
SECOND QUARTER 2021 	 1531-636X/21©2021IEEE	 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 97

©SHUTTERSTOCK.COM/CQ PHOTO JUY

High-level synthesis (HLS) tools
generate hardware designs
from high-level programming
languages and should liberate
designers from the details of
hardware description languages
like VHDL and Verilog. HLS tools
typically build datapaths that
are controlled using a central-
ized controller, which relies on a
compile-time schedule to deter-
mine the clock cycle when each
operation executes. Such an ap-
proach results in high-throughput
pipelined designs only in cases
where memory accesses are
provably independent and criti-
cal control decisions are deter-
minable during code compila-
tion. Unfortunately, when this is
not the case, current tools must
make pessimistic assumptions,
yielding inferior schedules and
lower performance. Recent ad-
vances in HLS have explored
methods to overcome the con-
servatism in static scheduling
and to remove the inability of HLS tools to handle dynamic events.
Dataflow circuits play a significant role in this context: they are
built out of units that communicate using point-to-point pairs of
handshake control signals and this distributed control mechanism
effectively implements a dynamic schedule, adapted at runtime
to particular memory and control outcomes. Dataflow circuits can
exploit the same optimization opportunities as standard HLS cir-
cuits (i.e., pipelining and resource sharing), but also introduce

to HLS features similar to those of modern superscalar proces-
sors (i.e., out-of-order memory accesses and speculative execu-
tion), which are key for HLS to be successful in new contexts and
broader application domains.

I. Introduction

F ield Programmable Gate Arrays (FPGAs) are ex-
tremely versatile devices that can be configured
into application-specific accelerators achieving

high performance and energy efficiency. Recently,

Abstract

Synthesizing
General-Purpose Code

Into Dynamically
Scheduled Circuits

Lana Josipović, Andrea Guerrieri, and Paolo Ienne, École Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences, CH-1015 Lausanne, Switzerland.

lana.josipovic@epfl.ch, andrea.guerrieri@epfl.ch, paolo.ienne@epfl.ch

Feature

Digital Object Identifier 10.1109/MCAS.2021.3071631

Date of current version: 24 May 2021

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

98 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

FPGAs have been integrated into datacenters [2], [9], [56],
packaged with processors [13], and introduced to new
application domains. However, their success on the glob-
al market critically depends on the ability of software ap-
plication developers to build efficient FPGA designs [30],
[31], [51] by extracting sufficient performance through
modern programming paradigms. High-level synthesis
(HLS) tools enable programmers to automatically gener-
ate hardware designs from high-level software abstrac-
tions instead of writing tedious and time-consuming
low-level hardware descriptions. Despite their progress
and some commercial success in the last decade, HLS
tools still tend to be criticized for the difficulty of ex-
tracting the desired level of performance: generating
good circuits from high-level languages still requires pe-
culiar code restructuring, expert user interaction, and
extensive experimentation with the tools [39]. Moreover,
current HLS techniques face a fundamental issue when
handling irregular applications: because they rely on
static scheduling, i.e., the cycle in which each operation
executes is fixed at compile time [26], they force worst-
case assumptions on memory and control dependences.
Therefore, HLS tools are primarily usable by designers
with hardware expertise and acceptable only for some
classes of applications, but they are still unable to meet
the need to accelerate emerging applications such as
graph processing, data analytics, and sparse linear al-
gebra operations.

In this article, we provide an overview of standard
HLS techniques and describe some classic HLS optimi-
zations and their tradeoffs. We then detail a fundamen-
tally different form of HLS which produces dynamically
scheduled, dataflow circuits out of high-level code.
These circuits use a distributed control system that
makes local scheduling decisions dynamically during
runtime; data is propagated from unit to unit as soon
as memory and control dependences allow it and, oth-
erwise, it is stalled until all conditions for execution
are satisfied. However, a straightforward translation
of high-level code into a dataflow circuit is not suffi-
cient to obtain circuits that are truly competitive and
useful in the HLS context. We detail the methodologies
to exploit the same optimization opportunities that
standard HLS relies on (i.e., pipelining and resource
sharing). We then discuss methods to achieve char-
acteristics that are beyond what classic HLS can do
(i.e., out-of-order memory accesses and speculation);
these features introduce to dataflow circuits character-
istics similar to those of modern superscalar proces-
sors. The resulting circuits achieve solutions that are,
in particular cases, superior to those obtained using
standard HLS techniques: similarly to the tradeoff be-
tween VLIW processors and superscalars, the perfor-

mance of demanding applications is very significantly
improved at an affordable cost.

II. How Does Classic HLS Work?
In this section, we describe typical high-level synthesis
features and optimizations. We discuss standard sched-
uling techniques and illustrate the limitations they face
in particular applications.

A. High-Level Synthesis
Hardware description languages (HDLs), such as VHDL
and Verilog, have been used in the electronic design in-
dustry for decades to specify the details of hardware
design in terms of low-level building blocks such as
gates, registers, and multiplexers [3]. However, this de-
scription level requires hardware expertise and, typi-
cally, a longer time to develop the design. High-level
synthesis tools allow designers to work at a higher level
of abstraction by using a software language to specify
the hardware functionality; this approach enables soft-
ware engineers to program hardware and helps hard-
ware engineers to speed up the design process as well
as to efficiently explore the design space [51]. Although
HLS can benefit both ASIC and FPGA designers, HLS
tools are particularly gaining popularity in the FPGA
domain, where the programming challenges of these
devices are one of the biggest barriers to their main-
stream adoption [3], [15].

Different HLS tools rely on different high-level rep-
resentations to describe the underlying hardware; the
most popular ones use C/C++ as an input language [7],
[69]. Generally speaking, the user provides the input
functional specification and particular design con-
straints such as target device, desired clock frequency,
and memory interface description; the tool then auto-
matically analyzes concurrency, inserts registers to
achieve the desired frequency, generates the control
and datapath logic, and maps data onto storage ele-
ments to optimize the bandwidth and resource usage
[45]. The user is typically required to restructure the
code and annotate it with pragmas to guide the tool in
reaching the desired design point.

Figure 1 illustrates several out of many possibilities
to specify the functionality of a simple FIR filter in C code
as well as the resulting circuits produced by an HLS
tool [45]; apart from the different datapaths, as shown
in the figure, each design has a kernel-specific control-
ler which triggers the datapath components at appro-
priate clock cycles; we will discuss this functionality in
the following section. The first circuit is obtained from a
typical software representation, without any hardware-
specific annotations or code restructuring. The second
code is manually unrolled to explicitly express available

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 99

acc = 0;
for (i = 3; i >= 0; i--) {

if (i == 0) {
shift_reg[0] = x;
acc += x * c[0];

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i] * c[i];

}
}
y = acc;

shift_reg[3] = shift_reg[2];
shift_reg[2] = shift_reg[1];
shift_reg[1] = shift_reg[0];
shift_reg[0] = x;

acc = shift_reg[3] * c[3];
acc += shift_reg[2] * c[2];
acc += shift_reg[1] * c[1];
acc += shift_reg[0] * c[0];

y = acc;

shift_reg[3] = shift_reg[2];
shift_reg[2] = shift_reg[1];
shift_reg[1] = shift_reg[0];
shift_reg[0] = x;

acc = 0;
for (i = 10; i >= 0; i--) {

#pragma HLS pipeline
acc += shift_reg[i] * c[i];

}
y = acc;

Controller

Controller

Controller

acc

acc

acc

c[]

c[0] c[1] c[2] c[3]

c[]

x
x

x

(a)

(b) (c)

Figure 1. Design space exploration with static HLS [45]. All three codes in the figure describe the same functionality (i.e., an FIR
filter); yet, the resulting HLS solutions differ in area and performance. (a) No optimization, (b) Unrolling, (c) Pipelining.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

100 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

parallelism to the HLS tool—as the circuit below sug-
gests, this design will employ multiple operators which
can be used concurrently. The third design point uses
a pragma to indicate to the tool that the code should
be pipelined, i.e., the loop iterations should overlap for
performance benefits. It is evident from the figure that
the circuits differ in the number of employed resources
(i.e., adders, multipliers, multiplexers); they also differ
in performance, as we will discuss next.

B. Scheduling in HLS
HLS relies on a series of compiler optimizations to achieve
performance- and area-efficient designs; some techniques
are exploited by compilers in general (i.e., code motion,
if conversion), whereas others are hardware-specific
(i.e., bitwidth analysis, operation chaining). One of the

key algorithms in HLS synthesis is scheduling, i.e., decid-
ing the clock cycle in which each operation will execute.
It is typically achieved through system of difference con-
straints (SDC) modeling which incorporates a variety of
constraints, such as resource usage, data dependences,
control dependences, and clock frequency [6], [16].

The three schedules in Figure 2 correspond to
the circuits in Figure 1. The schedule of each design is
regulated by the controller; it implements a finite state
machine which controls the behavior of the datapath by
triggering operations, enabling registers, and multiplex-
ing values in appropriate clock cycles. The first sched-
ule corresponds to the sequential execution of the soft-
ware code: one iteration starts after the previous one
has completed. The code restructuring in the second
figure enables operations to execute in parallel, hence

Multiplication

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

1

2

3

Add

4

rd/wr
regs

Multiplication Add

Multiplication1

2

3

4

Multiplication1

2

3

Add

4

Multiplication Add

Multiplication Add

Multiplication Add

Multiplication

Multiplication

Multiplication

Add

Add

Add

rd/wr
regs
rd/wr
regs
rd/wr
regs
rd/wr
regs

rd/wr
regs
rd/wr
regs
rd/wr
regs
rd/wr
regs

rd/wr
regs

rd/wr
regs

(a)

(b)

(c)

Figure 2. The schedules of the three design points from Figure 1. (a) No optimization, (b) Unrolling, (c) Pipelining.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 101

lowering the execution time, but with the investment
of additional resources. The third circuit employs loop
pipelining: a new loop iteration starts on every clock
cycle and the resource requirements are minimal (i.e.,
new data is inserted into the single adder and the single
multiplier on every cycle).

Loop pipelining is one of the key performance opti-
mizations in HLS—as the example above suggests, it
allows loop iterations to overlap in the best possible
manner while honoring all data and control depen-
dences of the program. The technique originates from
software pipelining techniques for Very Long Instruction
Word (VLIW) processors, which rely on modulo sched-
uling algorithms to exploit instruction-level parallelism
among successive loop iterations [46], [58]. A pipeline is
characterized by its initiation interval (II), i.e., the num-
ber of clock cycles between consecutive loop iterations;
the ideal II is equal to 1, as is the case for the pipelined
schedule in the figure.

