
Dynamically Scheduled High-level Synthesis
Lana Josipović, Radhika Ghosal, and Paolo Ienne

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH–1015 Lausanne, Switzerland

ABSTRACT
High-level synthesis (HLS) tools almost universally generate stati-
cally scheduled datapaths. Static scheduling implies that circuits
out of HLS tools have a hard time exploiting parallelism in code
with potential memory dependencies, with control-dependent de-
pendencies in inner loops, or where performance is limited by long
latency control decisions. The situation is essentially the same as in
computer architecture between Very-Long Instruction Word (VLIW)
processors and dynamically scheduled superscalar processors; the
former display the best performance per cost in highly regular
embedded applications, but general purpose, irregular, and control-
dominated computing tasks require the runtime flexibility of dy-
namic scheduling. In this work, we show that high-level synthesis
of dynamically scheduled circuits is perfectly feasible by describing
the implementation of a prototype synthesizer which generates a
particular form of latency-insensitive synchronous circuits. Com-
pared to a commercial HLS tool, the result is a different trade-off
between performance and circuit complexity, much as superscalar
processors represent a different trade-off compared to VLIW pro-
cessors: in demanding applications, the performance is very sig-
nificantly improved at an affordable cost. We here demonstrate
only the first steps towards more performant high-level synthesis
tools adapted to emerging FPGA applications and the demands of
computing in broader application domains.
ACM Reference Format:
Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically Sched-
uled High-level Synthesis. In Proceedings of 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA 2018). ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3174243.3174264

1 INTRODUCTION
The use of FPGAs in datacenters by Microsoft [7, 35] and Ama-
zon [2] as well as the acquisition of Altera by Intel [10] signal one
of the greatest opportunities for FPGAs since they were first intro-
duced. One of the many challenges ahead is whether software pro-
grammers will ever manage to extract enough performance through
modern programming paradigms. While there is conspicuous re-
search activity on this front, practically all attempts ultimately rely
on classic forms of High-Level Synthesis (HLS) to generate the actual
circuits. In turn, HLS tools almost universally rely on building data-
paths that are controlled following static schedules—that is, the cycle

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA 2018, February 25–27, 2018, Monterey, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5614-5/18/02. . . $15.00
https://doi.org/10.1145/3174243.3174264

when every operation is executed is fixed at synthesis-time [20].
The similarity to code generation for Very-Long Instruction Word
(VLIW) processors is all but accidental: much of the key transfor-
mations to exploit fine-grain parallelism between operators derives
from VLIW compilation techniques [28, 37]. This analogy with
computer architecture is enlightening: Around two decades ago,
Intel started working on the now defunct Itanium architecture [17],
the first and only VLIW processor aimed to general-purpose mar-
kets. Unfortunately, it turned out significantly more difficult than
expected for a compiler to extract the parallelism that dynamically
scheduled processors routinely exploit. Today, VLIW processors are
successful only in markets with extremely regular and predictable
applications, and where it is acceptable to tune code manually.

Perhaps HLS and FPGAs are following the same trajectory: Stat-
ically scheduled HLS serves well applications that are fairly regular
and when development time is measured against coding in RTL lan-
guages. But, with FPGAs moving to datacenters and facing broader
classes of applications, the ability of dynamic scheduling to auto-
matically extract parallelism may prove essential. With dynamic
scheduling, not only complex loop transformations (and related
hints from the programmers) are often unnecessary, but more par-
allelism can be extracted in the presence of control and memory
dependencies undecidable at compile time. Although beyond the
scope of this paper, dynamically scheduled circuits open the door to
speculative execution, one of the most powerful ideas ever in com-
puter architecture. If FPGAs should compete with CPUs running on
one order of magnitude faster clocks, they will need every ounce of
exploitable operation parallelism with minimal programmer effort.

This paper presents a methodology to automatically generate
dynamically scheduled circuits from C code. Our approach bor-
rows several ideas from the asynchronous domain, but produces
perfectly synchronous designs which are directly comparable to
standard HLS techniques. The paper is organized as follows: Sec-
tion 2 explores an example of one of the situations where dynamic
extraction of operation-level parallelism proves essential to per-
formance. Section 3 details our circuit generation methodology as
implemented in our prototype tool. Section 4 gives the results of
the comparison of our technique with static HLS and contrasts our
methodology with previous efforts to create dynamically scheduled
circuits. In Section 5, we discuss some of the future perspectives
opened by our circuit generation strategy. In Section 6, we out-
line what others have done to circumvent some of the problems of
statically scheduled HLS, before concluding the paper in Section 7.

2 WHY DYNAMIC SCHEDULING?
To illustrate the limitations of standard HLS approaches, consider
the code in Figure 1a. In this loop there is a control flow decision (if)
which depends on the actual data being read from arrays A[] and
B[]. The operation which might take place in a specific iteration
(s = s + d) introduces a dependency between iterations and delays

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

127

https://doi.org/10.1145/3174243.3174264
https://doi.org/10.1145/3174243.3174264

float d, s = 0.0;

int i;

for (int i=0; i<100; i++){

 d = A[i] - B[i];

 if (d >= 0)

 s += d;

}

A[0]=1.0; B[0]=3.0;

A[1]=4.0; B[1]=3.0;

A[2]=2.0; B[2]=2.0;

A[3]=4.0; B[3]=5.0;

...

(a)

rd B[i]

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19

1. Static schedule:
 C20 C21 C22 C23 C24 C25

d≥0?
rd A[i] d = A[i] - B[i]

rd B[i] d≥0?
rd A[i] d = A[i] - B[i]

rd B[i] d≥0?
rd A[i] d = A[i] - B[i] s += d

rd B[i] d≥0?
rd A[i] d = A[i] - B[i] s += d

s += d

s += d

rd B[i]

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25

d≥0?
rd A[i] d = A[i] - B[i]

rd B[i] d≥0?
rd A[i] d = A[i] - B[i] s += d

rd B[i] d≥0?
rd A[i] d = A[i] - B[i]

rd B[i]

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25

d≥0?
rd A[i] d = A[i] - B[i]

rd B[i] d≥0?
rd A[i] d = A[i] - B[i]

rd B[i] d≥0?
rd A[i] d = A[i] - B[i]

s += d

rd B[i] d≥0?
rd A[i] d = A[i] - B[i]

s += d

2. Static schedule:

3. Dynamic schedule:

0

1

2

3

0

1

2

3

0

1

2

3

(b)

≥

0

1

+Read B[i]

Fork

-

Merge

Buff

Fork

Branch

Read A[i]

<

N
Fork

i = 0
start

done...

