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ABSTRACT
With FPGAs facing broader application domains, the conversion
of imperative languages into dataflow circuits has been recently
revamped as a way to overcome the conservatism of statically
scheduled high-level synthesis. Apart from the ability to extract
parallelism in irregular and control-dominated applications, dy-
namic scheduling opens a door to speculative execution, one of the
most powerful ideas in computer architecture. Speculation allows
executing certain operations before it is known whether they are
correct or required: it can significantly increase fine-grain paral-
lelism in loops where the condition takes many cycles to compute;
it can also increase the performance of circuits limited by potential
dependencies by assuming independence early on and by revert-
ing to the correct execution if the prediction was wrong. In this
work, we detail our methodology to enable tentative and reversible
execution in dynamically scheduled dataflow circuits. We create
a generic framework for handling speculation in dataflow circuits
and show that our approach can achieve significant performance
improvements over traditional circuit generation techniques.
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1 INTRODUCTION
In the realm of processors, statically scheduled processors (usually
referred to as very long instruction word or VLIW processors) have
most suffered from the inability to accommodate arbitrary forms
of speculative execution: Predicated execution (committing an in-
struction only if a specific condition is true) can be seen as a form of
speculation when used to implement if -conversion (two branches
of an if-then-else statement are both executed until the value of the
condition is known). Yet, even aggressive predication is not applica-
ble to every performance-critical control decision and Intel, as part
of a failed attempt to develop a competitive general-purpose VLIW
architecture, had to introduce a few dedicated speculative instruc-
tions (e.g., advanced and speculative loads [13]), de facto squeezing
back into a statically scheduled processor some essential dynamic
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float d=0.0; x=100.0; int i=0;

while (d<x) do {
d = a[i] + b[i];
c[i] = d;
i++; }

1: a[0]=50.0; b[0]=30.0 
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

Figure 1: A nonspeculative schedule, compared to a schedule pro-
duced by a system supporting speculative behavior. The code below
the schedules takes multiple clock cycles to compute the condition
for executing another loop iteration. A nonspeculative circuit needs
to wait for the condition, whereas the speculative circuit tentatively
starts another iteration and then discards the newly computed val-
ues if they are later on determined unneeded.

behaviour. We believe that, analogously, statically scheduled cir-
cuits, such as those generated by common high-level synthesis (HLS)
tools, cannot be competitive in some applications because of their
inability to exploit broad classes of speculative execution.

On the other hand, part of the success of speculative execution
in dynamically scheduled processors is the fact that a fairly lim-
ited set of universal techniques (i.e., register renaming, reordering
buffers, and commit mechanisms) is sufficient to support specula-
tion of virtually any critical decision worth predicting. Dataflow
circuits are the spatial-computing equivalent of dynamically sched-
uled processors and can be generated by particular HLS tools; in
this paper, we explore whether similarly broad classes of specula-
tion can be easily supported in such circuits. We demonstrate that
this indeed is possible, that it also needs a fairly small number of
generic components and techniques, and that the advantage can be
significant when waiting for a key execution decision is particularly
time-consuming.

2 WHY HLS NEEDS SPECULATIVE BEHAVIOR
To illustrate the need to accommodate speculative behavior in cir-
cuits produced from imperative languages such as C, consider the
code in Figure 1. A standard, nonspeculative HLS tool would not al-
low a new loop iteration to start until the condition to exit the loop
has been checked—this condition is available only after perform-
ing almost the entire loop body, which largely prevents pipelining

Session 5: Synthesis FPGA ’19, February 24–26, 2019, Seaside, CA, USA

162

https://doi.org/10.1145/3289602.3293914
https://doi.org/10.1145/3289602.3293914
https://doi.org/10.1145/3289602.3293914


Merge

Buff

Load a[i] Load b[i]

+

Fork

Store c[i] <

Branch

+

Fork

Start, i=0

End

x

1 i

di d

3 stages

comb.

Figure 2: A dynamically scheduled circuit executing the code of
Figure 1. All connections between components carry data with the
corresponding bidirectional handshake signals. The Branch unit re-
quires both the a value and a binary condition before it can issue the
value it has received to theMerge unit and thus start a new iteration.
Therefore, a condition which takes a long time to compute may sig-
nificantly hinder performance.

of the loop. In contrast, speculation would make possible a high-
throughput pipeline which tentatively starts another loop iteration
on every clock cycle and, later on, discards the speculatively com-
puted values if the loop was supposed to terminate prior to their
execution (in the case of Figure 1, the addition results from the
fourth and the fifth iteration are unneeded and will be discarded
once this is decided by the termination check in cycle C7).

3 BACKGROUND ON DATAFLOW CIRCUITS
Dynamic scheduling is crucial to enable generic speculative be-
havior because the schedule needs to be adapted on the fly to any
combination of prediction outcomes. Many dataflow or latency-
insensitive protocols implement dynamically scheduled circuits,
either using asynchronous or synchronous protocols; some have
been used to produce circuits from imperative languages (e.g., Budiu
et al. [2] and Josipović et al. [14]). In this work, without loss of gen-
erality, we choose the same handshake protocol used by Josipović et
al. [14] because it leads to designswhich can readily be implemented
as synchronous circuits and thus directly compared to commercial
tools for FPGAs. Our dataflow components communicate with their
predecessors and successors using a pair of handshake signals and
transfer data whenever the successor is available (passing a piece
of data with the correct handshaking is colloquially referred to as
exchanging a token). In this section, we provide an overview of the
structure and properties of our circuits and describe the dataflow
components that are most relevant for this work.