C. Limitations of Standard Scheduling
As in the case of VLIWs, the ability of HLS pipelining
to achieve a low II is limited in the presence of re-
source or memory port constraints as well as long-latency

loop-carried dependences. In addition, pipelining may be
limited in cases where compile-time information is not
sufficient to devise the best possible schedule. Examples
of such situations include memory access patterns which
cannot be determined at compile time, unpredictable
control flow, and variable-latency operations. In such cas-
es, standard tools must assume the presence of a depen-
dence and produces a schedule with a conservative II.

To illustrate this limitation, consider the example in
Figure 3. In this loop, there is a possible data dependence
between the memory read of hist[x[i+1]] and the
memory write to hist[x[i]] of the previous iteration.
There is intrinsically no way a compiler or an HLS tool
can ensure that such dependence does not exist, nor
is it, in general, possible for a programmer to help the
tools: in practice, the read may seldom or even never ad-
dress the same value just written in memory, but there
is no way to exclude a priori that this might happen. Ul-
timately, any HLS technique based on static scheduling
hits the problem of potential dependences and needs to
account for the worst-case scenario, irrespective of the
actual data fetched from memory. The result is a con-
servative schedule valid for any possible input values,
which assumes a dependence in every loop iteration

hist[x[0]] + weight[0]

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

1

2

3

ld
hist[x[0]]

c13 c14

ld x[0]

c15 c16

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

ld x[1]

st
hist[x[0]]

ld x[2]

hist[x[1]] + weight[1]
ld

hist[x[1]]
st

hist[x[1]]

hist[x[2]] + weight[2]
ld

hist[x[2]]
st

hist[x[2]]

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW

hist[x[0]] + weight[0]1

2

3

ld
hist[x[0]]

ld x[0]

ld x[1]

st
hist[x[0]]

hist[x[1]] + weight[1]
ld

hist[x[1]]
st

hist[x[1]]

hist[x[2]] + weight[2]
ld

hist[x[2]]
st

hist[x[2]]
ld x[2]

ld x[3] hist[x[3]] + weight[3]
ld

hist[x[3]]
st

hist[x[3]]
4

Static Scheduling (Typical HLS Tool)

Dynamic Scheduling (Our HLS Approach)

Figure 3. A static schedule created by a standard high-level synthesis tool, compared to a dynamic schedule possible with our
approach. The HLS tool will conservatively assume a dependence between every loop iteration, whereas the dynamic design
stalls only in the presence of an actual dependence (in this case, between iterations 2 and 3).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

102 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

and postpones the read until the previous, possibly de-
pendent write has been completed.

III. A Completely Different Way to Do HLS
The key to avoiding the limitations of static scheduling is
to refrain from triggering the operations through a central-
ized pre-planned controller (as shown in Figure 4(a) and
the examples in Figure 1), but to make scheduling deci-
sions locally in the circuit as it runs: as soon as all con-
ditions for execution are satisfied (e.g., the operands are
available or critical control decisions are resolved), an op-
eration starts. Dataflow circuits [18] are a natural method
to realize such behavior. Such circuits are built out of units
that implement latency-insensitivity by communicating
with their predecessors and successors through point-to-
point pairs of handshake control signals, as indicated in
Figure 4(b). The data is propagated from unit to unit as
soon as memory and control dependences allow it—other-
wise, the handshaking mechanism stalls the data on-the-
fly. This distributed control mechanism effectively imple-
ments a dynamic schedule, such as the bottom schedule
in Figure 3: when a dependence exists (in the example, be-
tween the second and the third iteration) the dynamically
scheduled circuit will stall the pipeline to prevent hazards.
Otherwise, in the absence of an address collision, it will
start a new iteration on every cycle and gain, in this case,
up to a factor 6 in performance. Such dynamic behavior
is beyond what classic static techniques can achieve [37].

In the rest of this article, after a brief digression on
how the same issues have influenced computer architec-
ture, we will describe our HLS methodology which pro-
duces dynamically scheduled dataflow circuits out of
high-level code. We discuss our methodology to imple-
ment high-throughput pipelines and to identify resource
sharing opportunities in the circuits we generate. We
then detail the construction of a memory interface (i.e.,
a load-store queue) for dataflow circuits that can cor-
rectly handle memory accesses arriving out-of-order
and show how to automatically customize this interface
to a particular application. Further, we present a generic
framework for handling speculative execution. All these
features introduce to dataflow circuits characteristics
similar to those of modern superscalar processors; we
believe that such behavior is key for HLS to be success-
ful in new contexts and broader application domains.

IV. Computer Architects Have Been There Already
The contrast between static and dynamic schedul-
ing in HLS is in line with the experience in com-
puter architecture.

Practically all high-end application processors in our
computing devices and data centers are superscalar out-
of-order processors [33]. Their architecture is usually
similar to the one shown in Figure 5(a). The key idea is
that reservation stations enable out-of-order execution:
they hold back fetched and decoded instructions until

i

ld x[i] +

1

<

N

ld hist[x[i]]

ld weight[i]

st hist[x[i]]

+

Static
Controller

(a)

Merge

Buff

Fork

+

1

Start: i = 0

<

N

ld hist[x[i]]

ld weight[i]

st hist[x[i]]

+

Exit: i = N

FIFO

Fork

FIFO

Merge

Data

Valid Ready

Buff

Fork

Branch

ld x[i]

(b)

Figure 4. A statically (Figure 4(a)) and a dynamically (Figure 4(b)) scheduled circuit. The static circuit has a pre-planned controller
which determines the time when each operation will execute. In contrast, the dynamically scheduled circuit contains a distributed
control system which enables decision-making at runtime and offers greater flexibility and performance. The circuits in the figure
correspond to the code from Figure 3.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 103

all of their operands are available and let ready instruc-
tions advance; instructions are delayed if a load misses
in the cache or a rare dependence through memory ac-
tually occurs. As with our HLS technique, there is no
schedule planned in advance: the schedule develops
dynamically as operands become available. Note that
the load-store queue in the figure is essentially the same
component that we employ in our circuits, as we will
detail in Section VII-A. Modern processors can also exe-
cute instructions speculatively (e.g., even if the outcome
of a preceding branch is yet unknown or if the existence
of a dependence through memory has not yet been as-
certained)—again, a feature that our HLS technique

also sports, as we will discuss in Section VII-B. In these
processors, the reorder buffer is the key component to
implement speculative execution and squash results of
incorrectly executed instructions.

Another class of processors which exploit instruction-
level parallelism are VLIW processors (a term introduced
by Josh Fisher in 1983 [28]), illustrated in Figure 5(b). In
VLIWs, the problem of deciding how early instructions
can be executed and which ones can be issued in parallel
is left completely to the compiler: the hardware sim-
ply fetches at once groups of operations which can be
performed together (the very long instructions) and ex-
ecutes them without checking for operand availability.

Branch
Unit

Fetch and Decode Unit

Reorder Buffer

Multiple Instructions Per Cycle

Reservation Station Reservation Station

Load/Store Unit (LSQ)

Reservation Station

Register Files

Integer
Unit

Integer
Unit

Floating
Point Unit

Floating
Point Unit

Reservation
Station

(a)

Fetch and Decode Unit

Single Wide Instruction With Multiple Parallel Operations for the Various Functional Units

Register Files

(b)

Branch
Unit

Load/Store Unit
Integer
Unit

Integer
Unit

Floating
Point Unit

Floating
Point Unit

Figure 5. A superscalar and a VLIW processor. Whereas the VLIW processor (Figure 5(b)) executes instructions without check-
ing for dependences, thus relying on the compiler to have prepared a correct schedule, the superscalar processor (Figure 5(a))
contains hardware which supports out-of-order behavior; the schedule is developed dynamically during execution.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

104 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

The program is effectively a schedule computed stati-
cally by the compiler, exactly as in the case of statically-
scheduled HLS. The appeal is clear: these processors do
not need all the complex hardware that superscalar out-
of-order processors require to make runtime decisions.

Researchers quickly figured out that VLIW proces-
sors need very sophisticated compilers. Today, a large
body of literature exists on VLIW compilation tech-
niques but such techniques often require either complex
heuristics to drive the optimizations or pragmas from
the programmers. Conversely, dynamically scheduled
out-of-order processors achieve good levels of parallel-
ism on-the-fly and without extensive code preparation,
yet at the price of more complex hardware. Many of the
key transformations to exploit fine-grain parallelism be-
tween operations in statically scheduled HLS derive di-
rectly from VLIW compilation techniques, such as trace
scheduling, software pipelining, and modulo scheduling
[27], [46], [58]. But, exactly as HLS tools producing stati-
cally scheduled circuits, VLIWs suffer when handling
code with irregular memory or control dependences.

The dichotomy in computer architecture may tell us
something about the future of dynamically scheduled
HLS. In the mid-1990s, Hewlett-Packard and Intel part-
nered to develop the first (and, to date, only) general-
purpose VLIW processor: Itanium. Servers using Ita-
nium shipped mostly in the 2000s and were a major
commercial failure [23]. Today, VLIWs thrive exclusive-
ly in markets with extremely regular and predictable
applications, and where it is acceptable for skilled de-
velopers to tune code manually. They are, for instance,
in our smartphones where they run complex digital sig-
nal processing applications. However, general-purpose,
irregular, and control-dominated computing tasks require

the runtime flexibility of dynamic scheduling. Even in
cost-sensitive devices such as smartphones, none of
the processors which run operating systems (e.g., An-
droid and iOS) are VLIWs.

Today, with FPGAs moving to data centers and fac-
ing broader application classes, HLS tools might have
to satisfy the needs of general-purpose markets as well.
Apart from the advantage of exploiting parallelism in
cases where static scheduling cannot, the ability of dy-
namic scheduling to find an acceptable solution without
the programmer’s help may be critical in a future where
HLS will not be driven by hardware designers (available
to study the generated circuits and to restructure the in-
put code) but by higher-level code generation tools (e.g.,
Delite [31]) and, ultimately, by software programmers.

V. From High-Level Code to a Dynamically
Scheduled Circuit

In this section, we outline our HLS methodology which
produces dynamically scheduled circuits out of C/C++
code. We first provide an overview of the latency-insen-
sitive design paradigm; we then discuss the dataflow
primitives we use and, finally, we describe our HLS con-
version strategy.

