
Invited Tutorial
Dynamatic: From C/C++ to Dynamically Scheduled Circuits

Lana Josipović, Andrea Guerrieri, and Paolo Ienne
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

ABSTRACT
High-level synthesis tools, both commercial and academic, typi-
cally rely on static scheduling to produce high-throughput pipelines.
However, in applications with unpredictable memory accesses or
irregular control flow, these tools need to make pessimistic schedul-
ing assumptions. In contrast, dataflow circuits implement dynami-
cally scheduled circuits, in which components communicate locally
using a handshake mechanism and exchange data as soon as all
conditions for a transaction are satisfied. Due to their ability to
adapt the schedule at runtime, dataflow circuits are suitable for han-
dling irregular and control-dominated code. This paper describes
Dynamatic, an open-source HLS framework which generates syn-
chronous dataflow circuits out of C/C++ code. The purpose of this
paper is to give an introductory overview of Dynamatic and demon-
strate some of its use cases, in order to enable others to use the tool
and participate in its development.
ACM Reference Format:
Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2020. Invited Tutorial
Dynamatic: From C/C++ to Dynamically Scheduled Circuits. In Proceedings
of the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA ’20), February 23–25, 2020, Seaside, CA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3373087.3375391

1 INTRODUCTION
Dynamatic is an academic, open-source high-level synthesis com-
piler that produces synchronous dynamically-scheduled circuits
from C/C++ code. Dynamatic generates synthesizable RTL and
delivers significant performance improvements compared to state-
of-the-art commercial HLS tools in specific situations (e.g., applica-
tions with irregular memory accesses or control-dominated code).
The fully automated compilation flow of Dynamatic is based on
LLVM. In its current implementation, it directly targets Xilinx FP-
GAs. Dynamatic is customizable and extensible to target different
hardware platforms and it is easy to use with commercial tools such
as Vivado (Xilinx) and Modelsim (Mentor Graphics).

This paper serves as supporting material for the Dynamatic
tutorial. The purpose of the tutorial is to introduce the tool and
demonstrate some of its use cases. Tutorial participants can ex-
pect to (1) understand when, why, and how dynamically schedules
outperform static schedules, (2) learn how to use Dynamatic to
produce dynamically-scheduled circuits from high-level languages
such as C/C++, and (3) understand the basic structure of the tool

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FPGA ’20, February 23–25, 2020, Seaside, CA, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7099-8/20/02.
https://doi.org/10.1145/3373087.3375391

and its internal file formats so as to use it for research purposes or
to contribute to its development.

2 DYNAMICALLY SCHEDULED HLS
In this section, we provide some background on dynamic scheduling
and dataflow circuits. We describe the dataflow components used
in Dynamatic and give an overview of the strategy for creating
functionally correct dataflow circuits out of high-level code. We
then discuss the buffering of dataflow circuits as well as their out-
of-order memory interfaces.

2.1 Dataflow Circuits
Latency-insensitive protocols implement dynamically scheduled
dataflow circuits, built out of dataflow components which use a
handshake mechanism to exchange pieces of data, conventionally
referred to as tokens. Dyanamatic’s protocol uses two signals: one
indicates the availability of a new token from the source component
whereas the other indicates the readiness of the target component
to accept it, as indicated in Figure 1. In contrast to a predeter-
mined, centralized controller of statically scheduled circuits, this
distributed control system enables dataflow circuits to adapt the
schedule at runtime to variable latencies of particular memory
access patterns and control-flow decisions.

2.2 Dataflow Components
To implement latency-insensitivity, all standard datapath compo-
nents (representing program instructions) communicate with their
predecessors and successors using bidirectional control signals, as
described in the previous section. In addition to standard functional
units, dataflow circuits require specialized components which con-
trol the flow of data between components. Dynamatic employs the
following dataflow components, depicted in Figure 1:

• An eager fork (fork) replicates every token received at the
input to multiple outputs; as soon as one successor is ready to
accept the token, the fork sends it to the successor; however,
the fork can accept a new token only after all successors
have accepted the previous one.

• A lazy fork (lfork) has the same functionality as the eager
fork; however, it distributes a token to all successors at once
(i.e., all successors must be ready for the lazy fork to send
the token).

• A join acts as a synchronizer—its output is triggered only
after all of its inputs become available.

• A merge is a nondeterministic component which propagates
a token received on any of its input to its single output.

• A mux is a deterministic version of the merge; it propagates
to its single output the input token selected by a control
input.

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

1

https://doi.org/10.1145/3373087.3375391
https://doi.org/10.1145/3373087.3375391

Fork

Sink

Join

Source

Branch

Merge Mux CMerge

=

Figure 1: Dataflow components.

• A control merge (cmerge) is a merge which, apart from the
data output, has an output which indicates which of the
inputs was taken by the merge.

• A branch implements program control-flow statements; it
dispatches a token received at its single input to one of its
multiple outputs based on a condition.

• A source is always ready to issue tokens to its single succes-
sor.

• A sink is always ready to consume tokens from its single
predecessor.

2.3 Transforming Imperative Code into a
Dataflow Circuit

This section informally describes a way to transform a standard
IR into a functionally correct dataflow circuit. Formal details on
correctness and liveness can be found in previous work [6].

The programs we consider are organized into sections corre-
sponding to basic blocks (BBs), i.e., pieces of code with no con-
ditionals. All control flow statements are implemented between
the BBs and each BB contains a dataflow graph (DFG) of program
instructions.

Implementing control flow. To guarantee that data is always ac-
companied by control, the following must hold: (1) every BB must
provide data for every immediate successor BBs and exclusively to
them, and (2) every BB must receive data from its immediate pre-
decessor BBs and exclusively from them. Hence, every BB liveout
must be sent to the immediate successors using branch nodes; every
BB livein must be injected into a BB through a mux node, with
as many data inputs as there are predecessor BBs. This strategy
guarantees that every piece of data is sent correctly from BB to BB,
following the control flow of the program.