Sel

+

i

d

old s

new s

Fork

(c)

Figure 1: Limitations of static scheduling. Figure 1a gives a code segment where dependencies cannot be determined at compile
time. Figure 1b contrasts two possible schedules (top and middle) created by an HLS tool with a dynamic schedule (bottom).
Figure 1c shows a portion of a dynamically scheduled circuit achieving the optimal execution schedule of Figure 1b.

the next iteration whenever the condition is true. When pipelining
this loop, a typical HLS tool needs to create a static schedule—that
is, a conservative execution plan for the various operations in the
loop which is valid in every possible case. Such a schedule is shown
on the top of Figure 1b: in the example the condition is true only
for the second and third iteration but “space” is reserved in the
schedule as if the condition were true everywhere. An alternative
could be to avoid pipelining the loop and creating a sequential
finite-state machine. The result could be the middle schedule in
Figure 1b, where indeed cycles are spent for the addition only
when needed; however, the decision of not pipelining the loop has
removed one of the foremost potentials for parallelism (in this case,
thememory reads, the subtraction, and the comparison are perfectly
independent across iterations and could be pipelined). Obviously,
a good schedule is the bottom one in Figure 1b: the operations
of different iterations are overlapped as much as possible and the
parallelism is reduced only when the dependency is actually there
(that is, when the addition is executed). Such behavior is beyond
what a statically scheduled HLS tool can achieve.

This example is representative of one case where generating a
schedule at synthesis time has a negative impact on performance.
Another well-known situation is the presence of dependencies
through memory: a write in a previous iteration may address the
same memory location as the read in a successive one and thus
creates a dependency imposing serialization; yet, if these two ac-
cesses address different locations, they can be executed out of order.
When an HLS tool is not able to guarantee independence between
two memory accesses, it must assume the worst case scenario and
thus limit the exploitable parallelism—exactly as above but for a
different reason. In recent years, many authors have been explor-
ing workarounds to some cases of potential dependencies through
memory—we will discuss them in Section 6—but dynamically sched-
uled circuits represent the most general solution to the problem.

2.1 Elastic Circuits
The key to avoid the limitations of static scheduling is to refrain
from triggering the operators through a centralized pre-planned
controller but to take scheduling decisions locally in the circuit as

it runs: as soon as all conditions for execution are satisfied (e.g., the
operands are available or critical control decisions are resolved),
an operation starts. In line with the computer architecture analogy
of the introduction, this is exactly what dynamically scheduled
processors do through their reservation stations [23]. The rest of
this section looks informally at one dynamically scheduled circuit
paradigm to give the reader a flavor of what we want to achieve.

Figure 1c shows a simplified version of an elastic circuit [11]
implementing the loop of Figure 1a. Besides normal datapath com-
ponents, this circuit uses a few control components labelled Buff,
Merge, Sel, Fork, and Branch. All data signals are accompanied
by handshake control signals. The handshake signals are two, in
opposite direction, indicating respectively the availability of a new
piece of data from the source component and the readiness of the
target component to accept it. The loop to the right of the figure
shows the part of the circuit which updates the iterator i: At the
beginning, the constant 0 is sent from the start node. The Merge
node takes this value and passes it further. The elastic buffer node
Buff is the register which holds i and distributes it on the next
clock cycle to three consumers through the Fork node; all succes-
sors must consume the value before Fork accepts a new input value.
The right branch compares the incremented i with the loop bound;
if the bound is not reached, the new value of i is sent back to the
register by the Branch node through Merge. Meanwhile, the other
outputs of the first Fork use i to access A[] and B[] and to compute
the subtraction, which is propagated to the rest of the circuit.

The key to a good execution of this loop is that, ideally, a new
value of i should be used to start computing A[i] - B[i] on every
cycle. This is the case in this circuit, contrary to a conservative
statically scheduled one: The cycle on the right of Figure 1c is
completely combinational excluding the register Buff and thus a
new value for i can be computed on every cycle. It is the left part of
the circuit which can delay this: when the if is not taken, the result
of the addition is dumped by the Sel node as soon as it arrives and
the old value of s becomes immediately the new value that is sent
back to the adder on the following cycle (loop and Buff omitted for
simplicity); if, on the other hand, the result is needed, Sel will wait
for the sum to complete, the adder will be stalled next cycle waiting

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

128

for its right operand, a new subtraction will not be computed and
the memory accesses will not be performed due to backpressure
from the adder. Ultimately, the top Fork will not allow a new i to
proceed on the right branch. This slows down the initiation of the
loop and is exactly what the dynamic schedule in Figure 1b shows.

2.2 Dynamic vs. Static Scheduling
As the example above shows, loop pipelining happens naturally in
an elastic circuit such as the one in Figure 1c. Again, this is in line
with the experience in computer architecture: whereas complex
compilation techniques have been developed for VLIWs with the
purpose of transforming loops to exploit instruction-level paral-
lelism (often requiring either complex heuristics to drive the opti-
mization or pragmas from the programmers), dynamically sched-
uled out-of-order processors are capable of achieving good levels
of parallelism on-the-fly and without extensive code preparation.
Apart from the advantage of exploiting parallelism when static
scheduling cannot, this ability to find the “good” solution without
help may be critical in a future where HLS will not be driven by
hardware designers (available to study the generated circuits and
to restructure the input code) but by higher-level code generation
tools (e.g., Delite [22]) and ultimately by software programmers.

It is clear that, as in the case of processors, taking scheduling
decisions dynamically costs resources and time (such as the area
and delay of the control elements in Figure 1c). Our purpose in this
paper is (1) to show how one can generate automatically dynami-
cally scheduled circuits from C-programs and (2) to compare their
circuit complexity and critical path with those of circuits obtained
through state-of-the-art HLS tools. Although the potentials of gain
in terms of cycles saved are at least qualitatively clear, to the best
of our knowledge, the problems at bullet (1) have never been thor-
oughly studied in the domain of modern, synchronous HLS and the
comparison at bullet (2) has never been attempted.

3 SYNTHESIZING ELASTIC CIRCUITS
In this section, we describe the process we use to convert an arbi-
trary piece of code into a dynamically scheduled circuit. As evoked
in Section 2.1, we have chosen the elastic circuits [11] as the par-
adigm for the circuits we produce. This section is organized as
follows: In Section 3.1, we describe the elastic components and Sec-
tion 3.2 shows how to use them to build datapaths corresponding to
basic blocks of code. Section 3.3 discusses a few problems which ap-
pear when datapaths from different basic blocks are interconnected
following the control flow of the program. Section 3.4 illustrates
howwe add registers to our circuits to produce correct functionality.
The next problem is connecting the design to memory, which we
describe in Section 3.5. There is an essential optimization to extract
reasonable performance; we outline it in Section 3.6.

3.1 Elastic Components
This section provides an overview of the elastic primitives we use.
Inspired by asynchronous circuits, elastic circuits are strictly syn-
chronous and perfectly adapted to traditional VLSI and FPGA flows.

Most elastic components are immediately equivalent to ordinary
datapath components but they implement latency-insensitivity by
communicating with their predecessors and successors through
point-to-point pairs of handshake control signals: a valid signal

Memory
Interface

data1
addr1

dataN
addrN

data1
addr1

dataM
addrM

N elastic
write ports

M elastic
read ports

wr-ack1

wr-ackN

data
bidirectional

control signals

Buff

func(...)
N inputs

cond
N inputs

Join

Fork

N outputs

N inputs

Merge

N inputs

Branch
data

N outputs

FIFO

cond

Sel
data

Figure 2: Elastic components.

indicates that a component is sending a valid piece of data to its
successor(s), whereas the ready signal informs the predecessor(s)
that a component can accept a new piece of data. The availability of
a piece of data is colloquially indicated as the presence of token, for
analogy with Petri nets; tokens indicate valid data and a transition
(event) occurs as a component absorbs the token [32].

