
628 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

DASS: Combining Dynamic & Static Scheduling
in High-Level Synthesis

Jianyi Cheng , Student Member, IEEE, Lana Josipović , Student Member, IEEE,
George A. Constantinides , Senior Member, IEEE, Paolo Ienne , Senior Member, IEEE,

and John Wickerson , Senior Member, IEEE

Abstract—A central task in high-level synthesis is scheduling:
the allocation of operations to clock cycles. The classic approach
to scheduling is static, in which each operation is mapped to
a clock cycle at compile-time, but recent years have seen the
emergence of dynamic scheduling, in which an operation’s clock
cycle is only determined at runtime. Both approaches have their
merits: static scheduling (SS) can lead to simpler circuitry and
more resource sharing, while dynamic scheduling (DS) can lead
to faster hardware when the computation has nontrivial control
flow. In this work, we seek a scheduling approach that combines
the best of both worlds. Our idea is to identify the parts of the
input program, where DS does not bring any performance advan-
tage and to use SS on those parts. These statically scheduled parts
are then treated as black boxes when creating a dataflow circuit
for the remainder of the program, which can benefit from the
flexibility of DS. An empirical evaluation on a range of applica-
tions suggests that by using this approach, we can obtain 74%
of the area savings that would be made by switching from DS to
SS, and 135% of the performance benefits that would be made
by switching from SS to DS.

Index Terms—Dynamic scheduling (DS), high-level synthesis
(HLS), static analysis.

I. INTRODUCTION

H IGH-LEVEL synthesis (HLS) is the process of automat-
ically translating a program in a high-level language,

such as C, into a hardware description. It promises to bring
the benefits of custom hardware to software engineers. Such
design flows significantly reduce the design effort compared to
manual register transfer level (RTL) implementations. Various
HLS tools have been developed in both academia [1], [2] and
industry [3], [4].

Manuscript received October 6, 2020; revised January 18, 2021; accepted
February 23, 2021. Date of publication March 15, 2021; date of current ver-
sion February 21, 2022. This work was supported in part by the Engineering
and Physical Sciences Research Council under Grant EP/P010040/1 and
Grant EP/R006865/1; in part by the Royal Academy of Engineering; and in
part by the Imagination Technologies. The work of Lana Josipović was sup-
ported by the Google Ph.D. Fellowship in Systems and Networking. This arti-
cle was recommended by Associate Editor Z. Zhang. (Corresponding author:
Jianyi Cheng.)

Jianyi Cheng, George A. Constantinides, and John Wickerson are with
the Department of Electrical and Electronic Engineering, Imperial College
London, London SW7 2AZ, U.K. (e-mail: jianyi.cheng17@imperial.ac.uk;
g.constantinides@imperial.ac.uk; j.wickerson@imperial.ac.uk).

Lana Josipović and Paolo Ienne are with the School of Computer
and Communication Sciences, École Polytechnique Fédérale de
Lausanne, 1015 Lausanne, Switzerland (e-mail: lana.josipovic@epfl.ch;
paolo.ienne@epfl.ch).

Digital Object Identifier 10.1109/TCAD.2021.3065902

Fig. 1. Area of three scheduling approaches over performance.

Challenge of Scheduling: One of the most important tasks
for an HLS tool is scheduling: allocating operations to
clock cycles. Scheduling decisions can be made either during
the synthesis process [static scheduling (SS)] or at runtime
[dynamic scheduling (DS)].

The advantage of SS is that since the hardware is not yet
online, the scheduler has abundance of time available to make
good decisions. It can seek operations that can be performed
simultaneously, thereby reducing the latency of the computa-
tion. It can also adjust the start times of operations so that
resources can be shared between them, thereby reducing the
area of the final hardware. However, a static scheduler must
make conservative decisions about which control-flow paths
will be taken, or how long variable-latency operations will
take, because this information is not available until runtime.

DS, on the other hand, can take advantage of this run-
time information. Dynamically scheduled hardware consists
of various components that communicate with each other
using handshaking signals. This means that operations are car-
ried out as soon as the inputs are valid. In the presence of
variable-latency operations, a dynamically scheduled circuit
can achieve better performance than a statically scheduled one
in terms of clock cycles. However, these handshaking signals
may also cause a longer critical path, resulting in a lower oper-
ating frequency. In addition, because scheduling decisions are
not made until runtime, it is difficult to enable resource shar-
ing. Because of this, and also because of the overhead of the
handshaking circuitry, a dynamically scheduled circuit usually
consumes more area than a statically scheduled one.