In-order control network. Some operations do not have any in-
puts (e.g., constants); we must ensure that they are appropriately

FIFO

1-slot N-buff 5-slot T-buff Store

*

Fork

FIFO

stall

Figure 2: A nontransparent (N-buff) and a transparent (T-
buff) buffer. The rightmost figure shows the role of trans-
parent buffers (i.e., FIFOs) in mitigating backpressure.

LSQ

LD

ST

LD

ST

BB is starting

Sequential order of
memory accesses

LD

ST

BB

Figure 3: Connecting a dataflow circuit to a load-store queue.

triggered and executed. Furthermore, a mux may receive multiple
inputs at the same time; we need to ensure that the inputs are ac-
cepted in order of program execution. To this end, we generate an
in-order control path that follows the control flow of the program
through the BBs—essentially, a data-less variable which is a live-in
and live-out of each and every BB. The tokens on this path are
used to trigger operations without inputs as many times as their BB
becomes active. This path enters each BB through a cmerge, which
connects to the muxes of the same BB and indicates the ordering
of the inputs from which they will receive data.

Constructing the datapath. Once the control flow is correctly
handled, the BB internals are straightforward to design—each in-
struction is literally converted into its dataflow component (i.e.,
functional units with inputs and outputs accompanied by hand-
shake signals). As every data exchange must be represented with
an explicit token transfer (i.e., handshake exchange), components
with multiple successors require a fork to replicate the output token
into a token for each of the successors. Unused component outputs
(e.g., branch outputs without successors) connect to sinks which
discard the unused tokens.

We will illustrate all these features with an example in the fol-
lowing sections.

2.4 Buffer Insertion
Dataflow circuits require buffers which serve as registers in stan-
dard synchronous designs. As in any synchronous circuit, all com-
binational cycles of a dataflow circuit must contain at least one
buffer. Yet, in contrast to standard registers, buffers can be placed
on any channel of a dataflow circuit without compromising its
functionality. However, they impact the following timing aspects:
(1) Critical path. As standard registers, buffers can be used to break

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

2

Figure 4: Dynamatic HLS compiler: software-to-hardware flow.

combinational paths of the circuit into two paths, possibly reducing
the critical path of the circuit. (2) Throughput. In dataflow circuits,
some paths may take a longer time to process data and prevent the
faster paths from consuming tokens at a higher rate, hence lowering
the throughput of the system. This effect can be mitigated using
buffers of larger sizes (i.e., FIFOs) to accumulate tokens and relieve
backpressure from the predecessor components, as illustrated in
the right of Figure 2.

Dynamatic employs a performance optimizationmodel [7] which
allows for resource-optimal buffer placement and sizing, with the
purpose of maximizing throughput at the desired clock frequency.
The buffers are placed on the edges between components and are
characterized with two properties: (1) transparency, which indicates
whether a buffer adds sequential delay onto a path (a nontranspar-
ent buffer is used to break the combinational delay and implies a
1-cycle latency, whereas a transparent buffer is implemented as a
pass-through element and does not increase cycle count), and (2)
capacity (i.e., number of slots), which is used to regulate throughput.
Examples of buffers with different properties are shown in Figure 2.
The buffer placement strategy employed by Dynamatic inserts such
buffers to achieve high-throughput, pipelined designs which meet
the desired clock period.

2.5 Memory Interfaces
If memory dependences cannot be determined at compile time,
dataflow circuits rely on load-store queues (LSQs), similar to those
present in dynamically scheduled processors, to resolve the depen-
dences dynamically, as the circuit runs. Yet, the LSQ of a dataflow
circuit has a fundamental requirement: it must be given explicit
information on the original program order of the memory accesses,
so that it can allocate them into the queue in the right order and
thus resolve them in a semantically correct way [5]. A way to pro-
vide this information is to send to the LSQ tokens which follow
the actual order of execution of the basic blocks of the circuit. This
ordering enables the LSQ to determine and resolve dependences as
memory access arguments from different BBs arrive out-of-order.
For this purpose, we use the control-only path described in Sec-
tion 2.3—the path forks into the LSQ from each BB which has load
and store instructions which connect to it; it triggers the allocation
of BBs as soon as the control flows there (i.e., as soon as a deci-
sion has been made to enter a particular BB). This mechanism is
illustrated in Figure 3.

LSQs allow dataflow circuits to execute memory accesses out-of-
order and to achieve high performance in situations which static
scheduling cannot efficiently handle. However, on FPGAs, LSQs
imply high resource requirements as well as power and clock degra-
dation. Hence, Dynamatic leverages compiler analysis to simplify
the memory interface—whenever the compiler can disambiguate
memory accesses, groups of accesses that cannot mutually conflict
use separate LSQs, while accesses which certainly have no depen-
dences with any other accesses are connected to simple memory
interfaces [3].

3 DYNAMATIC: THE BASIC FLOW
The basic flow of Dynamatic is depicted in Figure 4. Dynamatic
takes as input C or C++ code and produces a synthesizable hardware
description of the corresponding dataflow circuit.

The first two steps of the flow, analysis and elaboration, prepro-
cess the C files by prechecking code correctness, adding metainfor-
mation, and formatting it for the rest of the flow. The synthesis step
relies on the LLVM compiler framework [8]: the clang frontend
parses the C/C++ program and produces a static single assignment
intermediate representation (LLVM IR), which is then optimized
using standard LLVM transformation and analysis passes. The op-
timized IR is then given as input to a set of our custom passes. The
main pass adds dataflow components from Section 2.2, following
the transformations described in Section 2.3, to produce a func-
tionally correct dataflow circuit; other passes perform additional
analysis and optimizations (e.g., memory access analysis to create
the memory interfaces described in Section 2.5). The output is a
dataflow graph in the form of a DOT netlist. The DOT netlist is then
given as input to the optimizer which contains the buffer placement
tool—it uses a MILP solver to find the optimal buffer placement
and sizes for a user-defined clock period constraint, as indicated in
Section 2.4. This step produces an optimized DOT netlist. Finally,
the DOT describing the dataflow circuit is converted into a VHDL
netlist of dataflow components. This netlist, in conjunction with
a predefined library of dataflow components, can be synthesized
into an FPGA bitstream.