A. Latency-Insensitive Protocols
Latency-insensitive protocols [8], [18] implement dyna
mically scheduled dataflow circuits. These circuits are
built out of dataflow units which exchange pieces of data
(referred to as tokens [50]) through channels composed
of data lines and paired with handshake control signals:
a valid signal indicates the availability of a piece of data
and the ready signal indicates the readiness of a unit to
accept new data. This distributed control system enables
dataflow circuits to adapt the schedule at runtime to vari-
able latencies of particular memory access patterns and
control-flow decisions.

The latency-insensitive communication strategy origi-
nates from the asynchronous circuit domain. Figure 6(a)
illustrates two commonly used asynchronous protocols
which employ a pair of request and acknowledge signals
to regulate data transfers. In the 4-phase protocol, a com-
munication cycle involves four events (i.e., rising and
falling edges) and the handshake signals return to zero
at the end of each data transfer [29]. In the two-phase
protocol, each cycle involves only two events (i.e., either
rising or falling edges of the handshake signals) [61].

In the rest of this article, we consider a synchronous
latency-insensitive protocol: the initiation and comple-
tion of data transfers are indicated by the value of the
handshake signals at the rising clock edges [18], as il-
lustrated in Figure 6(b). Our perfectly synchronous de-
signs are therefore compatible with traditional VLSI

XD1 D2 D3 D4Data

Ready

Valid

Circuit
Clock

Req Req

AckAck

Data

Four-Phase Two-Phase
(a)

(b)

Figure 6. (a) Asynchronous and (b) synchronous latency-in-
sensitive protocols. We here consider synchronous dataflow
circuits. This figure is adapted from the work by Cortadella
et al. [19].

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 105

and FPGA flows and directly comparable to standard
HLS techniques.

B. Dataflow Units
In addition to standard functional units, dataflow cir-
cuits require specialized units which control the flow of
data between units, as illustrated in Figure 7:

■■ An eager fork (fork) replicates every token re-
ceived at the input to multiple outputs; as soon
as one successor is ready to accept the token, the
fork sends it to the successor; however, the fork
can accept a new token only after all successors
have accepted the previous one.

■■ A lazy fork (lfork) has the same functionality as
the eager fork; however, it distributes a token to
all successors at once (i.e., all successors must be
ready for the lazy fork to send the token).

■■ A join acts as a synchronizer—its output is trig-
gered only after all of its inputs become available.

■■ A branch implements program control-flow state-
ments; it dispatches a token received at its sin-
gle input to one of its multiple outputs based on
a condition.

■■ A merge is a nondeterministic unit that propagates a
token received on any of its input to its single output.

■■ A control merge (cmerge) is a merge that, apart from
the data output, has an output which indicates
which of the inputs was taken by the merge.

■■ A mux is a deterministic version of the merge; it
propagates to its single output the input token se-
lected by a control input.

■■ A source can always issue a valid token to its single
successor (e.g., a constant).

■■ A sink is always ready to consume tokens from its
single predecessor; tokens are simply discarded
in the sink.

In addition, like any circuit produced by HLS, data-
flow circuits employ any functional unit the code re-
quires, such as integer and floating-point units. Units
that require multiple operands contain a join to trigger
the operation only when all inputs are available. Our
circuits will require buffers which serve as registers in
standard synchronous designs—we will discuss their
properties and placement in Section VI-A. Finally, our
circuits will interface to memory using read and write
ports, yet, interfacing to memory is challenging due to
the out-of-order nature of our system; we will address
this issue in Section VII-A.

C. C-to-Dataflow Conversion
This section informally describes a way to transform
a standard static single assignment (SSA) intermediate
representation [64] into a functionally correct dataflow

circuit. We detail the formal correctness and liveness
properties in our previous work [40].

The programs we consider are organized into sec-
tions corresponding to basic blocks (BBs), i.e., pieces of
code with no conditionals. All control flow statements
are implemented between the BBs and each BB con-
tains a dataflow graph (DFG) of program instructions.
Each BB receives live-in variables from the predecessor
BBs and produces live-out variables for the successor
BBs. This typical compiler intermediate representation
propagates a piece of data directly from a source opera-
tion to any number of its consumers. In a dataflow cir-
cuit, the data and control must be strictly coupled and
the number of tokens must exactly match the number
of distinct uses, i.e., an operation should be triggered
exactly the number of times that it executes in the
original program.

Implementing Control Flow
To guarantee that data is always accompanied by con-
trol, the following must hold: (1) every BB must provide
data exclusively to its immediate successor BBs and (2)
every BB must receive data exclusively from its immedi-
ate predecessor BBs. Hence, every BB liveout must be
sent to the immediate successors using branch nodes;
every BB livein must be injected into a BB through a mux
node, with as many data inputs as there are predecessor
BBs. This strategy guarantees that every piece of data is
sent correctly from BB to BB, following the control flow
of the program.

In-Order Control Network
Some operations do not have any inputs (e.g., constants);
we must ensure that they are appropriately triggered and
executed. Furthermore, a mux at the BB entry may re-
ceive multiple inputs at the same time; we need to ensure

Fork SinkJoin

Source

Branch

Merge MuxCMerge

Figure 7. Dataflow units. Although not shown in the figure, all
data channels are paired with bidirectional control signals,
which indicate the validity of data and the readiness of the
successor unit to accept it.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

106 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

that the inputs are accepted in order of program execu-
tion. To this end, we generate an in-order control path
that follows the control flow of the program through the
BBs—essentially, a data-less variable which is a live-in
and live-out of each and every BB. The tokens on this
path are used to trigger operations without inputs as
many times as their BB becomes active. This path en-
ters each BB through a cmerge, which connects to the
muxes of the same BB and indicates the ordering of the
inputs from which they will receive data, as illustrated in
Figure 8. Whenever a mux is guaranteed to receive its in-
puts in order (e.g., when there is a single value propagat-
ing through the CFG and a token can only enter a BB from
its single active predecessor), it may be disconnected
from the cmerge and replaced with a simpler merge unit.

Constructing the Datapath
Once the control flow is correctly handled, the BB inter-
nals are straightforward to design—each instruction is
literally converted into its dataflow unit (i.e., a function-
al unit with inputs and outputs accompanied by hand-
shake signals). As every data exchange must be repre-
sented with an explicit token transfer (i.e., handshake
exchange), units with multiple successors require a fork
to replicate the output token into a token for each of the
successors. Unused unit outputs (e.g., branch outputs
without successors) connect to sinks which discard the
unused tokens.

VI. Bringing HLS Optimizations to Dataflow Circuits
In this section, we present techniques that make the cir-
cuits produced with our HLS approach competitive to
standard HLS solutions: we first describe how to pipe-

line dataflow circuits and then discuss how to save re-
sources through time-multiplexing of functional units.

A. Pipelining
Dataflow circuits are naturally capable of pipelining, as
the fine-grain handshake mechanism allows certain op-
erations to run ahead and, consequently, enables execu-
tions of different operations to overlap. Yet, pipelining
is not always possible due to backpressure: some paths
take a longer time to consume a token and prevent po-
tentially quick and independent paths from processing
tokens at a high rate. This issue is illustrated on the left
of Figure 9(a), showing the dataflow circuit implement-
ing the code in the bottom of the figure: the fork could,
in principle, issue tokens to the load on every cycle,
but the path to the store stalls the first token until the
multiplication completes, hence preventing new tokens
from issuing to the load and limiting loop pipelining;
the achieved schedule will, essentially, correspond to a
nonpipelined schedule of a static HLS tool. Classic pipe-
lining algorithms that standard tools exploit are not ap-
plicable in the absence of a static schedule; the solution
here is to systematically identify and resolve backpres-
sure to achieve the same pipelining effect.

Just like standard synchronous circuits, dataflow
circuits require buffers, i.e., registers, which break com-
binational paths and, possibly, reduce the critical path
of the circuit. Yet, in contrast to standard circuits, buf-
fers can be placed on any channel (i.e., between any
two dataflow units) without compromising the circuit
functionality. This property can be exploited to mitigate
backpressure by inserting buffers into the paths that
create stalls and lower system throughput, as illustrated
on the right of Figure 9(a). Buffers used for regulating
throughput typically have a larger capacity (i.e., they
are implemented as FIFOs with multiple data slots) to
hold all tokens issued by the predecessor before the
successor is ready to accept them—in this example, the
buffer requires 3 slots to constantly consume tokens
from the fork; without the backpressure on the fork, the
iterator loop can issue a new token on every cycle and
achieve a perfect pipeline with an II equal to 1.

To optimize the performance of dataflow circuits by
strategically placing and sizing buffers, we have devel-
oped a mixed-integer linear programming model [43]
based on Petri net theory [50]. This model allows for
resource-optimal buffer placement and sizing, with the
purpose of maximizing throughput of the performance-
critical loops at the desired clock frequency.

B. Resource Sharing
Standard HLS tools perform scheduling in conjunction
with resource allocation and sharing [70]; depending

Branch

MuxCMerge

F
or

k

Branch Branch

Fork

C
on

tr
ol

-O
nl

y
P

at
h

B
as

ic
 B

lo
ck

BB Live-Ins

BB Live-Outs

BB Cond
BB Datapath

…

…

Mux

Figure 8. Basic block organization. Every live-in enters a
BB through a mux and every live-out exits the BB through a
branch. A control-only network (left of the figure) regulates
the ordering of tokens at the mux inputs.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 107

on the optimization objective, they trade off area and
performance by deciding the cycle in which each op-
eration executes and allocating units accordingly. The
top of Figure 9(b) shows two possible schedules for
the code in the figure. The first schedule is uncon-
strained in resources; by scheduling both multiplica-
tions in the same cycle, it employs two multipliers to
achieve the ideal loop pipeline with an initiation in-
terval of 1. The second schedule enforces a resource
constraint of one multiplier; each multiplication must
be scheduled on every second cycle and causes an
increase of the II to 2.

Dataflow circuits face the same optimization objec-
tives and area-performance trade-offs. Yet, in the ab-
sence of a predetermined schedule, it is challenging
to determine which operations can share a functional
unit without a performance penalty. Intuitively, one
could rely on statistical information on unit utilization
to decide what to share, as illustrated in the bottom
of Figure 9(b): if the two multipliers are fully utilized
(i.e., fully occupied with tokens), sharing would dam-
age throughput; if they are only half-utilized, one
could employ a single multiplier instead that would
always be filled with tokens. Yet, this approach on its
own may still compromise performance because the
execution of some operations may be delayed with re-
spect to their execution in the original circuit. More

critically, although sharing seems to imply only some
trivial circuitry, time-multiplexing units in dataflow
circuits may cause deadlock by blocking certain data
transfers and preventing operations from executing.
Hence, a crucial step in making dataflow circuits re-
source-competitive with standard HLS is to system-
atically identify good sharing opportunities in an ab-
sence of a predetermined schedule, but also to build
a sharing mechanism that always results in functional
dataflow circuits.