To produce our circuits, we follow pretty literally the methodol-
ogy described by Josipović et al. [14]—and, in many respects, the
exact topology is not critical for the modifications we will introduce.
What matters is that our circuits are composed of subcircuits corre-
sponding to basic blocks (BBs)—i.e., straight pieces of code with a
single entry and single exit point. The body of each BB is a direct

translation of the dataflow graph into an interconnect of dataflow
components. The control flow (i.e., the interconnections between
BBs) is implemented using the following components: (1) A Merge
unit propagates a token received on any of its inputs to its single
output and is equivalent to phi nodes in the static single assignment
form [19]. We allocate a Merge for every variable entering a BB.
(2) A Branch unit propagates a token received at its single input
to one of its multiple outputs based on a condition; it is used for
implementing control flow statements. We place a Branch for every
value exiting a BB and used by any successor BB.

The execution of our dataflow circuits is triggered by a start
token that enters the initial BB. The token propagates through the
BBs, following the control flow of the program, until it eventually
arrives at the final BB, representing program completion. Although
individual operations inside BBs are executed out of order, BBs are
triggered in exactly the same order as the software execution of
the unmodified original program. This way of building dataflow
circuits implies three properties essential for the correctness of
our speculative circuits: (1) One token per loop. On a cyclic path,
there can be only a single token at a time (a token enters a BB on a
cycle through a Merge; as this BB determines the next control flow
decision, it is the only block that can send the token backwards into
the Merge—i.e., there is no other active predecessor BB that could
inject another token into this path). (2) Strict token ordering on
a path. If there are multiple tokens on an acyclic path, they could
only be injected into it by repeatedly forking at every passage the
single token of a cycle and the propagation of this token in the cycle
is determined by the in-order control flow decision. This means that
tokens are inserted into the acyclic path in a deterministic order and
nothing on this path can affect their ordering. (3) Determinism.
Although our circuits contain nondeterministic components (e.g.,
Merge), the strict ordering of BBs guarantees that the execution is
race-free: as tokens can enter the BB only from the single active
predecessor, and no other source can inject tokens into the BB,
there is nothing that can interfere with the token ordering at the
BB input.

Figure 2 shows the dataflow circuit corresponding to the exam-
ple in Figure 1; this simple program needs a single Branch and a
single Merge node for the loop iterator i . The token carrying the
iterator value is propagated to the next loop iteration whenever
this is decided by the Branch condition (i.e., the comparison of the
value d with x ). Despite the flexibility of dynamic scheduling, if the
condition takes a long time to compute (as it is the case here), the
Branch unit will hold the token representing i + 1 until the token
with the condition arrives, and the start of a new loop iteration will
be delayed—speculative execution (in this case branch prediction
and speculation) is needed to achieve an efficient pipeline.

4 SPECULATION IN DATAFLOW CIRCUITS
Our goal is to create a generic framework for handling speculation
in dataflow circuits. The idea is that some components might be
allowed to issue speculative tokens—that is, pieces of data which
might or might not prove correct and which will combine with
other (nonspeculative) tokens, resulting in more speculative tokens
travelling through the circuit. In other words, speculative tokens
trigger some computations which might have to be squashed and
possibly repeated with the correct nonspeculative tokens. Figure 3
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Figure 3: A region of a dataflow circuit implementing our specula-
tive execution paradigm. The Speculator initiates the speculative ex-
ecution by injecting tokens tentatively, Save units capture required
inputs to the region to enable a correct replay in case of misspecula-
tion, and Commit units prevent speculative tokens from affecting
irreversibly the architectural state, such as memory. Speculative to-
kens are marked explicitly using an additional bit (represented by
the dotted line). A dataflow control circuit (in red, dashed line) be-
tween the Speculator and the Save and Commit units carries infor-
mation about speculative events (start, commit, squash, etc.).

gives a sense of our strategy: speculative tokens will be contained
in a region of the circuit delimited by special components.

The first component is a Speculator. A Speculator is a special
version of a regular dataflow component which, besides its standard
functionality also has the liberty of injecting tokens before receiving
any at its input(s). The most natural example is that of a Branch
node which receives the value to dispatch but not the condition;
a Branch Speculator could predict the missing condition and send
tentatively the value through one of its outputs. If, after issuing a
speculative token, the Speculator eventually receives the same data
which it assumed speculatively (e.g., the condition it predicted), all
is fine and execution was probably sped up; if, on the other hand,
the data it eventually receives does not match the prediction, we
have a case of misspeculation: the Speculator should now perform
its function correctly (e.g., resend the value on the other output), but
must first make sure that the speculative work done is discarded.

The reason for the output boundary of the speculative region
of Figure 3 is fairly evident: clearly, speculative tokens cannot be
allowed to propagate indefinitely and must not affect the architec-
tural state of the circuit, that is the part of the state which is known
and visible to the user. Therefore, the speculative region must be
limited at least before components which store values in memory or
before the end of the circuit. The components at the output end of
the speculative region are called Commit units. These units simply
let propagate further speculative results which turn out to be cor-
rect; much as it happens in speculative software processors, results
due to misspeculation are simply squashed. Because Commit units
must differentiate speculative from nonspeculative tokens (the for-
mer ones need explicit commit information before propagating,

while the latter ones can always go ahead), as Figure 3 suggests, all
channels between the Speculator and the Commit units must be
enriched with a control signal which indicates the speculativeness
of the token being passed.