4 USING DYNAMATIC
This section provides instructions for installation and basic usage of
Dynamatic. We use a simple histogram application to demonstrate
the capabilities and outputs of the tool. This application, shown
in Figure 5, is representative of a case where dynamic scheduling

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

3

#define N 128

void histogram(int feature[], float weight[], float hist[], int n)

{

for (int i=0; i<n; ++i)

{

int m = feature[i];

float wt = weight[i];

float x = hist[m];

hist[m] = x + wt;

}

}

int main (void)

{

int feature[N];

float weight[N];

float hist[N];

int n = N;

for (int indx = 0; indx < N; indx++)

{

feature[indx] = indx +1;

weight[indx] = indx *2;

hist[indx] = 0;

}

histogram(feature , weight , hist , n);

return 0;

}

Figure 5: Histogram C code.

is useful: a possible read-after-write dependence across loop iter-
ations will prevent any static scheduling technique to implement
a pipelined circuit, whereas dataflow circuits have the ability to
resolve such dependences dynamically during execution [4].

4.1 Download and Installation
Dynamatic is publicly available for download on the website
dynamatic.epfl.ch. The website contains the link to the source
code in GitHub, an auto-install package, and a virtual machine with
the pre-installed and ready-to-use tool.

Automatic Installation. The automated installation procedure
installs and builds the main Dynamatic flow using the latest ver-
sion of the GitHub source code. The minimum requirements for
installation are as follows:

• Operating system: Linux CentoS 7.6 or Ubuntu 18.04
• Memory: 4GB of RAM
• Storage space: 25 GB
• Installation time: ∼2 hours

Dynamatic has dependences on the following packages, whichmust
be installed beforehand:

• g++
• cmake
• git
• pkg-config
• dot
• cbc
• graphviz

**

******Dynamic High-Level Synthesis Compiler***********************

******Andrea Guerrieri - Lana Josipovic - EPFL-LAP 2019 **********

******Version 0.2 - Build 0.1 ************************************

**

Dynamatic> help

help

List of supported commands:

help : Shows Available commands

? : Shows Available commands

source : Source a script file

set_project : Set the project directory

set_top_file : Set the top level file

set_period : Set the hardware period

set_target : Set target FPGA

analyze : Analyze source

elaborate : Elaborate source

synthesis : C synthesis

optimize : Timing optmizations

write_hdl : Generate VHDL

reports : Report resources and timing

cdfg : Show control data flow graph

status : Report design status

simulate : Simulation

update : Check for updates

history : History command list

about : Disclaimers & Copyrights

exit : Exit

Done

Dynamatic>

Figure 6: Dynamatic shell.

To install and build Dynamatic, create a folder in which the tool
will be installed, download the file "dhls_setup_self_extract.sh",
and place it into the target folder. From the target folder, run the
following command:

bash ./dhls_setup_self_extract.sh.

Virtual Machine. The virtual machine contains the entire Dy-
namatic toolchain, preinstalled with all of its dependences. The
minimum requirements for using the virtual machine are as fol-
lows:

• Virtualization Environment: Oracle Virtual Box
• Operating system: Windows or Linux
• Memory: 4GB of RAM to dedicate to the VM
• Storage space: 80 GB

4.2 Writing the Input Code
The input to Dynamatic is a subset of the C/C++ language. The input
code must contain a main function which calls a single function to
be synthesized by Dynamatic. All input data to the function (e.g.,
function arguments, array data, etc.) must be initialized in the main.

When writing input code for the current version of Dynamatic,
the user should follow these restrictions:

• Recursive calls and dynamic memory allocation are not sup-
ported.

• All function calls from the top function to synthesize (i.e.,
from the function called from the main) must be inlined.

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

4

dynamatic.epfl.ch

Command Description

source Source a script file. All the commands in the file will be parsed and executed.

set_project Set the project directory. The default value is "." (local directory).

set_top_file Set the top level file to be synthesized. The file should be in a directory called "src".

set_period Set the target clock period of the output circuit, expressed in nanoseconds.

set_target Set the target FPGA. The default target is a Xilinx Kintex-7 device (7k160tfbg484).

analyze Perform initial source file analysis; check syntax correctness and identify pragmas.

elaborate Prepare the code for synthesis by removing comments and adding information used by the tool internals.

synthesis Perform the synthesis from C/C++ into a dataflow circuit by invoking standard and custom LLVM passes.

optimize Optimize the circuit; insert buffers to optimize throughput and meet clock period.

write_hdl Translate the DOT intermediate representation into a hardware description language (VHDL).

reports Print resource utilization and timing reports.

cdfg Visualize the control/dataflow graph of the synthesized circuit.

status Provide the status of the current design, e.g., none, setup, analyzed, elaborated, synthesized, and optimized.

simulate Simulate the generated hardware by interfacing Dynamatic with a VHDL simulator.

update Automatically search for updates and install them if available.

history Show the list of recently used commands.

about Print information about Dynamatic.

help Show the help.

exit Terminate the Dynamatic execution.

Table 1: Command list.

• Global variables should be provided to functions as argu-
ments (either independently or in an appropriate structure).

• Pointers to arrays should not be used.

Histogram Example. The program in Figure 5 is structured to be
compatible with the Dynamatic frontend: the main program initial-
izes the input data (i.e., function arguments) and calls the histogram
function which will be synthesized into a dataflow circuit.