Figure 2 outlines the elastic components we use. Their gate-level
descriptions can be found in literature [11, 25] and none is original
of this piece of work. All have the above-mentioned ready and valid
control signals and most are associated to a data component.
• Elastic Buffers (Buffs) are the elementary storage structure of
elastic circuits and the immediate equivalent of D flip-flops
or registers in regular circuits.
• Elastic FIFOs (FIFOs) are ordinary first-in first-out queues
with the appropriate handshaking signals.
• An Eager Fork (Fork) replicates every token received at the
input to multiple outputs; it outputs tokens to each successor
as soon as possible (i.e., as soon as each individual successor
is ready to accept the data) but does not accept any new
token until all successors have accepted the previous one.
• A Lazy Fork (LFork) performs essentially the same function
as an eager fork, but it outputs tokens only when all succes-
sors are ready. It is, in general, a less optimized version of an
eager fork, as the more conservative triggering rule reduces
the opportunities for out-of-order execution. Yet, it will be
useful in Section 3.5 in a very specific part of the circuit
where we will need to emit tokens in a particular order.
• A Join (Join) is the reciprocal of an Fork—it acts like a syn-
chronizer by waiting to receive a token on each and every
one of its inputs before emitting a token at its output. We sel-
dom employ Joins explicitly but they are used in components
requiring multiple operands to trigger advancement.
• A Branch (Branch) implements program control-flow state-
ments (i.e., if or switch) by dispatching a token (and, some-
times, the corresponding piece of data) received at its single
input to one of its multiple outputs based on a condition.
• A Merge (Merge) is a reciprocal of a Branch—it propagates a
token and data received on any input to its output. Merges
are analogous to Φ functions in the static single assignment
form, inserted in points where control-flow paths meet [40].
• A Select (Sel) acts as a multiplexer—it waits for the required
input to produce the output and discards the tokens at the
nonselected inputs as soon as they arrive.

In addition, we use any functional unit the code requires, such as
integer and floating point units. Components that require multiple
operands contain a Join to trigger the operation onlywhen all inputs

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

129

BB1 BB2

BB3

BB4 BB5 BB6

DFG

{ {N inputs N inputs

{

Branch

M outputs

{

Branch

M outputs

cond

MergeMerge Merge

{N inputs

N predecessor BBs

M successor BBs

Fork

Figure 3: The basic block template.

are available. Finally, we interface with memory through elastic
memory ports. The write port has two inputs (data and address)
and a control-only signal from the memory interface indicates
successful completion. The read port sends an address to memory
and receives data with its corresponding elastic control. Yet, to
achieve correct execution in an intrinsically out-of-order system,
interfacing to memory is more challenging than just connecting to
the appropriate memory ports; this will be addressed in Section 3.5.

3.2 From Basic Blocks to Datapaths
We use the standard data and control flow graphs obtained by a
compiler as the starting point of our circuit generation. First, we
create a datapath for each basic block (BB)—i.e., for each straight
piece of code not containing conditionals. The basic conversion is a
literal translation of the data flow graph into an elastic circuit: every
operator corresponds to a functional unit, edges are connections
between the components, and a Fork is added when a node has
more than one direct successor and at least one is in the same basic
block. At this point, our circuit does not contain any register (Buff).

BBs are connected by directed edges representing data and con-
trol transfers. Once the datapath of each BB has been built, we need
to connect them to other datapaths (or BBs). We have chosen the
conversion template of Figure 3. We allocate aMerge node for every
variable entering the BB (live-in). EveryMerge receives a piece of
data with the corresponding token from one of the predecessor BBs
and forwards it to the main datapath. In the example in Figure 3,
BB3 accepts three live-in variables from one of its two predecessor
BBs—note that, as the circuit follows the control flow, only one of
the predecessor blocks is active at any point in time (i.e., BB1 and
BB2 will never send tokens to BB3 simultaneously) and this is key
to deadlock avoidance (see Section 3.4).

To implement control flow decisions, for every value used by
any successor BB (live-out), we place a Branch at the BB output. If
the successor block does not require a particular data, the output
of the corresponding Branch is discarded into a sink.

3.3 Implementing Control Flow
Connecting the datapath elements corresponding to BBs (Figure 3)
is relatively straightforward, except for a couple of problems which
arise from the fundamental difference of software programs imple-
mented on a processor compared to elastic circuits.

BB0

a Live-out

Live-in a

a = x

BB1

BB2

b = b + a

BB0

a Live-out

a = x

Live-in aBB1

b = b + a

(a)

BB0

a Live-out

a = x

Live-in aBB1

b = b + a

a Live-out

BB0

a Live-out

Live-in a

a = x

BB1

BB2

b = b + a

Live-in a

a Live-out

(b)

Figure 4: Implementing control flow. Figure 4a shows two
cases where a direct conversion of a data and control flow
graph into an elastic circuit would fail. Coupling data and
control to ensure correct token transfers between BBs is
given in Figure 4b.

Figure 4a shows two examples: (1) In the example on the left, the
variable a is defined in BB0 and used in BB2. A typical representa-
tion in a compiler propagates the desired information directly from
the source to the destination block (i.e., a live-in of a basic block
comes from a basic block which is not its immediate predecessor).
This flow does not pose problems in software, as successive values
of a would be stored in a register of a processor or in memory and
the last value used when BB2 is reached. (2) In the example on the
right, BB1 is the only BB in the body of a loop and uses a value a
produced in BB0. The value of a does not change during the exe-
cution of BB1 and is used at every execution of BB1. Again, there
would be no problem in a processor—the value would be stored in
a register or memory and read as many times as needed.

Directly implementing such connections in an elastic circuit
would result in incorrect behavior because every value is associated
with a control token: the number of generated tokens must exactly
match the number of distinct uses. Both cases in Figure 4a violate
this principle: (1) In the first case, if the control flow were {BB0-BB1-
BB0-BB1-BB2}, two new values (with the respective tokens) for a
would have been generated and sent to BB2; yet, BB2 can take only
a single token and wants only the most recent value. Execution
would be incorrect or the circuit would not terminate because the
tokens not absorbed by BB2 would create backpressure to BB0 and
stop it indefinitely. (2) In the second case, BB1 would not be able to
execute repeatedly due to a starving input. Assuming the control
flow is {BB0-BB1-BB1}, the first execution of BB1 will consume the
single data token for a and any further execution of BB1 would
stall indefinitely waiting for a token.

The solution to both problems corresponds to strictly coupling
data propagation with control flow, as Figure 4b shows. We modify
the data and control flow graphs to ensure that (1) every BB provides
a live-out for every live-in of all of its immediate successor BBs
and exclusively to them, and that (2) every BB receives all of its
live-ins from its immediate predecessor BBs and exclusively from
them. We implement this by identifying the origin block for every
live-in variable of every BB. We then find all the paths of the control
flow graph connecting the origin BB and the BB that the live-in
belongs to, and we reconnect the variable through these paths. This
approach guarantees that every piece of data for a BB receives a
fresh token each and every time the BB actually executes.

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

130

1

+

Branch

Basic
Block

 Buff

Merge

v = 1 r = 0

r = 1

v = 1

r = 0

r = 0

token
transfer

1

+

Branch

Basic
Block

Merge
v = 1 r = 0

v = 1

r = 0

r = 0

no token
transfer

Figure 5: Adding registers. A combinational cycle causes
deadlock, as the token with the updated data cannot propa-
gate back into the Merge node. Breaking the combinational
loop with an Buff enables the token to loop back.