Finally, we need to bound the speculative region on the input side
in order to save a copy of all regular tokens which may combine
with a speculative token so as to be able to reissue them if the
previous computation is squashed. We call these components Save
units.

Section 5 details these new dataflow components and Section 6
describes how to correctly place them in the circuit. An important
aspect of a speculative region, i.e., the communication between the
speculative components, is only sketched in Figure 3: the Speculator
should communicate with the Commit and Save units whenever
it starts and stops a speculative event. We have elected to imple-
ment this communication through an additional dataflow circuit
connecting all the new speculative units; while this communication
is relatively straightforward (essentially, binary tokens indicating
whether a speculation was successful or not), there are a few pe-
culiarities to take into account when speculative tokens traverse
Merge and Branch units. We will detail the construction of this
control circuitry in Section 7. A critical situation, not represented
in the qualitative example of Figure 3, occurs when the Speculator
is placed on a loop: we will use an intuitive but too conservative
approach in Section 6, likely to result in speculative circuits with
little performance advantage, and then fully tackle this fundamental
problem in Section 8.

5 COMPONENTS FOR SPECULATION
This section details the components needed to delimit a speculative
region in a dataflow circuit: a Speculator to initiate the process, Save
units on the inputs of the region, and Commit units on its outputs.
The components are, in general, built out of standard dataflow
components and they communicate with the rest of the design
using the handshake protocol mentioned in Section 3.

5.1 Speculators
Speculative execution starts when a Speculator triggers the exe-
cution of a part of the circuit before it is certain that it needs to
execute or that the execution is correct. Any dataflow component
can operate as a Speculator by issuing speculative tokens before
all of the component’s input information is available (i.e., when
only a subset of the input tokens is available at the inputs of the
component). For instance, a Speculator Branch can speculate on the
condition, causing the Branch to output the data token to one of its
successors before the condition token arrives; a Speculator within a
load-store queue can perform a speculative load and eagerly output
a speculative data token as soon as the load address is available and
before all memory dependencies are resolved.

Apart from issuing speculative tokens, the Speculator’s role is
to determine the correctness of a speculation and trigger actions
accordingly. It therefore saves the prediction and assesses the sit-
uation once the missing input arrives. As the tokens propagate
through the circuit strictly in order, the first token arriving at the
particular input whose value was speculated will hold the value
which resolves the first speculation. After deciding if the prediction
was successful, the Speculator informs the appropriate units in the
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Figure 4: Components for speculation. Figure 4a outlines the structure of a Branch Speculator, which can speculate on the branch condition
and output a speculative data token. It later on determines the correctness of a speculation and communicates this information to the Save
and Commit units. The Commit unit (Figure 4b) stalls speculative tokens until the correctness of the speculation has been determined. The
Save unit of Figure 4c saves tokens that might interact with speculative ones to be able to replay the computations in case of a misspeculation.

circuit of the comparison result, allowing them to commit the specu-
lative results or to discard the misspeculated tokens and recompute
with the correct values. In the second case, the Speculator needs to
insert the token holding the correct value into the circuit in order
for the computations to execute anew.

The structure of one of the most natural Speculators, i.e. the
Branch Speculator, is given in Figure 4a. Unlike a standard Branch,
which waits for both the data and the condition to arrive before
producing an output, the Branch Speculator can output a data
token even when the condition is not yet present, together with
a bit indicating whether the token is speculative. Eventually, it
will receive a regular condition token, which it will compare with
the previously speculated value (all speculatively issued values are
stored in a queue within the Speculator) and send a confirmation
or cancellation token to the other units. It will then either discard
the real token (using the Branch subcomponent on the right of
Figure 4a) or resend it into the circuit. The Speculator can issue
a token only when its basic block is active, otherwise, there is no
guarantee that the real token will eventually arrive to confirm or
cancel the speculation (this is easy for a Branch Speculator because
the arrival of a data token is a guarantee that the condition will
also arrive).

Initially, we will discuss the case where only one speculative
token at a time is issued into the circuit—i.e., a new speculation
cannot start before the previous one has been resolved. While this
is not a problem for pieces of code that do not need to repeat (i.e.,
speculating on a branch of an if-else statement), it could easily
result in suboptimal performance if the Speculator is placed on a
cyclic path (i.e., speculating on a loop termination condition). We
will make necessary modifications to support multiple speculations
from a single Speculator in Section 8.

5.2 Commit Unit
All dataflow components, apart from the Speculator, use a conser-
vative firing rule—i.e., they produce tokens only once all of the
required input operands become available. However, if one of the
inputs to a dataflow component is a speculative token, the produced
output token will become speculative as well—there is no guarantee

that the computed value or the decision made by the component is
correct until the speculation is resolved by the Speculator. In case
the speculation is incorrect, the component will output incorrect
data or send a token in the wrong control flow direction: at some
point, this misspeculated data will need to be discarded.