4.3 Running Dynamatic
Prior to running Dynamatic, the terminal needs to be initialized by
setting the environment and shell variables. The initialization can
be performed using an initialization script file (generated during
the installation process and preexisting in the virtual machine) by
invoking the following command:

source install_path/init_dhls.sh

The simplest way to interact with the tool is through the
Dynamatic shell. To start the shell, type:

dynamatic .

An example of the initialized shell is given in Figure 6. Ta-
ble 1 reports the full commands list currently implemented in
Dynamatic and usable through the shell.

#Author: Andrea Guerrieri - EPFL -LAP

#email:andrea.guerrieri@epfl.ch
#Dynamatic synthesis script

#ver .1.0

set_project .

set_top_file histogram.cpp

set_period 5.0

set_target 7k160tfbg484

analyze

elaborate

synthesis

optimize

write_hdl

exit

Figure 7: Dynamatic shell script example.

Different design steps can be automated using Dynamatic shell
scripting. Figure 7 shows an example of a script which includes
the commands for the complete compilation flow. The sequence
of commands can be customized by the user, depending on the
design objectives. The Dynamatic script can be sourced from the
shell using the command source or passed as the first argument to
Dynamatic itself, as follows:

dynamatic synthesis.tcl

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

5

"phi_2" [type = "Mux", bbID = 2, in = "in1?:1 in2:32 in3:32 ", out = "out1:32", delay=0.366];

"load_11" [type = "Operator", bbID = 2, op = "lsq_load_op", bbID= 2, portId= 0, in = "in1:32 in2:32", out = "out1:32 out2:32 ", delay=0.000, latency=2, II=1];

"fadd_12" [type = "Operator", bbID = 2, op = "fadd_op", in = "in1:32 in2:32 ", out = "out1:32 ", delay=0.966, latency=10, II=1];

"store_0" [type = "Operator", bbID = 2, op = "lsq_store_op", bbID= 2, portId= 0, in = "in1:32 in2:32 ", out = "out1:32 out2:32", delay=0.000, latency=0, II=1];

"cst_2" [type = "Constant", bbID = 2, in = "in1:32", out = "out1:32", value = "0x00000001"];

"fork_0" [type = "Fork", bbID = 1, in = "in1:32", out = "out1:32 out2:32 "];

"branch_0" [type = "Branch", bbID = 1, in = "in1:32 in2?:1", out = "out1+:32 out2-:32"];

"LSQ_hist" [type = "LSQ", bbID = 0, in = "in1:0*c0 in2:32*l0a in3:32*s0a in4:32*s0d ", out = "out1:32*l0d out2:0*e ", memory = "hist", bbcount = 1, ldcount = 1,

stcount = 1, fifoDepth = 16, numLoads = "{1}", numStores = "{1}", loadOffsets = "{{0;0}}", storeOffsets = "{{1;0}}", loadPorts = "{{0;0}}", storePorts = "{{0;0}}"];

"phi_2" -> "fork_1" [color = "red", from = "out1", to = "in1"];

"load_8" -> "fadd_12" [color = "red", from = "out1", to = "in2"];

"load_11" -> "fadd_12" [color = "red", from = "out1", to = "in1"];

"fadd_12" -> "store_0" [color = "red", from = "out1", to = "in1"];

"cst_2" -> "add_15" [color = "red", from = "out1", to = "in2"];

"add_15" -> "fork_3" [color = "red", from = "out1", to = "in1"];

Figure 8: Snippet of the intermediate representation of the dataflow circuit in DOT format. The netlist contains a list of all
dataflowcomponents present in the design and specifies the channels (i.e., connections) between the components. Components
and channels are described with additional attributes, listed in Table 2.

Dynamatic> synthesis

synthesis

compile histogram_elaborated.cpp ./home/dynamatic/Dynamatic/etc/llvm-6.0/bin/clang -
emit-llvm -S -c src/histogram_elaborated.cpp -o .histogram_elaborated.cpp.ll

; ModuleID = '.histogram_elaborated.cpp_mem2reg_constprop_simplifycfg_die.ll'

source_filename = "src/histogram_elaborated.cpp"

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: noinline nounwind uwtable

define void @_Z9histogramPiPfS0_i(i32* %feature, float* %weight, float* %hist, i32 %n)
#0 {

block1:

%cmp1 = icmp sgt i32 %n, 0

br i1 %cmp1, label %block2, label %block3

block2: ; preds = %block2, %block1

%i.02 = phi i32 [%inc, %block2], [0, %block1]

%"2" = zext i32 %i.02 to i64

%arrayidx = getelementptr inbounds i32, i32* %feature, i64 %"2"

%"3" = load i32, i32* %arrayidx, align 4

%"4" = zext i32 %i.02 to i64

%arrayidx2 = getelementptr inbounds float, float* %weight, i64 %"4"

%"5" = load float, float* %arrayidx2, align 4

%idxprom3 = sext i32 %"3" to i64

%arrayidx4 = getelementptr inbounds float, float* %hist, i64 %idxprom3

%"6" = load float, float* %arrayidx4, align 4

%add = fadd float %"6", %"5"

%idxprom5 = sext i32 %"3" to i64

%arrayidx6 = getelementptr inbounds float, float* %hist, i64 %idxprom5

store float %add, float* %arrayidx6, align 4

%inc = add nuw nsw i32 %i.02, 1

%cmp = icmp slt i32 %inc, %n

br i1 %cmp, label %block2, label %block3

block3: ; preds = %block2, %block1

ret void

}

Figure 9: LLVM intermediate representation of the his-
togram function in Figure 5, obtained from C code during
synthesis. This IR is the starting point of the conversion into
a dataflow circuit.

4.4 Synthesis
After the correctness and the format of the code have been checked
in the preprocessing compiler steps (i.e., analysis and elaboration),
it can be synthesized into a dataflow circuit. The synthesis step
invokes clang and LLVM to transform the function into a static
single assignment intermediate representation, which is the starting
point for the dataflow conversion. Our custom passes transform
this IR into a dataflow circuit representation, following the rules
described in Section 2.3.