The performance optimization model described in
the previous section can be used directly to determine
the flow of data through each functional unit and pro-
vides us with information on unit utilization; we can
exploit this information to decide which units to share.
Furthermore, the performance-limiting delays caused by
sharing can be resolved through appropriate buffering,
achieved by the same optimization technique. Employ-
ing a local scheduler at each unit input to regulate the
multiplexing of the incoming tokens can avoid unit star-
vation and ensure the absence of deadlock [17], [32].

VII. Introducing Features of Superscalar
Processors to HLS

The optimizations from the previous section enable
dataflow circuits to achieve high-throughput pipelines
and to share resources, just like standard HLS circuits

Merge

Buff

Start, i = 0

End

Branch

N

< Store a[i] Store a[i]

Fork *

c

1

+

Fork

Merge

Buff

Start, i = 0

End

Branch

N

<

Fork *

Load a[i]Load a[i]
c

1

+

FIFO

Fork

Stall

Stall

Ready

for (int i = 0; i < N; i++){
a[i] = a[i] * c;

}

M1: mul1

M1: mul1

M2: mul2

M2: mul2

M1/2: mul1

M1/2: mul2

M1/2: mul1

M1/2: mul2

Static Scheduling

Dynamic Scheduling

M1 M2 M1/2

for (i = 0; i < N; i++)
a[i*x] = i*y;

M1 M2

2 muls, II = 1 1 mul, II = 2

2 muls, II = 1 1 mul, II = 2

c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c6 c7

(a) (b)

Figure 9. Figure 9(a) illustrates the role of buffer (i.e., FIFO) insertion in resolving backpressure and pipelining a dataflow
circuit. Figure 9(b) contrasts resource sharing in static and dynamic scheduling.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

108 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

can do. Yet, their ability to adapt the schedule at run-
time allows them to support features which are regu-
larly exploited by superscalar processors and beyond
the capabilities of standard HLS, such as out-of-order
memory interfaces and speculative execution—we de-
scribe these features in this section.

A. An Out-of-Order Memory Interface
One of the key enablers of dataflow pipelines lies in the
ability to execute memory accesses in an order different
than the one specified in the original program. As illus-
trated in Figure 3, pipelining in cases where memory de-
pendences cannot be determined at compile time may
be critical for good performance and is the key to the
superiority of dataflow computation to statically sched-
uled HLS designs.

Out-of-order behavior has been exploited in out-of-
order processors for decades [54], [55], [59]: load-store
queues are used to ensure that all memory dependences
are honored, while independent memory requests may
execute out-of-order for performance benefits. Dataflow
circuits require the same functionality, but a processor
LSQ cannot be employed directly because of a funda-
mental difference between the two systems, as illustrat-
ed in Figure 10: In a processor, the notions of fetching
and decoding instructions immediately convey the cor-
rect sequential order of requests at the memory inter-

face. In contrast, dataflow circuits lack such notions and
the information of the original sequential program order
is lost; an LSQ receiving memory requests out of order
would not be able to decide which reorderings are legal.
Therefore, to employ an LSQ and truly benefit from out-
of-order execution, dataflow circuits require an alterna-
tive way to perform allocation and to convey the correct
order of memory requests to the LSQ [38].

A way to provide this information is to send to the LSQ
tokens which follow the actual order of execution of the
basic blocks of the circuit. This ordering enables the LSQ
to determine and resolve dependences as memory access
arguments from different BBs arrive out-of-order. For this
purpose, we use the in-order control path described in
Section V-C—this path forks into the LSQ from each BB
whose loads and stores are connected to the LSQ; when-
ever control flows into this BB (i.e., as soon as a decision
has been made to enter a particular BB), it triggers the al-
location of its memory accesses to the LSQ. This mecha-
nism is illustrated in Figure 11; it ensures that the LSQ can
correctly handle memory accesses arriving in arbitrary
order while still respecting data dependences.

Although LSQs enable dataflow circuits to achieve
high performance in situations that static schedul-
ing cannot efficiently handle, they imply high resource
requirements as well as power and clock degradation
when implemented on an FPGA. Hence, it is beneficial to

store x[i]

load y[i]

…

Processor
Datapath

(Out of Order)

Memory
Ordering

(Load-Store
Queue)

Instruction
Fetch and
Decode

(In Order)

Dataflow (Out of Order)

Memory

…

…
…

…
…

Ordering
(Load-Store

Queue)

???

loop: lw $t2, 0($t4)
lw $t3, 100($t4)
mul $t5, $t2, $t3
addi $t5, $t5, $t1
sw $t5, 100($t4)
addi $t1, $t1, 4
bne $t6, $t1, loop

load x[0]

load x[i]

Figure 10. Conveying program order to the memory interface. Program order is crucial to reorder memory accesses at the memo-
ry interface. In contrast to a processor, a dataflow system has no notion of fetching and decoding instructions to convey this order.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 109

leverage compiler analysis to simplify the memory inter-
face whenever possible–whenever the compiler can dis-
ambiguate memory accesses, groups of accesses that
cannot mutually conflict can use separate LSQs, while
those which certainly have no dependences with any
other access can connect to simple memory interfaces.

The code in Figure 12 shows a loop with multiple
memory accesses which are analyzed and optimized us-
ing different memory analysis techniques. The informa-
tion about the memory accesses available in each analy-
sis step is illustrated on the top of the figure: the green
dashed edges indicate a possible dependence among
accesses which the memory interface must appropri-
ately handle (i.e., if two accesses are certainly or pos-
sibly dependent, they require an LSQ). The memory
interfaces obtained in different analysis steps are illus-
trated below. Without any memory analysis (case a) to
reason about actual memory dependences, all accesses
must connect to a single, large LSQ. By exploiting alias
analysis (case b) and determining the memory access
patterns using polyhedral techniques (case c), one can
determine that some accesses (i.e., those accessing dif-
ferent arrays and those targeting different memory loca-
tions, respectively) cannot conflict (i.e., the presence of
certain dependences is excluded); the memory interface
can be simplified by employing multiple smaller LSQs
and removing some LSQs altogether, as the second and
the third memory configurations in the figure suggest.
Finally, our specialized dataflow analysis [36] can deter-
mine that the load and the store to x[i] naturally occur in
the correct order as the load produces the data for the
store—one can omit the LSQ completely without com-
promising correctness (case d).

Employing these memory analysis techniques en-
ables us to obtain an optimized memory interface con-
figuration in an out-of-order dataflow system: we profit
from the LSQ whenever it is truly useful (such as the
situation in Figure 3); otherwise, we remove or simplify
it to save resources.

B. Speculation
As in computer architecture, dy-
namic scheduling paves the way to
one of the most powerful ideas in
computing: executing some opera-
tions before one has the certitude
that they are actually needed or
that it is correct to execute them.
Speculation can significantly im-
prove the execution of loops where
the condition on the loop continu-
ation takes very long to compute
by predicting very early whether

it makes sense to execute tentatively another iteration.
Similarly, speculation can further improve the problem
of memory dependences, not only by reordering ac-
cesses when there is no dependence detected, but also
by assuming independence early on and reverting back
if the prediction was wrong.

The example in Figure 13 illustrates the need to en-
able speculative execution in HLS. A standard, non-
speculative schedule allows a new loop iteration to
start only after the condition to exit the loop (which,
in this example, takes multiple cycles to compute) has
been checked; therefore, the loop cannot be pipelined.
In contrast, a speculative system would achieve the
lower schedule which tentatively starts a new loop it-
eration on every clock cycle, before the loop condition
is known. The ability to implement speculation depends
on reliable mechanisms to revert state changes due to
wrongly executed operations and discard mispeculated
values—in processors, this functionality is entrusted to
reorder buffers and store queues [33]. In the example in
Figure 13, the speculatively computed values from itera-
tions 4 and 5 must be discarded and the result from the
third iteration must be returned.

Figure 14 gives a sense of our strategy to implement
generic forms of speculation in dataflow circuits [41].
The idea is that some units might be allowed to issue
speculative tokens—pieces of data which might or
might not prove correct and which will combine with
other (nonspeculative) tokens, resulting in more spec-
ulative tokens traveling through a delimited region of
the circuit. In other words, speculative tokens trigger
some computations which might have to be squashed
and possibly repeated with the correct nonspecula-
tive tokens.

Speculation is triggered by a speculator, i.e., a spe-
cial version of a regular dataflow unit which, besides
its standard functionality, can also inject tokens into
the circuit before receiving any at its input(s). The most

Store

Load

Store

Load

Store

Load

BB1
BB Is Starting LSQ

Memory

Memory Access
Sequential Order

Figure 11. The load-store queue required for correct out-of-order memory accesses.
In addition to load and store ports, the LSQ requires a specialized signal indicating the
start of each BB in the program-determined order.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

110 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

LS
Q

M
em

or
y

LS
Q

M
em

or
y

LS
Q

M
em

or
y

M
em

or
y

(a
)

(b
)

(c
)

(d
)

LS
Q

+

∗

fo
r
(
i

=
1;

i

<
N;

i+

+)

x[
i]

 =
 x
[0
]
+
x[
i]
*y
[i
];

lo
ad

lo
ad

lo
ad

 y
lo

ad
 y

[i]

lo
ad

 y
[i]

lo
ad

 y
[i]

lo
ad

 y
[i]

lo
ad

 x
[i]

lo
ad

 x
[i]

lo
ad

 x
[i]

lo
ad

 x
[i]

lo
ad

 x
[i]

lo
ad

 x
[0

]

lo
ad

 x
[0

]
lo

ad
 x

[0
]

lo
ad

 x

lo
ad

 x

st
or

e
x

st
or

e
x[

i]

st
or

e
x[

i]

lo
ad

 y
[i]

lo
ad

 x
[i]

lo
ad

 x
[0

]

st
or

e
x[

i]
st

or
e

x[
i]

lo
ad

 y
[i]

lo
ad

 x
[i]

lo
ad

 x
[0

]

st
or

e
x[

i]

st
or

e
x[

i]

lo
ad

st
or

e

F
ig

u
re

 1
2.