3.4 Adding Registers
So far, our circuits do not contain any registers. Before illustrating
our strategy for Buff placement, we discuss their impact on the
circuit functionality and their role in avoiding deadlock.

Elastic buffers and circuit functionality. Elastic systems use
distributed handshake signals to control the flow of data in the
datapath. These signals implicitly take care of stalling early data
items when they need to synchronize with late items [21]. Although
Buffs shift the values in time with respect to the pure synchronous
behavior, their presence or absence does not affect the functional
correctness of the system, as any consumer of multiple values
synchronizes the corresponding valid tokens. Contrary to registers
in traditional synchronous designs, this characteristic allows the
insertion of Buffs on any wire without any effect on functionality
but only on performance. In other words, insertion or removal of
Buffs is correct by construction, as it preserves flow equivalence
and guarantees an unchanged order of valid data [11, 21].

Elastic buffers and avoiding deadlock. The necessary and
sufficient condition for deadlock-free execution requires any cycle
in the circuit to contain at least one Buff [12, 19]. Figure 5 contrasts
a design of a simple cycle with and without a Buff on the cyclic
path—in the first case, a token inserted into the Merge node cannot
propagate through the loop due to the combinational relationship
of the valid and ready tokens on the cycle (labeled as v and r in the
figure). As in traditional synchronous circuits, the combinational
loop needs to be broken through a register. Adding a Buff ensures
that a token can propagate through the cycle [11]. Once the cyclic
combinational relations have been resolved, all tokens will flow
through the circuit in the absolute execution order specified by the
original program; if the program terminates, the token inserted in
the start BB will eventually reach the end BB, following the control
flow of the program; this guarantees the absence of deadlock.

Once the requirement above is satisfied, adding more Buffs has
no influence on functionality but only on performance by (1) de-
laying the corresponding piece of data by a clock cycle and (2) by
breaking a combinational path in the circuit into two paths, possibly
reducing the critical path of the circuit. A Buff can be placed on
any edge of the graph of elastic nodes (i.e., between any two elastic
components). Each edge is associated with its weight, equivalent to
the number of bits of the corresponding data. We define an optimal
Buff placement as one which ensures that (1) every graph cycle is
cut by at least one Buff or sequential element within a functional

LSQ

BB1

BB2

BB3

BB4

BB1

BB2 BB3

BB4

data1
addr1

data1
addr1

N elastic
write ports wr-ack1...

...

M elastic
read ports

Figure 6: The load-store queue required for correct out-of-
order memory accesses.

unit and (2) the sum of the weights of all cut edges is minimized. In
our experiments we implement a simple heuristic to approximate
this optimal placement (and, in practice, we think that in all our
experiments the placement is optimal in the above sense).

3.5 Connecting to Memory
Figure 2 shows a memory component with elastic read and write
ports (i.e., an elastic interface to a traditional memory hierarchy).
Connecting every load or store operation to a read and write port re-
spectively seems a natural decision, but the result may be incorrect.
Access requests will arrive to the memory interface in arbitrary
order (this is the dynamic out-of-order feature that, in general, we
desire) and this may lead to the violation of memory dependencies.
For instance, if a write happens at the same address as some succes-
sive read, and if the read token arrives in the elastic circuit before
the write token, the result of the read will be incorrect.

The solution is to use a load-store queue (LSQ) similar to those
present in dynamically scheduled processors. Yet, we have shown
that building a LSQ for elastic circuits has one fundamental dif-
ference [26]: the LSQ must be given explicit information on the
original program order of the memory accesses, so that it can allo-
cate them into the queue in the right order and thus resolve them
in a semantically correct way. The details are beyond the scope of
this paper; it suffices to say that the key condition for the LSQ to
execute correctly is to receive tokens which follow the actual order
of execution of the basic blocks of the circuit. This ordering enables
the LSQ to determine and resolve dependencies as memory access
arguments from different basic blocks arrive out-of-order.

Consider a program containing four basic blocks as given in Fig-
ure 6. The difference from the simple memory interface of Figure 2 is
only in the additional elastic control signals (e.g., BB1, BB2). These
signals indicate to the LSQ the start of the particular BB. When the
program starts, BB1 sends a token to the LSQ. Assuming that the
control flow determines the execution of BB2 afterwards, BB2 will
send a token to the LSQ next. The order of these tokens enables
the LSQ to appropriately handle out-of-order memory accesses;
accesses from BB1 need to be completed before those from BB2. If,
for instance, a read request arrives from BB2 before all writes from
BB1 have been completed (or determined independent of the read),
the LSQ will appropriately stall the execution of the read.

Our challenge here is to guarantee that theBBi signals needed for
the LSQ are produced in order by a circuit which we have otherwise
designed to be as aggressively out-of-order as we could. To this
end, we generate a control path that follows the control flow of

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

131

BB1

Mg Mg

Br Br

Mg

EF

Br

...

...

EF

cond.

Allocate BB1

Allocate BB2

stall from LSQ

only one EF output
is stalled

Token enters BB2 before
Allocate BB1 is completed
-> incorrect allocation order

X

ready from LSQ

token from EF
(allocation)

BB2

Mg Mg

Br Br

Mg

EF

Br

...

...

EF

cond.

(a)

BB1

Mg Mg

Br Br

Mg

LF

Br

...

...

EF

cond.

Allocate BB1

Allocate BB2

stall from LSQ

token from LF
stored in EB

Token enters BB2 before
Allocate BB1 is completed
-> incorrect allocation order

ready from LSQ

token from LF
(allocation)

BB2

Mg Mg

Br Br

Mg

LF

Br

...

...

EF

cond.

Buff

(b)

BB1

Mg Mg

Br Br

Mg

LF

Br

...

...

EF

cond.

Allocate BB1

Allocate BB2

stall from LSQ

both LF outputs
are stalled

No token entering BB2 until
Allocate BB1 is completed
-> correct allocation order

XX

ready from LSQ

no tokens from LF
(no allocation)

BB2

Mg Mg

Br Br

Mg

LF

Br

...

...

EF

cond.

(c)

Figure 7: Connecting the elastic circuit to the memory interface. Figures 7a and 7b give examples of incorrect connections. In
Figure 7a, the Eager Fork may send an allocation to BB2 before the allocation of BB1 completes. In Figure 7b, the allocation
order may be reversed due to the storage element on the control line between the circuit and the LSQ. Figure 7c shows the
correct way to connect the LSQ—an allocation cannot occur unless all predecessor allocations have been completed.

const.

*

Read a[i]

Write a[i]

Fork

i

const.