Dynamatic employs an intermediate representation for describ-
ing the synthesized dataflow circuits—the specification is based on
the DOT language from Graphviz [1]. A dataflow circuit is repre-
sented by a digraph where each node corresponds to a component
and each edge corresponds to a channel. Components have input
and output ports; channels are unidirectional and connect an output
port from one component to an input port of another component.
Every port connects to exactly one input or output channel, which
explicitly models a single token transfer from one component to
another.

The components and channels can be annotated with attributes
in the DOT netlist. These attributes represent component and chan-
nel properties which are needed to generate a correct VHDL netlist
as well as information which is exploited by certain optimization
steps (i.e., buffer placement). The attribute descriptions are sum-
marized in Table 2. An absence of a numerical attribute assumes a
zero value.

A DOT netlist can be visualized using the following command:

dot -Tpng file.dot > file.png

This command outputs a graphical representation of the con-
trol/dataflow graph, with components grouped into basic blocks
and connected via channels.

Histogram example. Dynamatic synthesis invokes clang and
LLVM to transform the histogram function into a static single
assignment intermediate representation, reported in Figure 9. This
IR is the starting point for the dataflow conversion. Our custom
passes transform this IR into a dataflow circuit representation and
output it in DOT format—a snippet is shown in Figure 8 and the
complete control/dataflow graph is depicted in Figure 11. As in
the LLVM IR, the operations are organized into three basic blocks
(green rectangles in Figure 11); Dynamatic transforms the graph
to propagate data into each block from its immediate predecessor
blocks, as described in Section 2.3; the channels between different
BBs are depicted in blue. Each LLVM operation is translated into
an equivalent dataflow component and components with multiple
successors in the same BB are followed by forks. The yellow chan-
nels and the components they connect represent the control-only

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

6

Attribute Description

type Type of dataflow component (e.g., fork, merge).

in, out
Lists of input and output ports. Each port has a suffix rep-
resenting its bitwidth (e.g., in1:32 indicates a 32-bit input);
zero-width ports are control-only.

delay Combinational delay of a component or a port in ns.

latency Latency (in clock cycles) of pipelined components.

II Initiation interval (in clock cycles) of pipelined units.

slots Number of buffer slots.

transparent Buffer transparency (true or false).

bbID Index of the BB that the component belongs to.

op Operation type of an LLVM arithmetic or memory instruc-
tion (i.e., add, sub, load).

conditional
suffixes

Suffix ’?’ represents the condition port. ’+’ and ’-’ indicate
true and false ports, respectively. These attributes describe
conditional components (e.g., branch, LLVM select, mux).

memory
attributes

Attributes for memory operations and interface; used for
generating application-specific memory interfaces.

value Constant value (in hexadecimal).

Table 2: Attributes used in the intermediate representation
in DOT format.

network Dynamatic inserts; it follows the control flow through
the BBs, triggers certain constants, and communicates with the
memory interface.

In the figure, the memory interface nodes are depicted as
LSQ_hist, MC_feature, and MC_weight. As discussed in Section 2.5,
the LSQ is used to dynamically resolve dependences between the
reads and writes of array hist. As memory hazards are not possi-
ble for the other two arrays, they do not need an LSQ but connect
directly to their BRAMs through the MC nodes. The connections
between the memory operations and the interfaces they connect to
are shown in green in the figure.

4.5 Optimizing Performance
Circuits produced in the previous step can have combinational
cycles and some paths may cause backpressure. The optimization
step inserts buffers to meet the clock period constraint, break all
combinational loops, and relieve backpressure from the forks to
achieve a pipelined design, as described in Section 2.4. This step
will output a new DOT netlist—the netlist will indicate the channels
where buffers are inserted and all buffers will be described with
their slot count and transparency using the corresponding attributes
from Table 2.

Histogram example. The circuit produced in the previous step has
several combinational cycles across the control-flow loop through
BB2. Furthermore, there are some paths that cause backpressure and
prevent pipelining: for instance, the floating-point adder fadd_12
takes 10 cycles to process a piece of data (see latency attribute in
Figure 8); the delayed data arrival to store_0 causes the store to

Dynamatic> optimize
Optimize

buffers shab 5 0.0 cbc 1 20 ./reports/histogram_elaborated.dot
./reports/histogram_elaborated_bbgraph.dot
./reports/histogram_elaborated_optimized.dot
./reports/histogram_elaborated_bbgraph_optimized.dot 0

===================
READING BB DOT FILE
===================
Reading graph name...
Reading set of nodes...
Reading set of edges between nodes...
Setting BB frequencies...
BB1 : 1
BB2 : 128
BB3 : 1

Adding elastic buffers with period=5 and buffer_delay=0
======================
ADDING ELASTIC BUFFERS
======================
Extracting marked graphs

Iteration 1
Storing CFDFC and corresponding Marked Graph...

Covered Frequency = 127, Total Frequency = 129, Coverage = 0.984496

Creating MILP variables...