To this end, we use Commit units that stall speculative tokens
until they receive the corresponding decision from the Speculator:
in case the speculation is determined correct, the speculative tokens
are converted into regular tokens and passed on to the rest of the
circuit; otherwise, they are discarded by this unit. Any regular token
that reaches the unit is unaffected and simply propagated through.

Figure 4b outlines the structure of the Commit unit. Data enters
the unit through an internal Branch; depending on the value of
the speculative bit, it is either directly passed on to the successor
components (in case the data is nonspeculative), or stalled until
the unit receives a decision from the Speculator. Assuming that the
data path from the Speculator to this unit is long, the Speculator
might issue and resolve multiple speculations before the data tokens
arrive at the Commit unit. Hence, the unit contains a queue to save
the decisions from the Speculator if they arrive before the data. As
the tokens arrive in order on both paths, the timing relations of
the two paths cannot influence correctness: the Commit unit will
keep the first speculative piece of data on one path until the first
confirmation or cancellation on the other path becomes available,
and all tokens will be correctly matched. The output of the Commit
unit is always a regular nonspeculative token.

5.3 Save Unit
In case a speculation is determined incorrect, speculative tokens
are discarded and speculated computations need to reexecute with
the correct values. This means that each nonspeculative token
which at some point interacts with a speculative token needs to be
appropriately saved until the speculation is confirmed or canceled.
To this end, we use Save units which store the last token that passed
through it until the Speculator determines the correctness of the
speculation. In case the Speculator indicates that the speculation
was correct or that it did not speculate on the saved values, the
saved tokens are not needed and can be discarded—these values
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Figure 5: Placing Commit units. Our placement strategy ensures
that memory is never modified by a speculative token, the program
never terminates before speculation is resolved, and only nonspec-
ulative values interact with components that might carry a specula-
tive value.

have already been correctly propagated through the circuit and
their interactions with any token issued by the Speculator produced
correct results. On the other hand, if the speculation was incorrect,
all Save units need to reinsert their saved token into the circuit to
repeat the previously miscalculated computations.

The Save unit in Figure 4c takes a nonspeculative token as in-
put and outputs a nonspeculative token. It requires only a single
register for storing a token: for another token to arrive at the input
(possible only if the unit is on a loop), the previous speculation must
have been resolved and the old value inside the register has either
already been reinserted into the circuit or determined unneeded
and discarded through the Branch.

Note that the discard and resend outputs of the Speculator, con-
nected to the Commit and Save units, respectively, are not equiva-
lent: If a speculation does not occur, the Save unit still kept a token
which needs to be thrown away—the Speculator must inform the
unit when issuing a nonspeculative token. Commit units do not
require any confirmation from the Speculator to let the nonspecu-
lative tokens pass.

6 PLACING THE COMPONENTS
Every speculative region needs to be delimited with its own set of
Commit and Save units: they ensure that misspeculated computa-
tions are appropriately squashed and replayed. This section shows
where to place Commit and Save units into dataflow designs.

Every speculation needs to be resolved before terminating the
program—that is, before a token reaches the Exit node. Furthermore,
only regular tokens can be used for modifying memory (assuming
that writes cannot be reverted) or as inputs to the Speculator (we
will relax this constraint in Section 8). Therefore, we place a Commit
unit on each path of the graph of dataflow components which starts
at the Speculator and ends with the first of any of the following
components encountered on the path: (1) an exit point of the graph;
(2) the Speculator or a component carrying a speculative value;
(3) a store unit. Figure 5 gives examples of correct placements
of the Commit unit. Placing more than one Commit unit on a
single path does not bring any benefit, as the first unit will always
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Save Save
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Figure 6: Placing Save units. Each token that interacts with a spec-
ulative token must be saved until the speculation is confirmed or
canceled.

data + handshake
speculative tag

Merge +Buff

Figure 7: Extending dataflow componentswith a speculative tag. In
most cases (e.g., Merge, Buffer, Fork), the tag is simply an additional
bit propagated with the data. Components that combine multiple
inputs into an output (e.g., arithmetic operations) require an OR to
make the output speculative when any of the inputs is speculative.

resolve the speculation. The Commit units should be placed as
far as possible from the Speculator, as this allows speculating on
more computations and therefore increases performance in case
the speculation was correct.

A Save unit is required whenever a regular token can interact
with a speculative one, so the operations can reexecute in the case
of a misspeculation. The following paths must contain a Save unit:
(1) Each path from the start of the graph of dataflow components
to any component that could combine the token with a speculative
value. (2) Each cyclic path containing a Speculator or any compo-
nent that could combine the token with speculative values. Since
these cycles contain a Commit unit (as described in the previous
section), the Save unit must be placed after it—this ensures that only
regular tokens enter the Save unit, as any speculation will be previ-
ously resolved. Figure 6 shows examples of placing the Save units.
To maximize performance (i.e., smaller number of correct com-
putations to reexecute in case of a misspeculation) and minimize
resource requirements (i.e., smaller number of Save units required),
we place the Save units as close as possible to the end of these paths
(i.e., as close as possible to the paths carrying speculative tokens).

As already suggested, the dataflow circuit between a Speculator
and its Commit units needs to carry data with a speculative tag. This
modification requires only a minor change to standard dataflow
components: it is simply one more bit of payload which is propa-
gated or OR’ed from all inputs to make the output is speculative
when any of the inputs is speculative, as depicted in Figure 7.
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Figure 8: Connecting the Speculator to the Commit units. The can-
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Otherwise, another token could be discarded incorrectly: if both
Commit units in the figure were to receive a cancellation signal and
the misspeculated token took the left branch, a correct token com-
ing down the right branch would be eventually discarded.