*

Read a[i]

Write a[i]

Fork

i

Figure 8: Increasing parallelism by adding FIFOs.

the program through the BBs—essentially, as a data-less variable
which is a live-in and live-out of each and every BB. The tokens in
this path trigger the allocation of BBs as soon as the control flows
there (i.e., as soon as a decision has been made to enter a particular
BB). However, applying the standard elastic circuit design strategy
described in the previous sections might result in the incorrect
order of token arrival to the LSQ. Here are two example situations
leading to a potentially wrong execution: (1) If the token is forked to
the LSQ using the typical Eager Fork (Fork), one of the fork outputs
might send a token to the next BB before the LSQ has accepted a
token from its predecessor (Figure 7a). (2) Although placing Buffs
in elastic circuits has no impact on correctness (as discussed in
Section 3.4), an Buff on the fork output connected to the LSQ might
compromise the order of token arrival to the queue—if the token
remains stored in the Buff, the successor BB could send a new token
before the prior allocation has been completed (Figure 7b).

The correct way to connect the LSQ to the elastic circuit is given
in Figure 7c: (1) The forks used to send the tokens to the LSQ
are Lazy Forks (LFork)—if one of the fork outputs is stalled, the
other one will stall as well. (2) No sequential elements (Buffs) are

allowed on the fork outputs connected to the LSQ. This ensures
that a token can be passed to the successor BB only when the
allocation of its predecessor BB has been completed—if an allocation
is deferred (e.g., due to limited space in the LSQ), the token stalls
and no further allocation requests reach the LSQ. To connect our
datapaths to memory, we leverage compiler analysis to simplify
our memory interface. Whenever the compiler can disambiguate
memory accesses, groups of accesses that cannot mutually conflict
use separate LSQs, while accesses which cannot have dependencies
with any other accesses are connected to simple memory interfaces.

3.6 Decoupling Paths for More Parallelism
The methodology described so far results in semantically correct
circuits; however, they may not yet be competitive with statically
scheduled circuits: A Fork, used to distribute some value to poten-
tially independent pipelines, does pass the token to any successor
as soon as it is ready to take it, but, as mentioned in Section 3.1,
does not accept a new token until all successors have consumed the
previous one. Since some paths through a basic block take longer
to process a token, a Fork may prevent a shorter path to execute
faster. A critical example is the Fork distributing the condition to all
Branches, shown in Figure 3: Even if the control decision is resolved
quickly, the Fork accepts a new condition only when all Branch
nodes receive their values. This prevents hardware pipelining; even
if the need for another iteration can be decided very fast, the new
iteration will not start until the current iteration finishes.

To increase the effective parallelism, we decouple the fast and
slow paths of the basic block by inserting FIFOs into the paths with
longer latency. This allows token accumulation without blocking
the Fork and thus allows to trigger the faster paths at a higher rate.
Figure 8 contrasts the naive slow design with the FIFO-optimized
version. This modification is sufficient to overlap iterations of a

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

132

loop at a rate which corresponds to the speed at which the control
decision can be made. Algorithmically determining the optimal size
of the FIFOs seems akin to buffer sizing in networking and has been
discussed in the context of dataflow machines [13]. We have not
yet properly studied the problem, given the fact that it affects only
performance and not correctness. In this work, we place a FIFO on
every Fork output and experimentally determine its optimal size.

3.7 A Complete Flow
This section has shown how an arbitrary program described in a
high-level language can be transformed into a dynamically sched-
uled circuit. The resulting circuit executes operations out-of-order,
naturally implements hardware pipelining, and handles efficiently
potential memory dependencies. Although our transformation flow
is susceptible to improvements, we think it is interesting to compare
it with a mature HLS tool producing statically-scheduled circuits,
as well as with approaches similar to ours.

4 EVALUATION
We describe here our prototype synthesizer, then give an overview
of our methodology to compare with a commercial HLS tool, and
finally discuss our benchmarks before presenting our results.

4.1 Prototype Synthesizer
Our hardware generation flow uses the LLVM compiler frame-
work [30]: (1) The clang frontend parses the C/C++ program and
produces a static single assignment (SSA) intermediate represen-
tation (LLVM IR) [40]. (2) The LLVM optimizer applies standard
transformation and analysis passes on the IR. (3) Our custom-made
pass transforms the optimized LLVM IR into an elastic circuit. The
main steps of this transformation are described in Section 3. (4) The
IR of the elastic circuit is converted into a VHDL netlist of the
elastic primitives described in Section 3.1. Our flow still includes a
few semimanual steps (including some for the comparisons of the
next section), but nothing more than what is described in Section 3.

4.2 Methodology
To demonstrate the benefits of using an elastic hardware generation
strategy in HLS, we compare our circuits with designs generated
by Vivado HLS [43], a state-of-the-art commercial HLS tool. In all
Vivado designs, we apply the pipelining optimization directive.

To provide a fair comparison of our designs against those gen-
erated by Vivado, we employ the same arithmetic units used by
Vivado into our designs. We extract the components manually from
Vivado’s results and create custom wrappers with handshake sig-
nals. We use the same RAMs for our design as Vivado employs.
We rely on the same memory analysis as Vivado: when a compiler
cannot disambiguate memory accesses, we manually employ the
LSQ in our designs and connect it to the RAM interface; otherwise,
we connect the elastic read/write ports directly to the RAM.

We simulated the designs in ModelSim [31] and used a set of test
vectors for functional verification. We obtain the loop initiation
interval (II) from the simulation and the clock period (CP) from the
post-routing timing analysis to calculate the total execution time.
Placing and routing the designs using Vivado gives us the resource
usage (i.e., the number of CLB slices, with the corresponding LUT
and FF count, as well as the number of DSP units).

4.3 Benchmarks
The designs that we discuss in this section are simple kernels which
represent typical cases where static scheduling is known to run into
its fundamental limits while dynamic scheduling should make a
significant difference. We also consider a simple kernel where static
scheduling is fully successful, to show that dynamically scheduling
achieves virtually the same result with small overheads.
• Histogram reads an array of features and increases the value
of the corresponding histogram bins. The memory access
pattern cannot be determined at compile time—the loop may
contain read-after-write dependencies if the same bin is up-
dated in neighbouring iterations.
• Matrix Power performs a series of matrix-vector multipli-
cations. Each iteration of a nested loop reads a row and a
column coordinate and updates the corresponding matrix
element. At compile time, it is not possible to determine if
successive iterations perform conflicting writes and reads.
• Loop with condition 1 is the kernel discussed in Section 2,
with a potential dependency across iterations dependent on
the data from arrays A and B.
• Loop with condition 2 is a variation of the previous kernel
where we replace the conditional addition with a multiplica-
tion of the same variables and which we will contrast with
the previous kernel in terms of resource utilization.
• FIR filter is an ordinary FIR filter calculating the output based
on the inputs and the coefficients. The memory reads and
writes are independent and disambiguated at compile time.

4.4 Results: Comparison with Static HLS
Table 1 summarizes the timing and resource results for all kernels
and Figure 9 shows our results relative to those from Vivado HLS
(results to the left or below the red circle are better).

Timing. Avoiding conservative assumptions on memory and
control dependencies results in a significant improvement of the
execution time in all of the corresponding benchmarks (note that
the dynamic results are data dependent: the average II can, in all
these examples, be as low as 1 and never larger than the statically
computed II). This increases the throughput with usually an ac-
ceptable impact on the CP due to the additional handshake signals
between elastic components. The strongest impact on the CP is
when we use the LSQ, whose critical path is extremely sensitive to
the number of queue entries [26]. Although this timing overhead is
quite tangible, it is still conspicuously small when compared to the
potential improvement in II and, consequently, the net performance.
On the FIR benchmark, static HLS techniques produce a highly op-
timized pipeline because memory accesses can be disambiguated
at compile time. The static HLS tool depends on techniques akin
to modulo scheduling [37] to restructure and pipeline the loop,
whereas we effortlessly compile the LLVM IR into an elastic circuit
as-is: this is the only example of design where our result is Pareto
dominated by the static one, but the impact of the elastic circuitry
on the CP appears not to be a cause of major concern—especially
since nothing was yet attempted to optimize the elastic circuits.