Adding buffer in branch_0:out1 -> phi_2:in2 | slots: 1, trans: 0 | BB1 -> BB2
Adding buffer in branch_1:out1 -> phi_n0:in2 | slots: 1, trans: 0 | BB1 -> BB2
Adding buffer in branchC_4:out1 -> phiC_1:in1 | slots: 1, trans: 0 | BB1 -> BB2
Adding buffer in branchC_5:out2 -> phiC_2:in2 | slots: 1, trans: 0 | BB2 -> BB3
Adding buffer in load_8:out1 -> fadd_12:in2 | slots: 1, trans: 1 | BB2 -> BB2
Adding buffer in add_15:out1 -> fork_3:in1 | slots: 2, trans: 0 | BB2 -> BB2
Adding buffer in fork_2:out2 -> store_0:in2 | slots: 11, trans: 1 | BB2 -> BB2
Adding buffer in branch_3:out1 -> phi_n0:in3 | slots: 2, trans: 0 | BB2 -> BB2
Adding buffer in branchC_5:out1 -> phiC_1:in2 | slots: 2, trans: 0 | BB2 -> BB2
Adding buffer in LSQ_hist:out1 -> load_11:in1 | slots: 1, trans: 0 | BB0 -> BB2
Adding buffer in MC_feature:out1 -> load_5:in1 | slots: 1, trans: 0 | BB0 -> BB2
Adding buffer in MC_weight:out1 -> load_8:in1 | slots: 1, trans: 0 | BB0 -> BB2

*** Throughput achieved in sub MG 0: 1.00 ***

Figure 10: Optimize step (buffer insertion).

stall the address coming from fork_2 and prevents this fork from
issuing new tokens quickly.

The optimization report is given in Figure 10, which indicates the
types and sizes of instantiated buffers. Note that the aforementioned
path from fork_2 to store_0 now contains a large transparent
buffer (i.e., a FIFO) which accumulates address values while the
floating-point adder computes, hence alleviating backpressure and
enabling pipelined execution. Small nontransparent buffers break
combinational cycles and ensure that the period constraint (in this
example, set to 5 ns, as indicated in the report) is met.

4.6 VHDL Output
The final DOT output of the previous step can be translated into
a functional, high-performance dataflow circuit. The write_hdl
command produces the resulting VHDL netlist and generates
application-specific memory components. Together with the Dy-
namatic component library, these files form a complete hardware
design; its bitstream can be produced using standard tools (i.e.,
Vivado) and it can be functionally verified using simulation envi-
ronments such as ModelSim [9].

Application-specific outputs. The VHDL component netlist ob-
tained in the final compilation step is a direct translation of the DOT
netlist into an HDL description: all components are translated into
VHDL component instantiations and all channels are translated

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

7

into VHDL signal connections. Every channel is represented with
three signals: a data signal and a handshake pair. All arguments
of the implemented function, as well as signals which connect to
memory, are specified as the top entity input and output ports, as
shown in Figure 13. The current version of Dynamatic assumes
dual-port BRAMmemory and creates the interfaces accordingly; if a
memory requires an LSQ, it is custom-generated using the memory
attributes from Table 2, which specify the LSQ depth, port counts
and types, as well as access ordering information which the LSQ
relies on for correct execution, as indicated in Section 2.5.

RTL component library. The Dynamatic flow is device-
independent—the produced VHDL netlist, as well as our HDL imple-
mentations of the dataflow components, are usable with any FPGA
or for ASIC design. All dataflow components are fully parametriz-
able to arbitrary bitwidths and, in most cases (i.e., as far as com-
ponent functionality permits), the number of inputs and outputs.
The arithmetic units employed by Dynamatic currently target the
Kintex-7 family of Xilinx FPGAs; we extract them from the Vivado
environment [10] and instantiate using Xilinx component libraries.
To use these components, the user must have a valid Vivado license.
All components employ a custom wrapper with handshake signals
to be compatible with the rest of our dataflow components. Future
releases of Dynamatic will extend the component library to target
other devices families and vendors as well.

Histogram example. The translation of the histogram DOT repre-
sentation into a VHDL netlist produces the report in Figure 12; it
outlines all the components instantiated in the VHDL netlist. As
explained in the previous section, the netlist top entity in Figure 13
contains BRAM ports for all three arrays of the original code as
well as a simple port for the argument n. In addition, the entity has
ports which represent the start and the end point of the control-
only path—they trigger circuit execution and indicate execution
termination, respectively.

An example of an instantiated component as well as its connec-
tions to other components in the VHDL netlist is given in Figures 14
and 15. Each data input (dataInArray) and output (dataOutArray)
port is accompanied by a pair of ports for the handshake signals:
signals arriving on pValidArray ports correspond to valid signals
of the predecessors and readyArray signals indicate the availabil-
ity of the adder inputs to accept data. Similarly, together with the
output data, the adder outputs a validity signal on the validArray
port; the signal will stay active until the adder receives the confir-
mation from the successor that the data has been accepted using
the nReadyArray port.

Apart from the VHDL netlist, this step will generate an LSQ for
the array hist. This component will be customized to the descrip-
tion in the DOT file; in this case, the LSQ depth will be equal to
16, it will connect to a single BB, one load port, and one store port
(as the attributes fifoDepth, bbcount, ldcount, and stcount in
Figure 8 indicate). The rest of the attributes are used for configuring
the LSQ internals and ensuring correct access ordering.

5 ADVANCED TOPICS
Dynamatic can be easily customized or extended with new features.
This section outlines some extension possibilities.

Figure 11: Intermediate representation of a dataflow circuit,
organized as a CDFG of dataflow components grouped into
BBs. The circuit corresponds to the histogram example.

5.1 Extending the Flow
Dynamatic can be extended with new features at any point of its
flow—we here provide some insights into where to integrate new
optimizations.