7 CONNECTING THE COMPONENTS
When the Speculator determines the correctness of a speculation,
it needs to inform the appropriate Save and Commit units. We add
a specialized handshake network for this purpose.

7.1 Connecting the Speculator to the Commit
Unit

The Speculator connects to the Commit units through a special-
ized network and informs them whether to discard or propagate
speculative tokens. However, sending the decision to all Commit
units would result in incorrect behavior. Consider the example in
Figure 8: If a decision to discard the token due to a misspeculation
is sent to both Commit units, and the misspeculated token takes
the left output of the Branch, another token taking the right Branch
output later on would be incorrectly discarded. Therefore, the infor-
mation from the Speculator needs to be sent only to the units that
were on the actual path taken by the speculative tokens. In such
cases, we place Branches on the path connecting the Speculator and
the Commit unit which receive the same conditions as the regular
Branches of the dataflow circuit. Whenever a speculative token
passes, the Branch in the specialized network will mimic the con-
trol flow decision took by the data token and thus correctly direct
the information from the Speculator to one of the Commit units.

7.2 Connecting the Speculator to the Save Unit
The complementary problem arises when connecting the Save
units—only some of them hold tokens that need to be resent to
the circuit. Consider the example in Figure 9, where the Save units
are placed before a Merge node. If the speculation is determined in-
correct, only one of the Save units should reissue a token—however,
there is nothing that can determine which of the two Save units
holds the direct predecessor (i.e., which token needs to be reis-
sued). Therefore, Merges that are on the path from the Save units
to the Speculator need to remember which side a token came from.
The Speculator uses this information to correctly direct the con-
firmation/cancellation to the proper Save unit. The dispatching is

Merge

Spec.
Branch

Save Save

...

Branch

resend/ 
drop

Figure 9: Connecting the Speculator to the Save units. Any Merge
that is on the path from the Save units to the Speculator should
memorize where tokens came from so that the Speculator can send
the correct resend or discard message to the appropriate Save unit.

implemented in the specialized network as a Branchwhich takes the
Speculator decision as data and the information from the original
Merge as the condition and forwards the decision accordingly.

8 MULTIPLE SPECULATIONS
FROM A SINGLE SPECULATOR

The approach described so far does not bring significant perfor-
mance benefit when speculation occurs in a loop, as it requires
us to conservatively wait for one speculation to end to be able to
trigger a new one. This section discusses the modifications needed
to increase loop parallelism.

8.1 Merging the Save and Commit Unit
In points where Save and Commit units meet, the approach taken
so far allowed a new token to enter the Save unit only after the
Commit unit sent out a confirmed token. Thus, all speculations
through cyclic paths are sequentialized, which prevents us from
achieving a high-throughput pipeline. Figure 10a shows the circuit
from Figure 2 modified with the speculative components and the
strategies described in the previous sections (note that the specu-
lative tags are omitted for graphical simplicity). A nonspeculative
token enters the Merge through the starting point (labeled as point
1 in the figure), passes through the Commit and Save unit (as it is
nonspeculative) and reaches the Speculator (point 2). The Specula-
tor issues a speculative value back through the Merge and into the
Commit unit (point 3), which stalls the token until the condition
reaches the Speculator and it informs the Commit unit of the cor-
rectness of the speculation—only then does the token pass through
to the Speculator again, triggering the start of a new speculation.

Whenever a Save and Commit unit meet on a cyclic path, we can
merge them into a single unit which allows issuing a speculative
token even before the previous speculation has been resolved. The
Save-Commit unit (Figure 10c) performs the combined functionality
of both units: as a Save unit, it issues regular tokens to restart
computations or discards them when they are no longer needed;
as a Commit unit, it turns speculative tokens into regular ones or
discards speculative tokens. However, unlike a regular Commit unit,
this unit will also let speculative tokens pass to the successors; it
will save all the tokens, corresponding to regular or speculated data
from multiple loop iterations, until they are no longer needed. We
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Figure 10: Enabling multiple speculations from a single Speculator in the example from Figure 2. Our strategy from Section 5 results in
suboptimal behavior when the speculation occurs in a loop: as Figure 10a shows, a token that is speculatively inserted into the loop will be
stalled in the Commit unit (point 3 in the figure) until the speculation is resolved, preventing the triggering of a new speculation. Merging
the Save and Commit units on the loop into a single unit (Figure 10b) allows issuing a new speculative token before the previous speculation
has been resolved. The structure of the Save-Commit unit is illustrated in Figure 10c.

exploit the fact that the tokens are stored in the unit in order, as
well as that the decisions arrive in order from the Speculator—this
allows us to easily match every decision to a token queued in this
unit. The action of reissuing or discarding token (usually performed
by a Save unit) will be applied on the oldest stored token, which will
then be discarded or reissued and, in both cases, removed from the
unit as it is no longer required. If the Speculator informs the unit
that a speculation was correct, the oldest token will be removed
from the unit and its speculative successor will be transformed
into a regular token. If the Speculator sends a decision to discard a
misspeculated token, the oldest speculative token will be discarded.
The Speculator will issue cancellations for each speculative token
produced after the first misspeculation and each will discard one of
the queued tokens. If the data tokens to cancel are not yet available,
the cancellations are queued in a dedicated FIFO and the data is
discarded as soon as it enters the unit.