 C
on

ne
ct

in
g

a
da

ta
flo

w
 c

irc
ui

t
to

 m
em

or
y.

 T
he

 m
em

or
y

in
te

rf
ac

e
(i.

e.
,

th
e

nu
m

be
r

of
 a

cc
es

se
s

co
nn

ec
te

d
to

 m
em

or
y

us
in

g
an

 L
S

Q
)

ca
n

be
 s

im
pl

ifi
ed

 b
y

an
al

yz
in

g
th

e
m

em
or

y
ac

ce
ss

es
 a

nd
 e

xc
lu

di
ng

 t
he

 p
re

se
nc

e
of

 c
er

ta
in

 d
ep

en
de

nc
es

. I
n

th
is

 p
ar

tic
ul

ar
 c

as
e,

 o
ur

 a
na

ly
si

s
co

nc
lu

de
s

th
at

, a
s

th
e

lo
ad

 p
ro

du
ce

s
th

e
da

ta
 f

or
 t

he
 s

to
re

, t
he

 t
w

o
ac

-
ce

ss
es

 o
cc

ur
 in

 o
rd

er
 a

nd
 th

e
LS

Q
 c

an
 b

e
om

itt
ed

. (
a)

 N
o

an
al

ys
is

, (
b)

 A
lia

s
an

al
ys

is
, (

c)
 A

lia
s

+
 p

ol
yh

ed
ra

l a
na

ly
si

s,
 (

d)
 A

lia
s

+
 p

ol
yh

ed
ra

l +
 d

ed
ic

at
ed

 d
at

af
lo

w
 a

na
ly

si
s.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 111

natural example is that of a branch node which receives
the value to dispatch but not the condition; a branch
speculator could predict the missing condition and send
tentatively the value through one of its outputs. If, after
issuing a speculative token, the speculator eventually
receives the same data which it assumed speculatively
(e.g., the condition it predicted), all is fine and execution
was probably sped up; if, on the other hand, the data it
eventually receives does not match the prediction, the
speculative work must be discarded and the specula-
tor must perform its function correctly (e.g., resend the
value on the other branch output).

The speculative region in Figure 14 is bound on its
input and output sides with specialized units which im-
plement a squash-and-replay mechanism: Save units on
the region inputs save a copy of all regular tokens which
may combine with a speculative token and reissue them
if the previous computation is squashed. Commit units
at the region output let propagate further speculative
results which turn out to be correct and simply squash

misspeculated values. Because commit units must dif-
ferentiate speculative from nonspeculative tokens (the
former ones need explicit commit information before
propagating, while the latter ones can always go ahead),
all channels between the speculator and the commit
units must be enriched with a control signal which indi-
cates the speculativeness of the token being passed, as
Figure 14 suggests.

Our generic framework can implement broad classes
of speculation, which is beyond the capabilities of stati-
cally scheduled HLS; in the example of Figure 13, our
technique achieves a perfect pipeline shown in the bot-
tom schedule. As we will demonstrate in the following
section, our speculation approach is of significant per-
formance advantage in situations where waiting for a
key execution decision is particularly time-consuming.

VIII. Evaluation
In this section, we compare our dynamically scheduled
circuits with a commercial, statically-scheduled HLS tool.

d0!=x? d1 = a[0] + b[0] c[0]=d11

2

3

d1!=x? d2= a[1] + b[1] c[1]=d2

d2!=x? d3 = a[2] + b[2] c[2]=d3

d3!=x?
return

d34

Nonspeculative Schedule:

1

2

3

4

d0!=x? d1 = a[0] + b[0] c[0]=d1
d1!=x?

d2 = a[1] + b[1]
c[1]=d2
d2!=x?

d3 = a[2] + b[2]

d4 = a[3] + b[3]

c[2]=d3
d3!=x?

d5= a[4] + b[4]5

Speculative Schedule:

return
d3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17

ld a[0]
ld b[0]

ld a[1]
ld b[1]

ld a[2]
ld b[2]

ld a[0]
ld b[0]

ld a[1]
ld b[1]

ld a[2]
ld b[2]

ld a[3]
ld b[3]

ld a[4]
ld b[4]

float d=0.0; x=100.0; int i=0;
while (d<x) do {

d = a[i] + b[i];
c[i] = d;
i++; }

return d;
1: a[0]=50.0; b[0]=30.0
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

discard
d4

discard
d5

Figure 13. A nonspeculative schedule, compared to a schedule achieved by a system supporting speculation. In this example,
the condition to execute another loop iteration takes multiple cycles to compute. Hence, a nonspeculative circuit needs to wait for
the condition, whereas the speculative circuit tentatively starts another iteration and then discards the newly computed values if
they are later on determined unneeded.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

112 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

Our complete HLS tool and the benchmarks we explore
in this section are publicly available at dynamatic.epfl.ch.

A. Dynamatic HLS Compiler
The C-to-dataflow conversion and the optimizations we
discussed in the previous sections are implemented in
Dynamatic, our open-source HLS compiler [42]. Dyna-
matic takes as input C or C++ code and produces a syn-
thesizable hardware description of the corresponding
dataflow circuit. The synthesis step relies on the LLVM
compiler framework [48]: the clang frontend parses
the C/C++ program and produces a static single assign-
ment intermediate representation (LLVM IR), which is
then optimized using standard LLVM transformation
and analysis passes. The optimized IR is then given
as input to a set of our custom passes. The main pass
adds dataflow units from Section V-B following the
transformations described in Section V-C to produce
a functionally correct dataflow circuit; other passes
perform additional analysis and optimizations (e.g.,
buffer placement as described in Section VI-A and
memory access analysis to create the memory inter-
faces described in Section VII-A). The result is a data-
flow circuit netlist which can be directly converted

into a VHDL netlist of dataflow units; together with a
predefined dataflow unit library, it can be synthesized
into an FPGA bitstream.

B. Methodology and Benchmarks
To demonstrate the benefits of using dynamic schedul-
ing in HLS, we compare our circuits with designs gener-
ated by Vivado HLS [69], a state-of-the-art commercial
HLS tool. For a fair comparison, we employ the same
arithmetic units and use the same RAMs as Vivado to
connect to memory.

We simulate the designs in ModelSim [49] and use a
set of test vectors for functional verification. We obtain
the average loop initiation interval (II) from the simula-
tion and the clock period (CP) from the post-routing tim-
ing analysis to calculate the total execution time. Plac-
ing and routing the designs using Vivado gives us the
resource usage (i.e., the number of CLB slices, with the
corresponding LUT and FF count, as well as the number
of DSP units).

Our benchmarks are simple kernels which repre-
sent typical cases where static scheduling is known
to run into its fundamental limits while dynamic
scheduling should make a significant difference. We
also consider two simple kernels where static sched-
uling is fully successful, to show that dynamically
scheduling achieves virtually the same result with
acceptable overheads.

■■ Histogram and Matrix Power have memory access
patterns that cannot be determined at compile
time—there may be read-after-write dependences
between the stores and the loads from the follow-
ing iterations.

■■ If loop add and If loop mul have a potential depen-
dence across iterations which depends on the
runtime-determined condition (i.e., the condition
is determined based on data fetched from memo-
ry which is unknown during compilation).

■■ Backtrack and Newton-Raphson have long-laten-
cy, data-dependent conditions for starting a new
loop iteration and could benefit from branch
prediction.

■■ FIR and MatVec are regular kernels that do not
have any memory or control dependences.

C. Results: Comparison with Static HLS
Figure 15 shows our results relative to those from Vivado
HLS (results to the left or below the red square, which
represents all Vivado designs, are better). Table I details
our results.

Avoiding conservative assumptions on memory and
control dependences results in a significant improve-
ment of the throughput and, consequently, execution

MergeMerge

Load

ExitStore

Store

+ ...

...

...

Fork

+

SpeculatorSave

Save

Branch

CommitCommit

Commit

Save

Figure 14. A region of a dataflow circuit implementing our spec-
ulative execution paradigm. The speculator initiates specula-
tive execution by injecting tokens tentatively, save units cap-
ture required inputs of the region to enable a correct replay
in case of misspeculation, and commit units prevent specula-
tive tokens from affecting irreversibly the architectural state,
such as memory. Speculative tokens are marked explicitly
using an additional bit (represented by the dotted line). A
dataflow control circuit (in red, dashed line) between the
speculator and the save and commit units carries information
about speculative events (start, commit, squash, etc.).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 113

time in all of the corresponding benchmarks. On the FIR
and MatVec benchmarks, static HLS techniques produce
highly optimized pipelines because memory accesses
can be disambiguated at compile time. The static HLS
tool depends on techniques such as modulo scheduling
[58] to restructure and pipeline the loop, whereas we ef-
fortlessly compile the LLVM IR into a dataflow circuit as-
is: although both the static and dynamic design achieve
the ideal II of 1, these are the only cases where our
results are Pareto-dominated by the static results due
to the increase in CP (caused by the additional dataflow
logic that we insert into the circuit).

The overhead in slices of the dynamic designs, no-
table across all benchmarks, is partially due to the con-
trol logic that the dataflow circuits contain and which
allows them to achieve the latency-insensitivity which
we desire. It is immediately visible from Figure 15 that
the circuits requiring an out-of-order memory interface
demand significant additional resources. It should be
emphasized that the resource and timing overhead
could be minimized by implementing the LSQs as hard-
macros, in the same way as other memory hierarchy
components might be in the future (e.g., caches and
TLBs). In contrast to the expensive memory interface,
our speculation mechanism brings no significant area
overhead, yet successfully accelerates all of the corre-
sponding benchmarks by speculating on critical con-
trol decisions.

IX. Perspectives
In this section, we evoke some of the most important
areas where dynamically scheduled HLS could improve
in the future; we outline some research avenues beyond
the scope of classic C-based HLS which may benefit
from the techniques described in this work.