Adding pragmas. Dynamatic has custom pragma support—
pragmas defined by the user can easily be added to the existing
flow. The pragmas specified in the input code are checked in the
preprocessing steps (i.e., analyze and elaborate) and propagated to
the rest of the flow. The user can access the list of pragmas from

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

8

Dynamatic> write_hdl

**
******Dynamic High-Level Synthesis Compiler **********************
******Andrea Guerrieri - Lana Josipovic - EPFL-LAP 2019 **********
******Dot to VHDL Generator***************************************
**
Parsing ./reports/histogram_elaborated_optimized.dot

Report Modules
+--+
| Node_ID| Name| Module_type| Inputs| Outputs|
+--+
0	n	Entry	1	1
1	cst_0	Constant	1	1
2	icmp_0	Operator	2	1
3	cst_1	Constant	1	1
4	phi_2	Mux	3	1
5	load_5	Operator	2	2
6	load_8	Operator	2	2
7	load_11	Operator	2	2
8	fadd_12	Operator	2	1
9	store_0	Operator	2	2
10	cst_2	Constant	1	1
11	add_15	Operator	2	1
12	icmp_16	Operator	2	1
13	ret_0	Operator	1	1
14	phi_n0	Mux	3	1
15	fork_0	Fork	1	2
16	fork_1	Fork	1	3
17	fork_2	Fork	1	2
18	fork_3	Fork	1	2
19	fork_4	Fork	1	2
20	branch_0	Branch	2	2
21	branch_1	Branch	2	2
22	fork_5	Fork	1	3
23	branch_2	Branch	2	2
24	branch_3	Branch	2	2
25	fork_6	Fork	1	3
26	LSQ_hist	LSQ	4	2
27	MC_feature	MC	4	2
28	MC_weight	MC	4	2
29	end_0	Exit	4	1
30	start_0	Entry	1	1
31	forkC_8	Fork	1	2
32	branchC_4	Branch	2	2
33	phiC_1	CntrlMerge	2	2
34	forkC_9	Fork	1	2
35	branchC_5	Branch	2	2
36	phiC_2	Merge	2	1
37	sink_0	Sink	1	0
38	sink_1	Sink	1	0
39	sink_2	Sink	1	0
40	sink_3	Sink	1	0
41	source_0	Source	0	1
42	source_1	Source	0	1
43	fork_11	Fork	1	2
44	Buffer_1	TEHB	1	1
45	Buffer_2	Buffer	1	1
46	Buffer_3	Fifo	1	1
47	Buffer_4	Buffer	1	1
48	Buffer_5	Buffer	1	1
49	Buffer_6	Buffer	1	1
50	Buffer_7	Buffer	1	1
51	Buffer_8	Buffer	1	1
52	Buffer_9	Buffer	1	1
53	Buffer_10	Buffer	1	1
54	Buffer_11	Buffer	1	1
55	Buffer_12	Buffer	1	1
+--+
Generating ./reports/histogram_elaborated_optimized.vhd
Generating LSQ 0 component...
java -jar -Xmx7G /home/dynamatic/Dynamatic/bin/lsq.jar --target-dir . --spec-
file ./reports/histogram_elaborated_optimized_lsq0_configuration.json
Elaborating design...
Done elaborating.

Figure 12: Component report after envoking the write_hdl
command, which converts the DOT netlist into an equiva-
lent VHDL netlist.

an LLVM pass and use it to modify the dataflow circuit according
to the information present in the pragma.

Adding LLVM passes. The pass which converts LLVM IR into a
dataflow circuit is based on LLVM—it relies on LLVM information
to transform the CDFG. Once this pass outputs the dataflow graph
(in DOT form), the following steps do not interact with LLVM any
further. Hence, all LLVM-related optimizations should be inserted
before this point of the flow. One might insert an LLVM pass before
the conversion to dataflow, or build a pass which interacts with the

-- ==

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use work.customTypes.all;

-- ==

entity histogram_elaborated is

port (

clk: in std_logic;

rst: in std_logic;

start_in: in std_logic_vector (0 downto 0);

start_valid: in std_logic;

start_ready: out std_logic;

end_out: out std_logic_vector (0 downto 0);

end_valid: out std_logic;

end_ready: in std_logic;

n_din : in std_logic_vector (31 downto 0);

n_valid_in : in std_logic;

n_ready_out : out std_logic;

hist_address0 : out std_logic_vector (31 downto 0);

hist_ce0 : out std_logic;

hist_we0 : out std_logic;

hist_dout0 : out std_logic_vector (31 downto 0);

hist_din0 : in std_logic_vector (31 downto 0);

hist_address1 : out std_logic_vector (31 downto 0);

hist_ce1 : out std_logic;

hist_we1 : out std_logic;

hist_dout1 : out std_logic_vector (31 downto 0);

hist_din1 : in std_logic_vector (31 downto 0);

feature_address0 : out std_logic_vector (31 downto 0);

feature_ce0 : out std_logic;

feature_we0 : out std_logic;

feature_dout0 : out std_logic_vector (31 downto 0);

feature_din0 : in std_logic_vector (31 downto 0);

feature_address1 : out std_logic_vector (31 downto 0);

feature_ce1 : out std_logic;

feature_we1 : out std_logic;

feature_dout1 : out std_logic_vector (31 downto 0);

feature_din1 : in std_logic_vector (31 downto 0);

weight_address0 : out std_logic_vector (31 downto 0);

weight_ce0 : out std_logic;

weight_we0 : out std_logic;

weight_dout0 : out std_logic_vector (31 downto 0);

weight_din0 : in std_logic_vector (31 downto 0);

weight_address1 : out std_logic_vector (31 downto 0);

weight_ce1 : out std_logic;

weight_we1 : out std_logic;

weight_dout1 : out std_logic_vector (31 downto 0);

weight_din1 : in std_logic_vector (31 downto 0));

end;

Figure 13: Top entity interface.

dataflow pass. An example of such a pass is the Dynamatic pass for
memory analysis [3]—it is an independent pass which uses LLVM
and Polly [2] to analyze memory accesses. The main pass then uses
these results to appropriately design the memory interfaces and
the results of this pass are reflected in the output DOT netlist.

