs in dataflow designs. In Proceedings of
the IEEE International Conference on Field Programmable Technology,
pages 197–205, Tianjin, Dec. 2019.

[33] L. Josipović, P. Brisk, and P. Ienne. An out-of-order load-store queue for
spatial computing. ACM Transactions on Embedded Computing Systems
(TECS), 16(5s):125:1–125:19, Sept. 2017.

[34] L. Josipović, R. Ghosal, and P. Ienne. Dynamically scheduled high-level
synthesis. In Proceedings of the 26th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, pages 127–36, Monterey,
Calif., Feb. 2018.

[35] L. Josipović, A. Guerrieri, and P. Ienne. Speculative dataflow circuits.
In Proceedings of the 27th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pages 162–71, Seaside, Calif., Feb.
2019.

[36] L. Josipović, A. Guerrieri, and P. Ienne. Dynamatic: From C/C++ to
dynamically scheduled circuits. In Proceedings of the 28th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pages 1–
10, Seaside, Calif., Feb. 2020.

[37] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella.
Buffer placement and sizing for high-performance dataflow circuits. In
Proceedings of the 28th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 186–96, Seaside, Calif., Feb. 2020.

[38] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms. Correct-
by-construction microarchitectural pipelining. Proceedings of the 27th
International Conference on Computer-Aided Design, pages 434–41,
Nov. 2008.

[39] J. Liu, S. Bayliss, and G. A. Constantinides. Offline synthesis of
online dependence testing: Parametric loop pipelining for HLS. In
Proceedings of the 23rd IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 159–62, Vancouver, May 2015.

[40] The LLVM Compiler Infrastructure. http://www.llvm.org, 2018.
[41] Mentor Graphics. ModelSim, 2016.
[42] T. Murata. Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4):541–80, Apr. 1989.
[43] S. F. Nielsen, J. Sparsø, J. B. Jensen, and J. S. R. Nielsen. A behavioral

synthesis frontend to the Haste/TiDE design flow. In Proceedings of the
15th International Symposium on Asynchronous Circuits and Systems,
pages 185–94, Chapel Hill, N.C., May 2009.

[44] E. Nurvitadhi, J. C. Hoe, T. Kam, and S.-L. L. Lu. Automatic pipelin-
ing from transactional datapath specifications. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 30(3):441–
54, Mar. 2011.

[45] PandA. https://panda.dei.polimi.it/, 2020.

[46] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger.
A reconfigurable fabric for accelerating large-scale datacenter services.
In Proceedings of the 41st International Symposium on Computer
Architecture, pages 13–24, Minneapolis, Minn., June 2014.

[47] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundararajan.
CHiMPS: A high-level compilation flow for hybrid CPU-FPGA architec-
tures. In Proceedings of the 16th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pages 173–178, Monterey, Calif.,
Feb. 2017.

[48] B. R. Rau. Iterative modulo scheduling. International Journal of Parallel
Programming, 24(1):3–64, Feb. 1996.

[49] J. Sparsø. Current trends in high-level synthesis of asynchronous
circuits. In Proceedings of the 16th IEEE International Conference on
Electronics, Circuits, and Systems, pages 347–50, Yasmine Hammamet,
Dec. 2009.

[50] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang. ElasticFlow: A
complexity-effective approach for pipelining irregular loop nests. In
Proceedings of the 34th International Conference on Computer-Aided
Design, pages 78–85, Austin, Tex., Nov. 2015.

[51] L. Torczon and K. Cooper. Engineering a Compiler. Morgan Kaufmann,
second edition, 2011.

[52] R. Townsend, M. A. Kim, and S. A. Edwards. From functional programs
to pipelined dataflow circuits. In Proceedings of the 26th International
Conference on Compiler Construction, pages 76–86, Austin, TX, USA,
Feb. 2017.

[53] M. Vijayaraghavan and Arvind. Bounded dataflow networks and
latency-insensitive circuits. In Proceedings of the 9th International
Conference on Formal Methods and Models for Codesign, pages 171–
80, Cambridge, MA, July 2009.

[54] Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis,
2018.

[55] Xilinx Inc. Vivado High-Level Synthesis, 2018.
[56] Z. Zhang and B. Liu. SDC-based modulo scheduling for pipeline

synthesis. In Proceedings of the 32nd International Conference on
Computer-Aided Design, pages 211–218, San Jose, CA, Nov. 2013.

Lana Josipović (S’16) received a BSc (2013) and
MSc (2015) in Electrical Engineering and Infor-
mation Technology from the University of Zagreb,
Croatia. In 2021, she received a PhD in Computer
and Communication Sciences from EPFL, Switzer-
land. Her research interests include high-level syn-
thesis, compilers, and reconfigurable computing. She
is a recipient of the Google PhD Fellowship in Sys-
tems and Networking, Google Women Techmakers
Scholarship, and Best Paper Award at FPGA’20.

Andrea Guerrieri started working on embedded
systems in 2006. He received his MSc in Electronic
Engineering from Politecnico di Torino, Italy, in
2015. In 2017, he joined the Processor Architecture
Laboratory at EPFL, Switzerland, where he leads
and participates in research projects in collabora-
tion with industry. Recent projects involve high-
level synthesis, reconfigurable SoCs, and exploiting
dynamic partial reconfiguration of FPGAs for future
space missions and exoplanet observation. He is also
a co-developer of Dynamatic and a recipient of the

Best Paper Award at FPGA’20.

Paolo Ienne (S’90, M’96, SM’10) received the
laurea degree in Electrical Engineering from Politec-
nico di Milano, Italy, in 1991 and the Ph.D. degree in
Computer Science from EPFL, Switzerland, in 1996.
Since 2000, he has been a Professor with the School
of Computer and Communication Sciences, EPFL.
He serves on the steering committee of the ARITH,
FPL, and FPGA conferences, and is an associate
editor of ACM CSUR and ACM TACO. Ienne has
published over 200 articles in peer-reviewed journals
and international conferences, some of which have

received the Best Paper Awards at prestigious venues (including the FPGA,
FPL, CASES, and DAC conferences). He is a Senior Member of the IEEE
and a Member of the ACM.