Figure 10b shows the circuit of Figure 10a where the Save and
Commit unit on the loop has been replaced with a combined Save-
Commit unit. As before, the token enters through the Merge (point
1 in the figure) and is sent to the Speculator. The Speculator issues
a speculative token (point 2), which is stored in the Save-Commit
unit (point 3), but also immediately propagated to the Speculator
to trigger another speculation, hence finally resulting in the high-
throughput pipeline achieving the lower schedule of Figure 1.

8.2 Connecting the Speculator to the
Save-Commit Unit

There are two paths connecting the Save-Commit unit and the Spec-
ulator, and both could contain control flow decisions: the one from

the Save-Commit output to the Speculator could contain Merges
(exactly like the path from the Save unit to the Speculator in Fig-
ure 9), and the one from the Speculator to the Save-Commit input
could contain Branches (same as the paths to the Commit units de-
picted in Figure 8). Therefore, as in the previous cases, our network
dedicated for sending decisions to this unit will have to collect the
control flow information from the original circuit to ensure that
decision tokens are distributed the correct way. The principle is
exactly the same as for connecting the Speculator to the Save and
Commit units; however, each control flow point will now have to
hold multiple control flow decisions (as many as the Save-Commit
unit can accommodate tokens). Whenever the Speculator sends a
decision, the oldest queued condition will be used and discarded.
This ensures that every unit is correctly informed of the speculation.

9 SPECULATIONS FROMMULTIPLE
SPECULATORS

The methodology discussed in the previous section describes a
circuit with only one Speculator issuing speculative tokens. Our
approach can easily be extended to support multiple Speculators
in the design. The Save and Commit units and their placement
strategy would be exactly the same; the only difference is that
each speculative token needs to be tagged to keep track of the
speculation origin—this enables each Commit unit to properly han-
dle speculative tokens (i.e., each Commit unit should consider as
speculative only the tokens from the Speculator it is connected
to; all speculative tokens of a different origin should be treated as
nonspeculative).
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Benchmark Design II CP (ns) Time (µs) Speedup Slices LUTs FFs DSPs

While loop
Static 11 3.7 37.4 130 270 436 2
Dynamic 12 4.4 48.8 0.8× 129 (-1%) 353 511 2
Speculative ∼ 1 4.8 4.5 8.3× 186 (+43%) 486 582 2

Backtrack
Static 21 3.7 76.2 175 353 625 5
Dynamic 22 3.5 75.6 1.0× 251 (+43%) 555 859 7
Speculative ∼ 1 5.1 5.1 14.9× 320 (+82%) 774 956 7

Subdiagonal
Static 17 3.6 60.0 164 342 591 5
Dynamic 18 3.6 64.0 0.9× 179 (+9%) 424 611 5
Speculative ∼ 1 4.6 5.1 11.8× 233 (+42%) 559 650 5

Fixed point
Static 15 3.3 3.3 187 354 573 5
Dynamic 17 3.3 3.8 0.9× 177 (-5%) 371 581 5
Speculative ∼ 6 3.8 1.6 2.1× 198 (+6%) 477 601 5

Newton-
Raphson

Static 8 5.4 4.3 201 585 636 9
Dynamic 10 5.0 5.1 0.8× 234 (+16%) 775 498 9
Speculative ∼ 1 5.5 0.6 7.2× 348 (+73%) 1181 603 9

Table 1: Timing and resource requirements for the benchmarks from Section 10.1: static scheduling (Vivado HLS), dynamic scheduling
(Josipović et al. [14]), and dynamic scheduling featuring speculation.

10 EVALUATION
We compare static and dynamic implementations of various realistic
kernels. The statically-scheduled baselines (indicated as static) are
obtained using a commercial tool (Vivado HLS [20]). We compare
them with dynamic designs automatically produced from C code
using the methodology described by Josipović et al. [14], which re-
sults in nonspeculative circuits like that of Figure 2; we indicate the
dynamically-scheduled references as dynamic. Finally, we manually
modify these circuits with the speculative components presented
in this work to obtain circuits as in Figure 10b, which are the main
result of this work and are indicated as speculative. Although our
speculative methodology is perfectly general, in our examples we
speculate on a single control flow decision using Branch Specu-
lators from Figure 4a. The Speculators contain a static predictor
that assumes the branch always taken whenever the input data
becomes available. Each design contains as many Speculators as
there are variables which need to be speculatively issued to the
successor basic block. All designs use identical floating point and
integer arithmetic units and connect to the exact same RAM inter-
face as the baseline designs from Vivado HLS. We use simulations
in ModelSim [16] for functional verification and for measuring the
loop initiation intervals (I I ). We synthesize the designs with Vivado
to obtain the clock period from the post-routing timing analysis
and the resource usage from placing and routing the designs.

10.1 Benchmarks
The designs that we consider in this section represent typical cases
which can profit by branch prediction and where speculative exe-
cution should bring significant performance benefits over conser-
vative, static scheduling. The benchmark loops are derived from
real applications which can be found in literature [18].

• While loop is the kernel from Figure 1. The dynamic design
results in the circuit of Figure 2 which we extend with spec-
ulative components to obtain the circuit of Figure 10b.