Modifying the dataflow graph. Once the first part of the flow
produces a functional dataflow circuit, it can be further modified
independently of the LLVM framework. An example of such modi-
fication is the buffer placement—it inputs the DOT file from the pre-
vious step, appropriately adds buffers, and produces another DOT
file, which is then sent to the backend of the framework. A user can
easily insert additional optimization steps (either before or after the
buffer placement) in the same manner—this approach circumvents
the need to modify the rest of the codebase and the modifications
can be easily interfaced with the rest of the framework through

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

9

fadd_12: entity work.fadd_op(arch) generic map (2,1,32,32)

port map (

clk => fadd_12_clk ,

rst => fadd_12_rst ,

dataInArray (0) => fadd_12_dataInArray_0 ,

dataInArray (1) => fadd_12_dataInArray_1 ,

pValidArray (0) => fadd_12_pValidArray_0 ,

pValidArray (1) => fadd_12_pValidArray_1 ,

readyArray (0) => fadd_12_readyArray_0 ,

readyArray (1) => fadd_12_readyArray_1 ,

nReadyArray (0) => fadd_12_nReadyArray_0 ,

validArray (0) => fadd_12_validArray_0 ,

dataOutArray (0) => fadd_12_dataOutArray_0

);

Figure 14: Component instantiation in the VHDL netlist.

the DOT format. Apart from the ability to implement custom op-
timization passes, modifying the DOT files is useful for manual
explorations (e.g., changing arithmetic units, inserting buffers or
modifying their properties, changing the memory interface type).

5.2 Adding Custom Components
As previously mentioned, Dynamatic is accompanied by a library
of arithmetic units. It is straightforward for a user to add new
components to the library.

Like any other dataflow component, any arithmetic unit requires
a wrapper with handshake signals to communicate with the rest
of the components. Our library provides a wrapper in which one
can simply place a new arithmetic unit; the wrapper requires in-
formation on the component latency to correctly propagate the
control through the unit. Once the component has been created,
it is trivial to add it to the DOT netlist or to replace an existing
component with the new one as well as to set its timing parameters
(i.e., latency, delay, II). It is important to note that changes to com-
ponents or their timing may impact the timing properties of the
design—it is therefore recommended to perform such modifications
prior to buffer placement, so that they are taken into account when
buffering the design.

6 CONCLUSIONS
This paper provides an overview of the Dynamatic framework and
some of its use cases. The Dynamatic team invites the community
to try out the first generation of our HLS tool and to contribute to
its development. For downloading the framework, more examples,
and further documentation, please visit the Dynamatic website:
dynamatic.epfl.ch.

load_8_clk <= clk;

load_8_rst <= rst;

fadd_12_pValidArray_1 <= load_8_validArray_0;

load_8_nReadyArray_0 <= fadd_12_readyArray_1;

fadd_12_dataInArray_1 <= load_8_dataOutArray_0;

MC_weight_pValidArray_0 <= load_8_validArray_1;

load_8_nReadyArray_1 <= MC_weight_readyArray_0;

MC_weight_dataInArray_0 <= load_8_dataOutArray_1;

load_11_clk <= clk;

load_11_rst <= rst;

fadd_12_pValidArray_0 <= load_11_validArray_0;

load_11_nReadyArray_0 <= fadd_12_readyArray_0;

fadd_12_dataInArray_0 <= load_11_dataOutArray_0;

LSQ_hist_pValidArray_1 <= load_11_validArray_1;

load_11_nReadyArray_1 <= LSQ_hist_readyArray_1;

LSQ_hist_dataInArray_1 <= load_11_dataOutArray_1;

fadd_12_clk <= clk;

fadd_12_rst <= rst;

store_0_pValidArray_0 <= fadd_12_validArray_0;

fadd_12_nReadyArray_0 <= store_0_readyArray_0;

store_0_dataInArray_0 <= fadd_12_dataOutArray_0;

Figure 15: Signal connections (corresponding to channels be-
tween dataflow components) in the VHDL netlist.

REFERENCES
[1] Graphviz graph visualization software. https://www.graphviz.org/.
[2] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N. Pouchet.

Polly-polyhedral optimization in LLVM. In Proceedings of the First International
Workshop on Polyhedral Compilation Techniques (IMPACT), pages 1–6, Chamonix,
Apr. 2011.

[3] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne. Shrink it or shed
it! Minimize the use of LSQs in dataflow designs. In Proceedings of the IEEE
International Conference on Field Programmable Technology, Tianjin, Dec. 2019.
To appear.

[4] L. Josipović, P. Brisk, and P. Ienne. From C to elastic circuits. In Proceedings of
the 51st Annual Asilomar Conference on Signals, Systems, and Computers, pages
121–25, Pacific Grove, Calif., Nov. 2017.

[5] L. Josipović, P. Brisk, and P. Ienne. An out-of-order load-store queue for spa-
tial computing. ACM Transactions on Embedded Computing Systems (TECS),
16(5s):125:1–125:19, Sept. 2017.

[6] L. Josipović, R. Ghosal, and P. Ienne. Dynamically scheduled high-level syn-
thesis. In Proceedings of the 26th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 127–36, Monterey, Calif., Feb. 2018.

[7] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella. Buffer placement
and sizing for high-performance dataflow circuits. In Proceedings of the 28th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Seaside,
Calif., Feb. 2020.

[8] The LLVM Compiler Infrastructure. http://www.llvm.org.
[9] Mentor Graphics. ModelSim.
[10] Xilinx Inc. Vivado High-Level Synthesis.

Session: Morning Tutorial Session FPGA ’20, February 23–25, 2020, Seaside, CA, USA

10

dynamatic.epfl.ch

	Abstract
	1 Introduction
	2 Dynamically Scheduled HLS
	2.1 Dataflow Circuits
	2.2 Dataflow Components
	2.3 Transforming Imperative Code into a Dataflow Circuit
	2.4 Buffer Insertion
	2.5 Memory Interfaces

	3 Dynamatic: The Basic Flow
	4 Using Dynamatic
	4.1 Download and Installation
	4.2 Writing the Input Code
	4.3 Running Dynamatic
	4.4 Synthesis
	4.5 Optimizing Performance
	4.6 VHDL Output

	5 Advanced Topics
	5.1 Extending the Flow
	5.2 Adding Custom Components

	6 Conclusions
	References