A. Partial Schedule Rigidification
One optimization aspect which is immediately manifest
when looking at the circuits we generate is that we allow
latency insensitivity through any unit and on any path.
Although, in some cases, this is exactly the strength of
our methodology and the reason for its superiority over
standard HLS techniques, in many cases it is an expen-
sive overkill: many computational paths may be con-
structed with fixed-latency components (ALUs, floating-
point operators, etc.) and never really profit from
the flexibility of dataflow computation. There may be

Pareto-
Dominated

by the Static
Design

Histogram

Matrix Power

If Loop Add
If Loop Mul

FIR

MatVec

Newton-Raphson

Backtrack

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Execution Time, Normalized

S
lic

es
, N

or
m

al
iz

ed

Dynamic, Memory Dependences

Dynamic, Control Dependences

Dynamic, No Dependences

Dynamic, Speculative

Static (All Points)

Figure 15. Resource utilization and execution time of the dy-
namically scheduled designs, normalized to the correspond-
ing static designs produced by Vivado HLS.

Table I.
Dynamically scheduled results (our dataflow circuits) contrasted to statically scheduled results (Vivado HLS). The slice
count for the kernels with the LSQ is shown as slices of kernel + slices of LSQ.

Benchmark

IIavg CP (ns)
Exec.

Time (us) Slices LUTs FFs DSPs

STAT DYN STAT DYN STAT DYN STAT DYN STAT DYN STAT DYN STAT DYN

Histogram 13.0 2.1 3.5 4.9 45.5 10.1 129 220 + 1073 254 4294 510 2033 2 2

Matrix power 13.0 2.7 3.4 4.9 16.8 5.0 200 295 + 1020 340 4463 735 2055 5 5

If loop add 10.0 1.1 3.2 5.0 32.0 5.5 141 393 315 960 525 1318 2 4

If loop mul 7.0 1.1 3.2 5.2 22.4 5.5 177 348 334 892 655 1127 5 5

FIR 1.0 1.0 2.9 3.6 2.9 3.6 47 178 83 463 176 526 3 3

MatVec 1.0 1.0 3.2 4.0 2.9 3.6 63 298 129 843 221 631 3 3

Backtrack 21.0 1.0 3.7 5.1 76.2 5.1 175 320 353 774 625 956 5 7

Newton-
Raphson

8.0 1.0 5.4 5.5 4.3 0.6 201 348 585 1181 636 603 9 9

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

114 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

optimizations that rip-off, under some conditions, com-
plex control paths from the corresponding datapaths
and replace them with simpler, customized control
structures. One could see this as a selective rigidification
of the schedule where dynamism is not really needed.

The challenge in performing rigidification is to auto-
matically identify which units and paths may be rigid,
without compromising performance or circuit correct-
ness. We already exploited Petri net theory to obtain
information on the flow of tokens through the dataflow
graph—this information may be critical to identify units
through which data always flows at a constant rate.
These units do not require handshake logic—instead,

they could be triggered using a local, predetermined
scheduler which ensures that data is received and dis-
patched at appropriate time intervals; multiple indepen-
dent schedulers could eventually be merged into a single
finite-state machine which would control the entire rigid
portion of the circuit, as illustrated in Figure 16. The re-
sult would be a hybrid statically and dynamically sched-
uled circuit which enables the programmer to exploit
the ‘best of both worlds’ [11], depending on the proper-
ties of the code: in regular applications, the final result
would qualitatively correspond to a statically scheduled
circuit; dynamism would remain only in places where it
is actually required for performance benefits and at a
significantly reduced area overhead.

B. Multithreaded Execution
Our current approach targets standard sequential C-
based synthesis: there is a single execution thread, i.e.,
a single token enters through the starting point, propa-
gates through the BBs following the control flow, and ex-
its through the final BB; pipelining is achieved by repeat-
edly issuing tokens in order into noncyclic paths. Yet,
this type of circuit construction may result in limited
parallelism and datapath usage in cases where pipelin-
ing is not possible (e.g., loop-carried dependences) or
when multiple tokens on a noncyclic path are stalled
waiting for a long-latency event related to some preced-
ing token (e.g., a cache miss).

Many standard HLS approaches support kernel rep-
lication to enable multiple parallel executions on inde-
pendent copies of the datapath [14], hence fully exploit-
ing the spatial parallelism of the device—the same is
perfectly possible with dataflow circuits and could be
achieved by high-level transformations (i.e., different in-
put language or intermediate-level kernel replication) in
dynamically scheduled HLS. In addition, some authors
have looked into pipelining multiple threads on a single
kernel (i.e., allowing one thread to execute on the data-
path before the previous thread has completed) [62].
Such multithreading, analogous to simultaneous multi-
threading in superscalar processors [66], [67], allows
for maximal hardware reuse as resources can be shared
among multiple threads. Just like superscalars, dataflow
circuits are naturally suited to accommodate such be-
havior; it could be implemented by inserting multiple
tagged tokens into the circuit and allowing them to re-
order on both cyclic and noncyclic paths, as illustrated
in Figure 17. Enabling such multithreaded pipelines re-
quires the creation of an efficient tagging mechanism
which allows out-of-order execution wherever it is ben-
eficial and reorders tokens appropriately when needed;
similar mechanisms have been explored in dataflow ar-
chitectures [22] and could be leveraged in this context

+

∗

Fork

+

_ ∗_

Rigid
Region

Data
Control

Buff

Buff

Fork Fork

Reg

Custom
Control

Buff

Figure 16. Dataflow circuit rigidification. To simplify the data-
flow circuit, the distributed handshake control logic could be
replaced with customized control structures whenever dyna-
mism is not required.

Merge

Branch

*

c

+

Buff

1
Cache
Miss

Cache
Miss

Datapath
Unused

Stalled
Tokens

1

2
3

Subsequent
Tokens
Computing

2
3

Merge

Branch

c

+

Buff

Load Load

*

Figure 17. Multithreaded execution. Instead of a single thread
which always issues tokens in order into noncyclic paths, one
could devise a system where tagged tokens execute out-of-
order to increase performance and hardware utilization.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 115

as well. Furthermore, such a system would require ad-
ditional guarantees on the absence of deadlock and ap-
propriate buffering to accommodate the desired num-
ber of tokens on each dataflow path. Enabling dataflow
kernel replication as well as multithreaded execution
on a single kernel has the potential to significantly
improve parallelism and resource utilization, hence
bringing a completely new optimization dimension to
dataflow design.

C. Reconfigurable Dataflow Architectures
So far, we have only attempted to map our dataflow cir-
cuits to standard FPGAs—a natural alternative to ex-
plore are coarser reconfigurable arrays, whose limited
flexibility as well as word-oriented nature promise ef-
ficiency in area, timing, and energy [35]. The absence
of a centralized controller and the systematic pairing
of data with handshake signals makes dataflow circuits
particularly well-suited for such architectures: each ar-
ray tile would be composed out of one or more dataflow
primitives and the interconnect between tiles would
carry data bundled with its control signals, as suggest-
ed in Figure 18.

One of the major challenges is to design an array that
is structurally adequate for the computational patterns
and interconnects which typically appear in dataflow
circuits. Intuitively, circuits obtained from high-level
code share some representative properties (e.g., BB or-
ganization with merges and branches at the inputs and
outputs, respectively) which can be exploited to custom-
ize the array tiles. Our existing compilation flow can be
used to translate a program into a functional netlist of
hardware primitives; we would need to develop custom
place-and-route techniques which exploit array-specific
transformations and optimizations to map these netlists
onto the underlying architecture and to enable efficient
architectural exploration.

X. Related Work
In this section, we outline what others have done to cir-
cumvent some of the problems of statically scheduled
HLS and we contrast our work with other dataflow-ori-
ented approaches.

A. Towards Dynamic Scheduling
Recent advances in HLS have explored methods to
overcome the conservatism in static scheduling and
to remove the inability of HLS tools to handle dynam-
ic events. Several techniques [1, 47] generate multiple
schedules which are dynamically selected during run-
time, once the values of all parameters are known;
they rely on the capabilities of current HLS tools by
replicating the source code and dynamically select-

ing which copy of the code needs to be executed.
The drawback of these approaches is that they apply
to only some very particular cases of dependences
through memory; they are also affected by the area
(or reconfiguration) overhead of synthesizing two
or more versions of an accelerator and the cost of
switching between them.

Tan et al. [63] describe an approach called Elastic-
Flow to apply loop pipelining on a particular class of ir-
regular loop nests with no inter-iteration dependences
in the outer loops. In their approach, multiple pipeline
instances of a dynamic-bound inner loop are scheduled
to execute in parallel. Dai et al. [20] propose methods
for pipeline flushing by performing static scheduling for
multiple initiation intervals of the pipeline to resolve dif-
ferent possible resource collisions; they later developed
application-specific dynamic hazard detection circuitry
[21] and have shown the ability of speculation but with
stringent constraints (i.e., the approach lacks generality
in the ability to revert arbitrarily the state after failed
predictions). Nurvitadhi et al. [53] perform automatic
pipelining, assuming that the datapath is already par-
titioned into pipeline stages. The underlying methodol-
ogy in all these techniques is still based on static sched-
uling adapted to enable some level of dynamic behavior,
which limits the achievable performance improvements
only to some particular cases. We think that this body
of recent work points to the importance of the ultimate

Tile of Dataflow
Primitives

Reconfigurable
Interconnect

Figure 18. A reconfigurable dataflow array, with tiles com-
posed out of fixed interconnects of dataflow primitives. All
connections carry data bundled with its control signals.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

116 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

solution to the limits of static scheduling: embracing
general forms of dynamic scheduling.

B. Dynamic Scheduling in HLS
Different authors exploited latency-insensitive proto-
cols [8], [18], [25] to construct synchronous and asynchro-
nous dataflow circuits. Elastic circuits [18] are probably
the best-studied form of latency insensitivity, but the
original paradigm used in most of the papers by Cort-
adella et al. is too restrictive for HLS. Several approaches
[10], [34] extended the SELF protocol [18] with constructs
similar to the branch and merge which we use in this
work. Kam et al. [44] show the ability of elastic circuits
to create dynamic pipelines, but do not provide generic
transformations to create such circuits out of high-level
descriptions. Cheng et al. [12] describe circuits as net-
works of processes in which hardware accelerators
exchange data via dynamic communication channels;
similarly, standard HLS tools [69] can interconnect with
handshakes various datapaths from nested loops and
functions. We are interested in exploring dynamicity on
a finer grain (i.e., the schedule of individual datapaths).
Efforts in the asynchronous domain, such as Balsa [24]
and Haste/TiDE [52], applied syntax-driven approaches
for mapping a program into a structure of handshake
components [60]; a synchronous backend for Haste/
TiDE has later been developed. Putnam et al. [57] also
explored synthesizing dataflow-like circuits from high-
level specifications. Townsend et al. [65] used a func-
tional programming intermediate representation as a
starting point for synthesizing dataflow networks. Data-
flow circuits, with their handshake signals, bring to mind
Bluespec and its firing rules [68]. However, all these ap-
proaches provide little information on some critical con-
version aspects and features which are at the heart of
this work; to our best knowledge, these approaches have
never been contrasted to modern HLS tools.