• Backtrack is the inner loop of the backtracking pass of the
Bellman-Dijkstra-Viterbi algorithm. After labeling each state
with the minimum cost to reach it, the backtracking pass
looks for a unique set of edges that produce the global min-
imum. The states are traversed in a for loop which breaks
when the predecessor state with the minimum cost is found.
The break statement prevents loop pipelining, as the static
tool starts a new loop iteration only after the break condition
from the previous iteration has been determined false.

• Subdiagonal is an inner loop of a QL algorithm for determin-
ing the eigenvalues of a tridiagonal matrix. The loop looks
for a single small subdiagonal element to split the matrix
and contains a conditional break inside the loop body to
return the correct subdiagonal index. As the condition for
the return takes a long time to compute, it prevents static
scheduling from efficiently pipelining the loop.

• Fixed point is an iteration method for finding the real roots of
a function. It consists of a while loop which iterates through
a sequence of improving approximate solutions until the
desired degree of accuracy is achieved. Static scheduling
postpones the start of a new iteration until the error compu-
tation from the previous iteration has been completed.

• Newton-Raphson is a hybrid algorithm of bisection and the
Newton-Raphson method for finding the roots of a func-
tion. The hybrid algorithm takes a bisection step whenever
Newton-Raphson would take the solution out of bounds
and therefore improves the convergence properties of the
algorithm over the standard Newton-Raphson method. The
algorithm contains a for loop with an if-else statement to
determine which of the two methods to use for a particular
data point. Static predication is limited by the complex if
condition and, as the next loop iteration requires the data
computed in the current one, it must be scheduled for after
the condition has been determined.
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int i = 0;
int s = 1;

for (i = 0; i < 12; i++){
if (x[i]*s >= 1000)

s+=1;
}

Figure 11: Code used for the analysis of Section 10.3, qualitatively
similar to the Newton-Raphson benchmark.

10.2 Results
Table 1 reports the timing and resource requirements of our ex-
periments. The static scheduler constructs a conservative schedule
which prevents almost any pipelining of these loops because it
waits for the condition to be determined before starting a new loop
iteration. In spite of the flexibility of dynamic circuits, dynamic
scheduling alone does not suffice to achieve high parallelism for the
exact same reason as the static schedule does not: a new loop itera-
tion is delayed until the previous decision has been determined—i.e.,
the Branch waits for the condition token to arrive before propa-
gating a data token backwards into the loop body. In contrast, the
Speculator in the final design issues speculative tokens into the loop
as soon as the input data becomes available and enables achieving
the ideal loop initiation interval. Note that the speculative initiation
interval I Ispec is, in fact, a weighted average of the value in case
of good prediction and of that for a misprediction. For all circuits
but Newton-Raphson, there is a single misprediction when the loop
is exited and therefore the average I I is for all practical purposes
exactly the one in Table 1. Note that I Ispec ≈ 1 for all benchmarks
but Fixed point: in this case, the input data to the Branch takes 6
cycles to compute, therefore limiting the maximum issue rate of
speculative tokens. The resource increase and the longer critical
path (CP ) are due to the additional components for speculation and
the FIFOs that we added to achieve maximum parallelism.

Although the table indicates I Ispec ≈ 1 for Newton-Raphson, the
situation is slightly different than in the other benchmarks: in this
case, the misprediction is not an event happening only once per
loop execution, but every time a bisection step is taken. The actual
I I is therefore data dependent but still close to 1, as the bisection
step is meant to be a relatively rare event. It is worth noting that our
circuits do not have any additional penalty for misprediction other
than incurring the longer latency of the corresponding dynamic
nonspeculative circuit. Therefore, in general and to a first-order
approximation (because we ignore the difference in critical path),
our circuits would perform better than a static circuit whenever
the prediction accuracy pcorrect is such that pcorrect · I Ispec_opt + (1−
pcorrect ) · I Inonspec < I Istatic . To put this in perspective using this
example and again ignoring theCP difference, our circuit needs here
only pcorrect > 22% to perform better, and this branch prediction
accuracy is massively below typical achievable rates.

10.3 Analysis
It is clear from Table 1 that the use of a dynamically scheduled
paradigm has a nonnegligible cost in resources (already pointed
out by Josipović et al. [14]); the situation is only aggravated by
the support for speculation. Although all our designs are Pareto
optimal (and significantly faster than the baseline designs), it is

Design II CP (ns) Time (µs) Slice LUT FF DSP

Static 1 5.7 0.1 1281 2088 5311 24
Dyn. 6 4.3 0.3 65 163 156 3
Spec. 2.3 5.3 0.2 154 481 301 3
Table 2: Timing and resource requirements for the static (Vivado
HLS), dynamic (Josipović et al. [14]), and speculative implementa-
tion of the loop from Figure 11. The code given to the static tool
was restructured to produce an aggressively-predicated schedule.

worth looking a bit closer at such results. As suggested in Section 1,
predication is the way purely static scheduling methods can imple-
ment speculation (that is, by executing in parallel every possibility
and selecting the right outcome later). It is usually viable when
the number of predicated branches is small; thus, it is customarily
used in the textbook case of if -conversion where only two short
branches need to be followed for a very short period and are soon
resolved. If resources are not strongly limited (that is in the world
of spatial computing as opposed to traditional VLIW compilation),
one could explore an aggressive use of if -conversion where many
branches are predicated at once—for example, with predication
spanning multiple iterations of a loop body, as it would be required
in some of our benchmarks. In this section, we want to explore how
competitive our technique is against highly-speculative statically-
scheduled circuits beyond what our commercial tool produces.