Resource utilization. The right of Table 1 contrasts the re-
source utilization of statically and dynamically scheduled circuits.
The overhead in slices of the dynamic designs, notable across all
benchmarks, is partially due to the control logic that the elastic

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

133

Benchmark
IIavg CP (ns) Execution time (us) Slices LUTs FFs DSPs

STAT DYN STAT DYN STAT DYN STAT DYN STAT DYN STAT DYN STAT DYN

Histogram 11 2.3 3.3 5.7 36.3 13.3 130 200 + 901 296 3,632 447 1,734 2 2
Matrix power 16 4.2 3.4 6.0 20.7 9.6 219 352 + 1113 500 4,237 790 2,050 5 5
Loop with condition 1 9 1.3 2.8 4.8 25.3 6.2 161 289 391 767 525 984 2 4
Loop with condition 2 5 1.2 3.4 4.8 17.1 5.7 187 240 409 659 623 811 5 5
FIR 1 1 3.3 4.4 3.3 4.4 62 127 89 341 224 382 3 3

Table 1: Dynamically scheduled results (our elastic circuits) contrasted to statically scheduled results (Vivado HLS). The slice
count for Histogram and Matrix Power is given as slices of kernel + slices of LSQ.

1

3

2

4

5

7

6

8

10.8 1.20.2 0.4 0.6 1.4 1.6

9

R
es

ou
rc

es
 (

sl
ic

es
),

 n
or

m
al

iz
ed

Execution time, normalized

Histogram

Matrix Power

FIR
Loop with
condition 1

Loop with
condition 2

Dynamic
Static

Pareto-dominated
by the static

design

Figure 9: Resource utilization and execution time of the dy-
namically scheduled designs, normalized to the correspond-
ing static designs produced by Vivado HLS.

circuits contain and which allows them to achieve the latency-
insensitivity which we desire. The overhead of the FIFOs that we
introduced to increase throughput, as discussed in Section 3.6, is
probably overblown by the simplicity of the examples with only a
few functional units. Additionally, we have not yet looked into time-
multiplexing of functional units—we trivially allocate a new unit
per operator, whereas the allocation and binding algorithms that
Vivado employs allow a single unit to be shared: see for instance
Loop with condition 1 where our design requires two functional
units to perform the addition and the subtraction whereas Vivado
HLS time-multiplexes the same one. To show this, we replaced one
of the operations with a multiplication (Loop with condition 2) and
verified that the resource difference is now significantly smaller.

It is immediately visible from Figure 9 that the circuits requiring
an out-of-order memory interface demand significant additional
resources. Although others have accelerated similar kernels to a
qualitatively comparable extent and with only insignificant over-
head [15], their solution is highly specific and solves only a subset
of problems discussed in this work. It should be emphasized that the
resource and timing overhead could be minimized by implementing
the LSQs as hard-macros, in the same way as other memory hierar-
chy components might be in the future (e.g., caches and TLBs).

4.5 Results: Comparison of Dynamically
Scheduled Techniques

In this section, we compare our work to two approaches that are
perhaps the closest ones to ours, and discuss some issues preventing
them to attain the performance we strive for.

Huang et al. generated elastic circuits from C code, to be mapped
to a coarse-grain reconfigurable array [25]. Their circuit generation
approach differs from ours in two aspects: (1) They use a single
Branch node at the output of each basic block, which forces them
to synchronize all the basic block outputs and, consequently, pre-
vents loop iterations from overlapping (i.e., loops are not pipelined).
(2) Their approach does not employ a LSQ at the memory interface
and, thus, all memory accesses which cannot be disambiguated at
compile time need to be conservatively sequentialized.

Budiu et al. described a compiler for generating asynchronous
circuits from C code [3, 4]. Although their final circuits are funda-
mentally different from ours (our circuits are perfectly synchronous
and avoid the traditional difficulties associated with asynchronous
designs), the generation strategy is similar to ours. Unfortunately,
the exact methodology is never described in full detail and examples
across different papers by the same authors do not seem perfectly
consistent. Nevertheless, their best results appear to match qual-
itatively ours, except when memory accesses are involved: they
present two strategies for handling memory dependencies and both
are more conservative than ours.

We implemented our two benchmarks with memory dependen-
cies following the design strategies above and compared their tim-
ing and resource requirements to our designs. In the case of Budiu
et al., we have replaced their asynchronous components with the
corresponding synchronous elastic components. Table 2 shows the
results. The designs of Huang et al. cannot achieve any pipelining,
which results in performances lower than even those of the static
HLS designs. For the designs by Budiu et al., we provide two sets of
results, corresponding to the two approaches for handling memory
dependencies that the authors present: The first version (labeled
CASH 1 in the table) contains no LSQ at the memory interface; as in
the work by Huang et al., the authors conservatively sequentialize
memory accesses which are potentially dependent; however, they
manage to create a pipeline across iterations and achieve some
performance improvement compared to Huang et al. In the second
version, the authors add an LSQ but use a conservative allocation
policy which inserts an entry into the LSQ only when an address
or a data item for the corresponding access is known; despite in-
creasing the pipeline throughput, this strategy still cannot match
the performance that we achieve using our group allocation policy.

5 PERSPECTIVES
Although many results of Section 4 appear attractive to us, it is
also clear that our synthesizer is still primitive in many respects.
We think it is fair to emphasize that statically scheduled HLS bene-
fits from decades of research that the automatic design of latency
insensitive circuits cannot sport. We spend this section to evoke

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

134

Benchmark
IIavg CP (ns) Execution time (us) Slices

Huang CASH 1 CASH 2 DYN Huang CASH 1 CASH 2 DYN Huang CASH 1 CASH 2 DYN Huang CASH 1 CASH 2 DYN

Histogram 12 11 3.7 2.3 4.9 4.8 5.9 5.7 58.9 52.9 21.2 13.3 134 149 182+901 200+901
Matrix power 17 16 5.0 4.2 4.1 3.9 6.3 6.0 26.6 23.8 11.9 9.6 204 233 332+1113 352+1113

Table 2: Dynamically scheduled results (our elastic circuits, DYN) contrasted to other dynamic approaches.

some of the most important areas where dynamically scheduled
HLS could improve in the future.

5.1 Pipelining and Area Optimizations
Pipelining ordinary synchronous circuits is a thoroughly studied
problem [16]. Our heuristic in Section 3.4 is nothing more than first
working shot, certainly susceptible of significant improvements—
for instance, we did not even try to break critical paths with se-
quential elements. Other typical concerns of HLS which we did not
address here are allocation and binding: deciding how many units
of a specific type to implement and how to time-multiplex them
to perform needed operations. Elastic circuits can time-multiplex
functional units [6] and we will try to exploit this.