The efforts closest to ours are the work by Huang et al.
[35] and Budiu et al. [4], [5]). Huang et al. generated data-
flow circuits from C code, to be mapped to a coarse-grain
reconfigurable array [35]. Their circuit generation ap-
proach differs from ours in two aspects: (1) They use a sin-
gle branch node at the output of each basic block, which
forces them to synchronize all the basic block outputs and,
consequently, prevents loop iterations from overlapping
(i.e., loops are not pipelined). (2) Their approach does not
employ an LSQ at the memory interface and, thus, all mem-
ory accesses which cannot be disambiguated at compile
time need to be conservatively sequentialized (“The mem-
ory dependence is implemented by creating a lockstep be-
tween the corresponding […] memory ports” [35]). Budiu
et al. described a compiler for generating asynchronous
circuits from C code [4], [5]. Although their final circuits are

fundamentally different from ours (our circuits are perfect-
ly synchronous and avoid the traditional difficulties associ-
ated with asynchronous designs), the generation strategy
is similar to ours. Unfortunately, the exact methodology
is never described in full detail and examples across dif-
ferent papers by the same authors do not seem perfectly
consistent; although they also employ an LSQ to handle
memory dependences, their allocation policy is more con-
servative than what we described in Section VII-A: they
serialize memory accesses whose dependences cannot be
resolved statically (“we insert a token edge between two
instructions only if their points-to sets overlap and they
do not commute” [5]). Both the approach by Budiu et al.
and by Huang et al. largely limit the benefits of dynamic
scheduling; although Budiu et al. maintain the LSQ, Huang
et al. omit it, most likely due to its seemingly limited value.
Our LSQ, with its group allocation policy, enables spatial
architectures to fully exploit memory access parallelism;
our results show that our strategy achieves highly opti-
mized dynamic scheduling.

XI. Conclusions
High-level synthesis (HLS) tools enable hardware gen-
eration from high-level software code; because they pro-
vide a higher level of abstraction for accelerator design,
their role in the future of reconfigurable computing is crit-
ical. Despite their recent commercial success and ability
to successfully accelerate certain types of applications,
standard HLS tools still heavily rely on manual code opti-
mization, code restructuring, and extensive trial and error
with configuration parameters and code annotations. In
addition, these tools force worst-case assumptions in ir-
regular applications, where data and control dependenc-
es cannot be statically resolved; they also provide only
limited support for novel optimizations such as specula-
tive execution. In this article, we described a dynamically
scheduled form of HLS which produces dataflow circuits
from imperative code. Compared to a commercial HLS
tool, the result is a different trade-off between perfor-
mance and circuit complexity, much as superscalar pro-
cessors represent a different trade-off compared to VLIW
processors: when static HLS exploits the maximum par-
allelism available, our technique achieves similar results
with minimal degradation in cycle time and resources;
when static HLS misses some key performance optimiza-
tion opportunities, our circuits seize them by reordering
memory accesses, dynamically resolving control depen-
dences, and speculating on critical control decisions,
achieving significant performance improvements with
the investment of more resources. The ability of our ap-
proach to find these design points without requiring sig-
nificant code restructuring by the programmer is likely
to be extremely important in the future where HLS will

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 		 IEEE CIRCUITS AND SYSTEMS MAGAZINE	 117

be used by software developers with limited hardware
design expertise. We therefore believe that this avenue
of HLS has the potential to open new doors for reconfigu-
rable computing and its applications.

Lana Josipović (S’16) received a BSc
(2013) and MSc (2015) in Electrical Engi-
neering and Information Technology
from the University of Zagreb, Croatia.
In 2021, she received a PhD in Com-
puter and Communication Sciences from

EPFL, Switzerland. Her research interests include high-
level synthesis, compilers, and reconfigurable comput-
ing. During her PhD, she developed Dynamatic, an open-
source high-level synthesis tool that produces dynamically
scheduled circuits from C/C++ code. She is a recipient of
the Google PhD Fellowship in Systems and Networking,
Google Women Techmakers Scholarship, Best Paper
Award at FPGA’20, and Best Paper Award Nominations at
FPGA’18 and CASES’17.

Country of residence: Switzerland

Andrea Guerrieri received his M.Sc.
degree in Electronic Engineering from
Politecnico di Torino, Italy, in 2015. In
2006, he started working on embedded
systems in PB Elettronica, Italy, where
he became Principal Engineer respon-

sible for the development of the company’s flagship
products. In 2017, he joined the Processor Architecture
Laboratory at Ecole Polytechnique Federale de Laus-
anne, Switzerland, where he leads and participates in
research projects in collaboration with industry. Recent
projects involve reconfigurable SoCs, exploiting dynam-
ic partial reconfiguration of FPGAs for future space mis-
sions and planet observation. He is also a co-developer
of Dynamatic, an open-source dynamically scheduled
high-level synthesis tool.

Country of residence: Switzerland

Paolo Ienne (S’90, M’96, SM’10) received
the laurea degree in Electrical Engineer-
ing from Politecnico di Milano, Italy, in
1991 and the Ph.D. degree in Computer
Science from EPFL, Switzerland, in 1996.
Since 2000, he a Professor in the School of

Computer and Communication Sciences, EPFL. His re-
search interests include computer and processor architec-
ture, FPGAs and reconfigurable computing, electronic de-
sign automation, and computer arithmetic. Some of his
articles have received the Best Paper Awards at presti-
gious venues (including at the FPGA, FPL, CASES, and DAC
conferences) and several others have been nominated.

Ienne has served as general, programme, and topic chair of
renown international conferences, serves on the steering
committee of the ARITH, FPL, and FPGA conferences, and
is regularly member of several program committees. He
was an associate editor of the ACM TODAES and is an as-
sociate editor of ACM CSUR and ACM TACO. Ienne has pub-
lished over 200 articles in peer reviewed journals and inter-
national conferences. He is a Senior Member of the IEEE
and a Member of the ACM.

Country of residence: Switzerland

References
[1] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis
for loop pipelining in high-level synthesis,” in Proc. 50th Design Automa-
tion Conf., Austin, TX, June 2013, pp. 1–10. doi: 10.1145/2463209.2488796.
[2] “Amazon EC2 F1 instances.” Amazon.com. 2017.
[3] D. F. Bacon, R. Rabbah, and S. Shukla, “FPGA programming for
the masses,” Commun. ACM, vol. 56, no. 4, pp. 56–63, Apr. 2013. doi:
10.1145/2436256.2436271.
[4] M. Budiu, P. V. Artigas, and S. C. Goldstein, “Dataflow: A comple-
ment to superscalar,” in Proc. IEEE Int. Symp. Performance Analysis Syst.
Softw., Austin, TX, Mar. 2005, pp. 177–186.
[5] M. Budiu and S. C. Goldstein, “Pegasus: An efficient intermediate rep-
resentation,” Carnegie Mellon University, Tech. Rep. CMU-CS-02-107,
May 2002.
[6] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo SDC scheduling
with recurrence minimization in high-level synthesis,” in Proc. 23rd Int.
Conf. Field-Programmable Logic Appl., Munich, Sept. 2014, pp. 1–8.
[7] A. Canis et al., “LegUp: An open-source high-level synthesis tool
for FPGA-based processor/accelerator systems,” ACM Trans. Embed-
ded Comput. Syst. (TECS), vol. 13, no. 2, pp. 24:1–24:27, Sept. 2013. doi:
10.1145/2514740.
[8] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli,
“Theory of latency-insensitive design,” IEEE Trans. Comput.-Aided De-
sign Integr. Circuits Syst., vol. 20, no. 9, pp. 1059–1076, Sept. 2001. doi:
10.1109/43.945302.
[9] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in
Proc. 49th Int. Symp. Microarchitecture, Taipei, Taiwan, Oct. 2016, pp.
1–13.
[10] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras, “xMAS: Quick for-
mal modeling of communication fabrics to enable verification,” IEEE
Design Test Comput., vol. 29, no. 3, pp. 80–88, June 2012. doi: 10.1109/
MDT.2012.2205998.
[11] J. Cheng, L. Josipović, G. A. Constantinides, P. Ienne, and J. Wicker-
son, “Combining dynamic & static scheduling in high-level synthesis,”
in Proc. 28th ACM/SIGDA Int. Symp. Field Programmable Gate Arrays,
Seaside, CA, Feb. 2020, pp. 288–298.
[12] S. Cheng and J. Wawrzynek, “Synthesis of statically analyzable
accelerator networks from sequential programs,” in Proc. Int. Conf.
Comput.-Aided Design, Austin, TX, Nov. 2016, pp. 126–133.
[13] D. Chiou, “Intel acquires Altera: How will the world of FPGAs be af-
fected?” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays,
Feb. 2016, Monterey, p. 148.
[14] J. Choi, S. Brown, and J. Anderson, “From software threads to paral-
lel hardware in high-level synthesis for FPGAs,” in Proc. IEEE Int. Conf.
Field Programmable Technol., Kyoto, Dec. 2013, pp. 270–277.
[15] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z.
Zhang, “High-level synthesis for FPGAs: From prototyping to deploy-
ment,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no.
4, pp. 473–491, Apr. 2011. doi: 10.1109/TCAD.2011.2110592.
[16] J. Cong and Z. Zhang, “An efficient and versatile scheduling algo-
rithm based on SDC formulation,” in Proc. 43rd Design Automation Conf.,
San Francisco, July 2006, pp. 433–438.
[17] J. Cortadella, M. Galceran-Oms, and M. Kishinevsky, “Elastic sys-
tems,” in Proc. 10th ACM/IEEE Int. Conf. Formal Methods Models Code-
sign, July 2010, pp. 149–158.
[18] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of
synchronous elastic architectures,” in Proc. 43rd Design Automation
Conf., San Francisco, July 2006 pp. 657–662.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

