
An Out-of-Order Load-Store Queue
for Spatial Computing

Lana Josipovic∗, Philip Brisk†, Paolo Ienne∗
∗École Polytechnique Fédérale de Lausanne, Switzerland, †University of California, Riverside, USA

lana.josipovic@epfl.ch, philip@cs.ucr.edu, paolo.ienne@epfl.ch

Abstract—The efficiency of spatial computing depends on
the ability to achieve maximal parallelism. This needs memory
interfaces that can correctly handle memory accesses arriving
in arbitrary order while still respecting data dependencies and
ensuring appropriate ordering for semantic correctness. However,
a typical memory interface for out-of-order processors (i.e., a
load-store queue) cannot immediately fulfill these requirements:
a different allocation policy is needed to achieve out-of-order
execution in a spatial system. We show a practical way to
organize the allocation for an out-of-order load-store queue for
spatial computing by dynamically allocating groups of memory
accesses, where the access order within the group is statically
predetermined (for instance by a high-level synthesis tool).

I. INADEQUACY OF PROCESSOR LOAD-STORE QUEUES

With the likelihood of new, irregular applications that could
benefit from FPGAs, different authors have explored circuit
design techniques which can effectively implement dynamic
schedules. Although such behavior has been exploited in out-of-
order processors for decades [1], there has been little effort on
creating generic accelerator-memory interfaces that support out-
of-order execution. The reason lies in a fundamental difference
of the two systems: In a processor, the notions of fetching and
decoding instructions immediately convey the correct sequential
order of requests at the memory interface (Figure 1). In contrast,
spatial circuits lack such notions and, in the construction of
a dataflow-like accelerator, the information of the original
sequential program order is lost unless explicitly maintained
in an alternative manner. Prior research on spatial computing
has mentioned the possibilities of employing LSQs to resolve
dynamic dependencies [2], but has not described how one
performs allocation in a spatial context nor how the LSQ is
able to decide which reorderings are legal. Answering this
open question is the foremost contribution of this work.

II. AN OUT-OF-ORDER MEMORY INTERFACE

FOR SPATIAL COMPUTING

Our load-store queue implements the following function-
alities: (1) Allocating entries in the queue. (2) Enabling the
access ports and connecting them to the respective LSQ entries.
(3) Accepting arguments for the allocated LSQ entries as they
arrive out-of-order. (4) Deciding dynamically which accesses
can be safely executed without violating dependencies in
memory. (5) Returning as soon as possible available results to
the load ports. Almost everything related to steps (2) to (5)
is identical or similar to what happens in a processor LSQ,
whereas function (1) is totally different for our architecture and
is based on a group allocation policy. We define a group as a

LD 1@

H

Execute Deallocate

T

Allocate

Fetch & Decode

Supply Arguments

Receive Result

Processor LSQ

Allocate

Execute

Deallocate

1.In-order

Out-of-order

Implementa�on
dependent

2.
3.
4.
5.
6.

LD 1@

H

T
LD 0?

H

T

Supply Arguments

H

T

LD 0@

Fig. 1: A traditional LSQ of an out-of-order processor. Although the
queue executes out-of-order, the allocation of entries in the queue
must happen in sequential program order, at Decode time. However,
spatial accelerators have no equivalent phase to Decode.

LD 1@

H

Execute Deallocate

T

Group Allocate

Group Start

Supply Arguments

Receive Result

Accelerator LSQ

Group Allocate

Execute

Deallocate

1.In-order

Out-of-order

Implementa�on
dependent

2.
3.
4.
5.
6.

LD 1@

H

T

LD 0?

H

T

Supply Arguments

H

T

LD 0@LD 0?

ST 0? ?

Fig. 2: Group allocation. Our solution requires the accelerator to
announce groups of accesses when they become available. Groups
are predefined sequences of accesses which are statically known to a
compiler and that can be inserted atomically.

sequence of accesses with predetermined sequential order. The
start of a group indicates that all accesses belonging to that
group need to be performed (there is no conditional branching
in between the accesses of the group) and the groups need to
be triggered in the correct sequential order. We dynamically
allocate positions in the queue for all memory operations
of the group (Figure 2). The memory requests might come
out-of-order—since their order is statically determined and
defined within the LSQ at runtime, it can appropriately order
them before issuing them to memory. The fact that memory
operations may be generated out-of-order allows multiple
groups to execute in parallel and issue operations concurrently.

We demonstrate the advantages of our LSQ over standard
accelerator-memory interfaces on simple but paradigmatic ex-
amples, achieving significant speedups compared to commercial
HLS tools and showing that our design has the potential to
become a standard for dynamically scheduled accelerators.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, Fifth edition, 2012.

[2] J. Huang, Y. Huang, Y. Chen, P. Ienne, O. Temam, and C. Wu. A low-cost
memory interface for high-throughput accelerators. In CASES, Oct. 2014.

2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-5386-4037-1/17 $31.00 © 2017 IEEE

DOI 10.1109/FCCM.2017.26

134