We study here the code of Figure 11, which is qualitatively simi-
lar to our Newton-Raphson benchmark but stripped for clarity of
everything except key operations. The naive version by Vivado HLS
has I I = 4 because of the loop-carried dependence on s and the mul-
tiplication (latency 4) in the condition which determines the new
s (the conditional addition is predicated and executed in parallel).
It is perfectly possible to restructure the code to perform aggres-
sive if -conversion across basic blocks: every iteration spawns two
branches corresponding to the new if condition, and this for each
of the existing predicated branches; on the other hand, four cycles
later, the computed condition resolves pairwise all open branches
and halves them, leading to a steady state of in-flight branches.
Assuming that the critical latencies are 1 for the addition and 4
for the multiplication, as it is the case for the components used by
Vivado HLS, achieving I I = 1 requires 16 parallel branches which
compute s for every combination of the if conditions in the last four
iterations and 8 branches computing the new conditions, also in
turn depending on the conditions of the last three iterations. Essen-
tially, the needed computational resources to achieve I I = 1 with a
purely static schedule are 8 multipliers, 8 adders and 8 comparators
to execute all predicated branches in parallel. Table 2 shows the
comparison of the static, manually restructured code (to achieve a
static schedule with I I = 1), dynamic, and speculative design using
a dataset which predicts correctly the condition in 75% of the cases.
These results suggest that, although more speculation than what
common HLS tools implement is possible, the cost can be very high
(notice that the cost is exponential in I Istatic , which is only 4 in this
case). Clearly, our speculative circuit is Pareto-optimal compared
to the aggressively-predicated static design. The area cost is due to
the fundamental inability of statically scheduled circuits to revert
some arbitrary computation and recompute it from scratch; a stati-
cally scheduled solution can only evaluate all possibilities at once
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and this only when the number of possible outcomes is tractable
(which is not the case in a situation we have not demonstrated
here but is perfectly covered by our technique—the prediction of
independence trough memory of a load from all previous pending
stores). On the contrary, a dynamically scheduled, speculative cir-
cuit can simply execute the single most likely path and squash and
recompute mistakenly predicted outcomes. In all fairness, this also
implies a worsening of the execution time when almost-perfect
predictions cannot be made, like in the present example, whereas
the static solution has exactly I I = 1 irrespective of predictability.

11 RELATEDWORK
Much as compilers for VLIW processors do, in order to extract
parallelism, many HLS approaches exploit aggressive code motion
techniques to anticipate the execution of some operations before it is
certain [12, 15, 17]. However, the conservatism of static scheduling
hinders such optimizations in the presence of complex control flow
or memory accesses. The importance of speculation has not escaped
HLS researchers and some have shown partial forms of speculation;
albeit remarkable, their approach lacks generality in the ability to
revert arbitrarily the state after failed predictions and suffers from
being applied to otherwise static schedules [7].

Latency-insensitive protocols [3, 6, 9] have been explored
as a way to overcome the limitations of static scheduling and
offer the flexibility needed for true speculation [11]. Several
latency-insensitive approaches [4, 5, 10] describe early evaluation—
predicated execution based on special tokens which discard mis-
predicted data. However, these techniques are applicable only for
standard if -conversion, which static HLS can handle as well, and do
not cover the more general cases of speculation that we discuss in
this work. Budiu et al. went further in implementing features simi-
lar to those existing in superscalar processors in their asynchronous
dataflow circuits, yet they also failed to implement a generic frame-
work for speculation due to “the difficulty of building a mechanism
for squashing the computation on the wrong paths” [1]. Our scheme
for discarding and replaying computations does exactly this.

Desikan et al. [8] describe a mechanism for load-store depen-
dence speculation in the context of dataflow processors, but have
also faced challenges in building a suitable speculation resolution
network: their approach is based on sending the commit/discard
decisions through the dataflow graph, so the traversal of these de-
cisions delays the commits and therefore impedes performance. In
contrast, we use a dedicated, fast network which enables specula-
tive components to communicate directly and efficiently. Moreover,
their speculation scheme requires version numbering and token
tagging to handle out-of-order speculative bits—our circuit design
strategy ensures that tokens traverse the graph in order, which
simplifies our speculation mechanism.

12 CONCLUSIONS
In this work, we present a generic methodology to enable specula-
tive execution in dataflow circuits and show that it can reap signifi-
cant benefits in appropriate situations. Our simple and methodical
approach to bring arbitrary forms of speculation to dataflow circuits
mirrors out-of-order processors, where the same commit-or-squash-
and-replay approach is at the heart of their very successful specu-
lative mechanisms. Others have shown that dependencies through

memory are an important case where dynamic schedules are highly
profitable: the next logical step will be to build a speculative load-
store queue which executes speculatively loads before pending and
unresolved stores, as in common processors; the generality of our
speculation scheme will simply work unmodified for this important
situation. We believe all this to be key for FPGAs and HLS to be
successful in new contexts such as datacenters, where applications
will be more irregular, control-dominated, and software oriented
than most FPGA applications are today.
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