118 	 IEEE CIRCUITS AND SYSTEMS MAGAZINE 		 SECOND QUARTER 2021

[19] J. Cortadella, M. G. Oms, M. Kishinevsky, and S. S. Sapatnekar,
“RTL synthesis: From logic synthesis to automatic pipelining,” Proc.
IEEE, vol. 103, no. 11, pp. 2061–2075, Nov. 2015. doi: 10.1109/JPROC.2015.
2456189.
[20] S. Dai, M. Tan, K. Hao, and Z. Zhang, “Flushing-enabled loop pipelin-
ing for high-level synthesis,” in Proc. 51st Design Automation Conf., San
Francisco, June 2014, pp. 1–6.
[21] S. Dai et al., “Dynamic hazard resolution for pipelining irregular
loops in high-level synthesis,” in Proc. 25th ACM/SIGDA Int. Symp. Field
Programmable Gate Arrays, Monterey, Feb. 2017, pp. 189–194.
[22] R. Desikan, S. Sethumadhavan, D. Burger, and S. W. Keckler, “Scal-
able selective re-execution for EDGE architectures,” in Proc. 11th Int.
Conf. Architectural Support Program. Languages Oper. Syst., Boston, Oct.
2004, pp. 120–132.
[23] J. C. Dvorak, “How the Itanium killed the computer industry,” Jan. 2009.
[24] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware
synthesis language,” Comput. J., vol. 45, no. 1, pp. 12–18, Jan. 2002. doi:
10.1093/comjnl/45.1.12.
[25] S. A. Edwards, R. Townsend, and M. A. Kim, “Compositional data-
flow circuits,” in Proc. 15th ACM-IEEE Int. Conf. Formal Methods Models
Syst. Design, Vienna, Sept. 2017, pp. 175–184.
[26] M. Fingeroff, High-Level Synthesis Blue Book, 1st ed. Xlibris Corp., 2010.
[27] J. A. Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE Trans. Comput., vol. 30, no. 7, pp. 478–490, July 1981.
doi: 10.1109/TC.1981.1675827.
[28] J. A. Fisher, “Very long instruction word architectures and the ELI-
512,” in Proc. 10th Annu. Int. Symp. Comput. Architecture, Stockholm,
June 1983, pp. 140–150. doi: 10.1145/800046.801649.
[29] S. B. Furber and P. Day, “Four-phase micropipeline latch control
circuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 2,
pp. 247–253, June 1996. doi: 10.1109/92.502196.
[30] N. George et al., “Automatic support for multi-module parallelism
from computational patterns,” in Proc. 24th Int. Conf. Field-Programma-
ble Logic Appl., London, Sept. 2015, pp. 1–8.
[31] N. George et al., “Hardware system synthesis from domain-specific
languages,” in Proc. 23rd Int. Conf. Field-Programmable Logic Appl., Mu-
nich, Sept. 2014, pp. 1–8.
[32] J. Hansen and M. Singh, “Multi-token resource sharing for pipelined
asynchronous systems,” in Proc. Design, Automation Test Europe Conf.
Exhib., Dresden, Mar. 2012, pp. 1191–1196.
[33] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 5th ed. San Mateo, CA: Morgan Kaufmann, 2011.
[34] G. Hoover and F. Brewer, “Synthesizing synchronous elastic flow
networks,” in Proc. Design, Automation Test Europe Conf. Exhib., Munich,
Mar. 2008, pp. 306–311.
[35] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu, “Elastic CGRAs,”
in Proc. 21st ACM/SIGDA Int. Symp. Field Programmable Gate Arrays,
Monterey, Feb. 2013, pp. 171–180.
[36] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne, “Shrink
it or shed it! minimize the use of LSQs in dataflow designs,” in Proc.
IEEE Int. Conf. Field Programmable Technol., Tianjin, Dec. 2019, pp.
197–205.
[37] L. Josipović, P. Brisk, and P. Ienne, “From C to elastic circuits,” in Proc.
51st Annu. Asilomar Conf. Signals, Syst., Comput., Pacific Grove, Nov. 2017,
pp. 121–125.
[38] L. Josipović, P. Brisk, and P. Ienne, “An out-of-order load-store queue
for spatial computing,” ACM Trans. Embedded Comput. Syst. (TECS), vol.
16, no. 5s, pp. 125:1–125:19, Sept. 2017. doi: 10.1145/3126525.
[39] L. Josipovic, N. George, and P. Ienne, “Enriching C-based high-level
synthesis with parallel pattern templates,” in Proc. 26th IEEE Int. Conf.
Field Programmable Technol., Xian, Dec. 2016, pp. 177–180.
[40] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-
level synthesis,” in Proc. 26th ACM/SIGDA Int. Symp. Field Programmable
Gate Arrays, Monterey, Feb. 2018, pp. 127–136.
[41] L. Josipović, A. Guerrieri, and P. Ienne, “Speculative dataflow cir-
cuits,” in Proc. 27th ACM/SIGDA Int. Symp. Field Programmable Gate Ar-
rays, Seaside, Feb. 2019, pp. 162–171.
[42] L. Josipović, A. Guerrieri, and P. Ienne, “Dynamatic: From C/C++
to dynamically scheduled circuits,” in Proc. 28th ACM/SIGDA Int. Symp.
Field Programmable Gate Arrays, Seaside, Feb. 2020, pp. 1–10.
[43] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer placement and sizing for high-performance dataflow circuits,”
in Proc. 28th ACM/SIGDA Int. Symp. Field Programmable Gate Arrays,
Seaside, Feb. 2020, pp. 186–196.

[44] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms, “Cor-
rect-by-construction microarchitectural pipelining,” in Proc. 27th Int.
Conf. Comput.-Aided Design, Nov. 2008, pp. 434–441.
[45] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel programming for
FPGAs,” May 2018, arXiv:1805.03648.
[46] M. S. Lam. “Software pipelining: An effective scheduling technique
for VLIW machines,” in Proc. 1988 ACM Conf. Program. Language Design
Implementation, Atlanta, GA, June 1988, pp. 318–328.
[47] J. Liu, S. Bayliss, and G. A. Constantinides. “Offline synthesis of
online dependence testing: Parametric loop pipelining for HLS,” in Proc.
23rd IEEE Symp. Field-Programmable Custom Comput. Mach., Vancouver,
May 2015, pp. 159–162.
[48] The LLVM Compiler Infrastructure, 2018. http://www.llvm.org
[49] “ModelSim.” Mentor Graphics, 2016.
[50] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989. doi: 10.1109/5.24143.
[51] R. Nane et al., “A survey and evaluation of FPGA high-level synthe-
sis tools,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35,
no. 10, pp. 1591–1604, Oct. 2016. doi: 10.1109/TCAD.2015.2513673.
[52] S. F. Nielsen, J. Sparsø, J. B. Jensen, and J. S. R. Nielsen, “A behavioral
synthesis frontend to the Haste/TiDE design flow,” in Proc. 15th Int. Symp.
Asynchronous Circuits Syst., Chapel Hill, N.C., May 2009, pp. 185–194.
[53] E. Nurvitadhi, J. C. Hoe, T. Kam, and S.-L. L. Lu, “Automatic pipelin-
ing from transactional datapath specifications,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 30, no. 3, pp. 441–454, Mar. 2011.
doi: 10.1109/TCAD.2010.2088950.
[54] I. Park, C. L. Ooi, and T. Vijaykumar, “Reducing design complexity
of the load/store queue,” in Proc. 36th Int. Symp. Microarchitecture, San
Diego, Dec. 2003, pp. 411–422.
[55] M. Pericàs et al., “A two-level load/store queue based on execu-
tion locality,” in Proc. 35th Int. Symp. Comput. Architecture, Beijing, June
2008, pp. 25–36. doi: 10.1145/1394608.1382171.
[56] A. Putnam et al., “A reconfigurable fabric for accelerating large-
scale datacenter services,” in Proc. 41st Int. Symp. Comput. Architecture,
Minneapolis, June 2014, pp. 13–24.
[57] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundarara-
jan, “CHiMPS: A high-level compilation flow for hybrid CPU-FPGA archi-
tectures,” in Proc. 16th ACM/SIGDA Int. Symp. Field Programmable Gate
Arrays, Monterey, Feb. 2017, pp. 173–178.
[58] B. R. Rau, “Iterative modulo scheduling,” Int. J. Parallel Program.,
vol. 24, no. 1, pp. 3–64, Feb. 1996. doi: 10.1007/BF03356742.
[59] S. Sethumadhavan, F. Roesner, J. S. Emer, D. Burger, and S. W. Ke-
ckler. “Late-binding: Enabling unordered load-store queues,” in Proc.
34th Int. Symp. Comput. Architecture, San Diego, June 2007, pp. 347–357.
[60] J. Sparsø, “Current trends in high-level synthesis of asynchronous
circuits,” in Proc. 16th IEEE Int. Conf. Electron., Circuits, Syst., Yasmine
Hammamet, Dec. 2009, pp. 347–350.
[61] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6, pp.
720–738, June 1989. doi: 10.1145/63526.63532.
[62] M. Tan, B. Liu, S. Dai, and Z. Zhang, “Multithreaded pipeline syn-
thesis for data-parallel kernels,” in Proc. Int. Conf. Comput.-Aided Design,
San Jose, Nov. 2014, pp. 718–725.
[63] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “ElasticFlow: A com-
plexity-effective approach for pipelining irregular loop nests,” in Proc.
34th Int. Conf. Comput.-Aided Design, Austin, TX, Nov. 2015, pp. 78–85.
[64] L. Torczon and K. Cooper, Engineering a Compiler, 2nd ed. San Ma-
teo, CA: Morgan Kaufmann, 2011.
[65] R. Townsend, M. A. Kim, and S. A. Edwards, “From functional pro-
grams to pipelined dataflow circuits,” in Proc. 26th Int. Conf. Compiler
Construction, Austin, TX, Feb. 2017, pp. 76–86.
[66] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R.
L. Stamm, “Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processor,” in Proc. 23rd Annu.
Int. Symp. Comput. Architecture, Philadelphia, May 1996, pp. 191–202.
[67] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” in Proc. 22nd Annu. Int. Symp. Com-
put. Architecture, Santa Margherita Ligure, May 1995, pp. 392–403.
[68] M. Vijayaraghavan and Arvind, “Bounded dataflow networks and
latency-insensitive circuits,” in Proc. 9th Int. Conf. Formal Methods Mod-
els Codesign, Cambridge, MA, July 2009, pp. 171–180.
[69] “Vivado High-Level Synthesis,” Xilinx Inc, 2018.
[70] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in Proc. 32nd Int. Conf. Comput.-Aided Design, San Jose, CA,
Nov. 2013, pp. 211–218.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 10,2022 at 15:06:41 UTC from IEEE Xplore. Restrictions apply.