5.2 Partial Schedule Rigidification
One optimization aspect which is immediately manifest when look-
ing at the circuits we generate is that we allow latency insensitivity
through any component and on any path. Although in some cases
this is exactly the strength of ourmethodology, inmany cases it is an
expensive overkill: many computational paths may be constructed
with fixed-latency components (ALUs, floating-point operators,
etc.) and never really profit from the control flexibility. There may
be optimizations that “rip-off”, under some conditions, complex
control paths from the corresponding datapaths and replace them
with simpler, customized control structures. One could see this as
a selective rigidification of the schedule where dynamism is not
really needed. This is a completely unexplored avenue which might
reduce significantly the area and timing overhead of elasticity.

5.3 Speculative Execution
Finally, as in computer architecture, dynamic scheduling paves the
way to one of the most powerful ideas in computing: executing
some operations before one has the certitude that they are actually
needed or that it is correct to execute them. Speculation can signifi-
cantly improve the execution of loops where the iteration interval
is very large due to a condition on the loop continuation that takes
very long to compute: control speculation can predict very early
(possibly with an iteration interval of one) whether it makes sense
to execute tentatively another iteration. Similarly, speculation can
further improve the problem of memory dependencies, not only
by reordering accesses once the lack of dependency is known but
even by assuming independence early on and reverting back if
the prediction was wrong. The ability to implement speculation
depends on reliable mechanisms to revert state changes due to
wrongly executed operations—what in processors is entrusted to
reorder buffers and store queues. In the scope of elastic circuits, first
steps of speculative execution (much more limited compared to the
above goals) have been shown already [21] and suggest that latency
insensitive protocols can be modified to accommodate tentative
and reversible execution.

6 RELATEDWORK
Recent advances in HLS have explored methods to overcome the
conservatism in static scheduling. Several techniques [1, 29] gen-
erate multiple schedules which are dynamically selected during
runtime, once the values of all parameters are known. Tan et al. [39]
describe an approach called ElasticFlow to apply loop pipelining
on a particular class of irregular loops. Dai et al. [14] propose meth-
ods for pipeline flushing by performing scheduling for multiple
initiation intervals of the pipeline; they later developed application-
specific dynamic hazard detection circuitry [15] and have shown
the ability of speculation but with stringent constraints (e.g., state-
less inner-loop datapath). Nurvitadhi et al. [34] perform automatic
pipelining, assuming that the datapath is already partitioned into
pipeline stages. The underlyingmethodology in all these techniques
is still based on static scheduling opportunistically adapted to en-
able some level of dynamic behavior, which limits the achievable
performance improvements only to some particular cases.

Different authors exploited latency-insensitive protocols [5, 11,
19] to construct dynamic circuits. Elastic circuits [11] are probably
the best-studied form of latency insensitivity, but the original para-
digm used in most of the papers by Cortadella et al. is too restrictive
for HLS. Several approaches [8, 24] extended the SELF protocol [11]
with constructs similar to the Branch andMerge which we use in
this work. Kam et al. [27] testified of the ability of elastic circuits
to create dynamic pipelines, but do not provide generic transfor-
mations to create elastic circuits out of high-level descriptions.
Efforts in the asynchronous circuit domain, such as Balsa [18] and
Haste/TiDE [33], applied syntax-driven approaches for mapping
a program into a structure of handshake components [38], and a
synchronous backend for Haste/TiDE has later been developed.
Putnam et al. [36] have also explored synthesizing dataflow-like cir-
cuits from high-level specifications. However, all these approaches
provide little information on some critical aspects of the conversion
which are at the heart of this paper; to our best knowledge, these
approaches have never been contrasted to modern HLS tools. The
efforts closest to ours (i.e., the work by Huang et al. [25] and Budiu
et al. [3, 4]) have been discussed in Section 4.5.

Cheng et al. [9] describe circuits as networks of processes in
which hardware accelerators exchange data via dynamic communi-
cation channels. We are here interested in exploring dynamicity on
a finer grain and thus we do not face some of the deadlock issues
that are critical in their work. Standard HLS tools [43] also often
interconnect with handshakes various datapaths from nested loops
and functions but, again, we care here for the fine-grain sched-
ule of individual datapaths. Townsend et al. [41] used a functional
programming intermediate representation as a starting point for
synthesizing dataflow networks. Elastic circuits, with their hand-
shake signals, immediately bring to mind Bluespec and its firing
rules [42]. However, nothing in these two approaches is directly re-
lated to our goal: transforming a program written in an imperative,
high-level language into a dynamically scheduled circuit.

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

135

7 CONCLUSIONS
With FPGAs finding their way into datacenters, HLS tools are set to
play a key role in the future of reconfigurable computing. Yet, they
are relying on a paradigm which is conceptually identical to the
problem of compilation for VLIW processors: generating good static
circuits from high-level languages requires peculiar code restruc-
turing algorithms (e.g., modulo scheduling), demands expert user
interaction (e.g., pragmas), forces worst-case assumptions on impor-
tant issues (e.g., memory and control dependencies), and precludes
key performance optimizations (e.g., general forms of speculative
execution). In this paper, we have described a dynamically sched-
uled form of HLS and run a simple synthesizer on a few relevant
kernels to compare results to a commercial, statically scheduledHLS
tool. When static HLS exploits the maximum parallelism available,
our technique achieves similar results with minimal degradation
in cycle time; when static HLS misses some key performance op-
timization opportunities, our circuits seize them, achieving large
performance improvements with the investment of more resources.
Although much remains to be done to refine the optimizations and
to add key features we have only evoked so far, we believe our work
points to a very promising avenue to make HLS truly valuable on
irregular and control-dominated applications.

REFERENCES
[1] M. Alle, A. Morvan, and S. Derrien. Runtime dependency analysis for loop

pipelining in high-level synthesis. In Proceedings of the 50th Design Automation
Conference, pages 51:1–51:10, Austin, Tex., June 2013.

[2] Amazon.com, Inc. Amazon EC2 F1 Instances.
[3] M. Budiu, P. V. Artigas, and S. C. Goldstein. Dataflow: A complement to su-

perscalar. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software, pages 177–86, Austin, Tex., Mar. 2005.

[4] M. Budiu and S. C. Goldstein. Pegasus: An efficient intermediate representation.
Technical Report CMU-CS-02-107, Carnegie Mellon University, May 2002.

[5] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of latency-
insensitive design. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, CAD-20(9):1059–76, Sept. 2001.

[6] J. Carmona, J. Júlvez, J. Cortadella, and M. Kishinevsky. A scheduling strategy for
synchronous elastic designs. Journal Fundamenta Informaticae, 108(1–2):1–21,
Jan. 2011.

[7] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Pa-
pamichael, L.Woods, S. Lanka, D. Chiou, andD. Burger. A cloud-scale acceleration
architecture. In Proceedings of the 49th International Symposium on Microarchi-
tecture, pages 1–13, Taipei, Taiwan, Oct. 2016.

[8] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras. xMAS: Quick formal modeling of
communication fabrics to enable verification. IEEE Design & Test of Computers,
29(3):80–88, June 2012.

[9] S. Cheng and J. Wawrzynek. Synthesis of statically analyzable accelerator net-
works from sequential programs. In Proceedings of the International Conference
on Computer-Aided Design, pages 126–33, Austin, Tex., Nov. 2016.

[10] D. Chiou. Intel acquires Altera: How will the world of FPGAs be affected? In Pro-
ceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, page 148, Monterey, Calif., Feb. 2016.

[11] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of synchronous
elastic architectures. In Proceedings of the 43rd Design Automation Conference,
pages 657–62, San Francisco, Calif., July 2006.

[12] J. Cortadella, M. G. Oms, M. Kishinevsky, and S. S. Sapatnekar. RTL synthe-
sis: From logic synthesis to automatic pipelining. Proceedings of the IEEE,
103(11):2061–75, Nov. 2015.

[13] D. E. Culler and Arvind. Resource requirements of dataflow programs. In
Proceedings of the 15th Annual International Symposium on Computer Architecture,
pages 141–150, Honolulu, Hawaii, May 1988.

[14] S. Dai, M. Tan, K. Hao, and Z. Zhang. Flushing-enabled loop pipelining for
high-level synthesis. In Proceedings of the 51st Design Automation Conference,
pages 1–6, San Francisco, Calif., June 2014.

[15] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang. Dynamic
hazard resolution for pipelining irregular loops in high-level synthesis. In Pro-
ceedings of the 25th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pages 189–194, Monterey, Calif., Feb. 2017.

[16] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New
York, 1994.

[17] J. C. Dvorak. How the Itanium Killed the Computer Industry, Jan. 2009.
[18] D. Edwards and A. Bardsley. Balsa: An asynchronous hardware synthesis lan-

guage. The Computer Journal, 45(1):12–18, Jan. 2002.
[19] S. A. Edwards, R. Townsend, and M. A. Kim. Compositional dataflow circuits.

In Proceedings of the 15th ACM-IEEE International Conference on Formal Methods
and Models for System Design, pages 175–184, Vienna, Austria, Sept. 2017.

[20] M. Fingeroff. High-Level Synthesis Blue Book. Xlibris Corporation, first edition,
2010.

[21] M. Galceran-Oms, J. Cortadella, and M. Kishinevsky. Speculation in elastic
systems. In Proceedings of the 46th Design Automation Conference, pages 292–95,
San Francisco, Calif., July 2009.

[22] N. George, H. Lee, D. Novo, T. Rompf, K. Brown, A. Sujeeth, M. Odersky, K. Oluko-
tun, and P. Ienne. Hardware system synthesis from domain-specific languages.
In Proceedings of the 23rd International Conference on Field-Programmable Logic
and Applications, pages 1–8, Munich, Sept. 2014.

[23] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, fifth edition, 2011.

[24] G. Hoover and F. Brewer. Synthesizing synchronous elastic flow networks. In
Proceedings of the Design, Automation and Test in Europe Conference and Exhibition,
pages 306–11, Munich, Mar. 2008.

[25] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu. Elastic CGRAs. In Proceedings
of the 21st ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pages 171–80, Monterey, Calif., Feb. 2013.

[26] L. Josipović, P. Brisk, and P. Ienne. An out-of-order load-store queue for spa-
tial computing. ACM Transactions on Embedded Computing Systems (TECS),
16(5s):125:1–125:19, Sept. 2017.

[27] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms. Correct-by-
construction microarchitectural pipelining. Proceedings of the 27th International
Conference on Computer-Aided Design, pages 434–41, Nov. 2008.

[28] M. S. Lam. Software pipelining: An effective scheduling technique for VLIW
machines. In Proceedings of the 1988 ACM Conference on Programming Language
Design and Implementation, pages 318–28, Atlanta, Ga., June 1988.

[29] J. Liu, S. Bayliss, and G. A. Constantinides. Offline synthesis of online dependence
testing: Parametric loop pipelining for HLS. In Proceedings of the 23rd IEEE
Symposium on Field-Programmable Custom Computing Machines, pages 159–62,
Vancouver, May 2015.

[30] The LLVM Compiler Infrastructure. http://www.llvm.org.
[31] Mentor Graphics. ModelSim, 2016.
[32] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–80, Apr. 1989.
[33] S. F. Nielsen, J. Sparsø, J. B. Jensen, and J. S. R. Nielsen. A behavioral synthesis

frontend to the Haste/TiDE design flow. In Proceedings of the 15th International
Symposium on Asynchronous Circuits and Systems, pages 185–94, Chapel Hill,
N.C., May 2009.

[34] E. Nurvitadhi, J. C. Hoe, T. Kam, and S.-L. L. Lu. Automatic pipelining from
transactional datapath specifications. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 30(3):441–54, Mar. 2011.

[35] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger. A reconfigurable fabric for accelerating large-scale dat-
acenter services. In Proceedings of the 41st International Symposium on Computer
Architecture, pages 13–24, Minneapolis, Minn., June 2014.

[36] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundararajan. CHiMPS: A
high-level compilation flow for hybrid CPU-FPGA architectures. In Proceedings
of the 16th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pages 173–178, Monterey, Calif., Feb. 2017.

[37] B. R. Rau. Iterative modulo scheduling. International Journal of Parallel Program-
ming, 24(1):3–64, Feb. 1996.

[38] J. Sparsø. Current trends in high-level synthesis of asynchronous circuits. In
Proceedings of the 16th IEEE International Conference on Electronics, Circuits, and
Systems, pages 347–50, Yasmine Hammamet, Tunisia, Dec. 2009.

[39] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang. ElasticFlow: A complexity-effective
approach for pipelining irregular loop nests. In Proceedings of the 34th Inter-
national Conference on Computer-Aided Design, pages 78–85, Austin, Tex., Nov.
2015.

[40] L. Torczon and K. Cooper. Engineering a Compiler. Morgan Kaufmann, second
edition, 2011.

[41] R. Townsend, M. A. Kim, and S. A. Edwards. From functional programs to
pipelined dataflow circuits. In Proceedings of the 26th International Conference on
Compiler Construction, pages 76–86, Austin, TX, USA, Feb. 2017.

[42] M. Vijayaraghavan and Arvind. Bounded dataflow networks and latency-
insensitive circuits. In Proceedings of the 9th International Conference on Formal
Methods and Models for Codesign, pages 171–80, Cambridge, MA, July 2009.

[43] Xilinx Inc. Vivado High-Level Synthesis.

Session 4: High Level Synthesis 1 FPGA’18, February 25–27, Monterey, CA, USA

136

	Abstract
	1 Introduction
	2 Why Dynamic Scheduling?
	2.1 Elastic Circuits
	2.2 Dynamic vs. Static Scheduling

	3 Synthesizing Elastic Circuits
	3.1 Elastic Components
	3.2 From Basic Blocks to Datapaths
	3.3 Implementing Control Flow
	3.4 Adding Registers
	3.5 Connecting to Memory
	3.6 Decoupling Paths for More Parallelism
	3.7 A Complete Flow

	4 Evaluation
	4.1 Prototype Synthesizer
	4.2 Methodology
	4.3 Benchmarks
	4.4 Results: Comparison with Static HLS
	4.5 Results: Comparison of Dynamically Scheduled Techniques

	5 Perspectives
	5.1 Pipelining and Area Optimizations
	5.2 Partial Schedule Rigidification
	5.3 Speculative Execution

	6 Related Work
	7 Conclusions
	References