Our Solution (Dynamic and Static Scheduling): In this arti-
cle, we propose dynamic and SS (DASS): a marriage of SS

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information,
see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-2791-2555
https://orcid.org/0000-0001-6659-8533
https://orcid.org/0000-0002-0201-310X
https://orcid.org/0000-0002-6142-7345
https://orcid.org/0000-0001-6735-5533

CHENG et al.: DASS: COMBINING DYNAMIC & SS IN HLS 629

(a)

(b)

(c)

Fig. 2. Motivating example of dynamic and static schedules. DS has better performance when comparing with SS. Our work propose a DASS solution
having comparable performance to DS. The latency of function g is 59 cycles but is represented as five cycles in the figure to save space. (a) Motivation
code. (b) Schedule of the SS circuit (the loop II = 5). (c) DS circuit and DASS circuit have the same schedule (IIg in DASS = 1).

and DS that aims for minimal area and maximal performance,
as sketched in Fig. 1. The basic idea is to identify the parts of
an input program that may benefit from SS—typically parts
that have simple control flow and fixed latency—and to use
SS on those parts. In the current incarnation of this work, it is
the user’s responsibility to annotate these parts of the program
using pragmas, but in the future, we envisage these parts being
automatically detected. The statically scheduled parts are then
treated as black boxes when applying DS on the remainder of
the program.

Several challenges must be overcome to make this marriage
work. These include the following.

1) How should statically scheduled parts be correctly and
efficiently integrated into their dynamically scheduled
surroundings?

2) How should the memory be correctly and efficiently
shared between the statically scheduled circuit and the
dynamically scheduled circuit?

In this article, we show how these challenges can be over-
come. Our evaluation on several realistic benchmarks demon-
strates that it is possible to obtain 74% of the area savings that
would be made by switching from DS to SS and 135% of the
performance benefits that would be made by switching from
SS to DS. In other words, DASS can obtain most of the area
benefits associated with SS and can actually outperform both
DS and SS.

Article Outline: In Section II, we give a working exam-
ple to motivate the combined scheduling approach in which
some scheduling decisions are taken dynamically at runtime
and the others are determined offline using traditional HLS
techniques. Section III provides a primer on existing SS and
DS techniques. In Section IV, we describe how our proposal
overcomes challenges related to component integration and
shared memory. Section V details a prototype implementa-
tion of DASS that uses Xilinx Vivado HLS [3] for SS and
Dynamatic [5] for DS. In Section VI, we evaluate the effec-
tiveness of DASS on a set of benchmarks and compare the
results with the corresponding SS-only circuits and DS-only
circuits.

Relationship to Prior Publications: This article expands on
a conference paper by Cheng et al. [6] in two main directions.
First, we include an additional three realistic benchmarks:
two benchmarks to show more code properties amenable
for DASS and one benchmark with a detailed case study
to identify the limits of DASS and show how it affects
performance and area. Second, we address a limitation of
the work described in our conference paper: that it did not
allow memory to be shared between the SS circuit and the
DS surroundings. This limitation places severe restrictions
on which parts of a program can be statically scheduled.
For instance, if a kernel of a tiled loop is to be statically
scheduled, then all the operations that access the same array
would have to be statically scheduled too—even those that do
additional processing on boundary tiles that might be better
suited to DS. Such a code pattern can result in a subopti-
mal pipeline solution. In this article, we extend our tool by
supporting shared memory between the SS and DS hardware
thus allowing a more fine-grained division between SS and DS
components. Finally, we add a realistic benchmark to demon-
strate the shared memory architecture between DS and SS
hardware.

Auxiliary Material: All the source codes of bench-
marks and the raw data from our experiments are pub-
licly available [7], [8]. Our prototype tool, which relies on
the Vivado HLS and Dynamatic HLS tools, is also open-
sourced [9].

II. OVERVIEW

We now demonstrate our approach via a worked example.
Fig. 2(a) shows a simple loop that operates on an

array A of doubles. It calculates the value of g(d) for
each non-negative d in the array, and returns the sum
of these values. The g function represents the kind of
high order polynomial that arises when approximating com-
plex nonlinear functions such as tanh or log. If the val-
ues in A are provided at runtime as shown at the top of
Fig. 2(a), then function g is only called on odd-numbered
iterations.

630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

(a) (b)

Fig. 3. DS has larger area when comparing with SS, and our work makes the area smaller without losing performance. (a) SS circuit. (b) DS circuit and its
transformation into a DASS circuit.

To synthesize this program into hardware, we consider three
scheduling techniques: 1) SS; 2) DS; and 3) our approach,
DASS.

SS—Small Area But Low Performance: The hardware
resulting from SS is shown in Fig. 3(a). It consists of three
main parts. On the left are the registers and memory blocks
that store the data. On the right are several operators that per-
form the computation described in the code. At the bottom
is an FSM that monitors and controls these data operations
in accordance with the schedule determined by the static
scheduler at compile time. The SS circuit achieves good area
efficiency through the use of resource sharing, i.e., using mul-
tiplexers to share a single operator among different sets of
inputs.

The timing diagram of the SS circuit is shown in Fig. 2(b).
It is a pipelined schedule with an initiation interval (II)
of 5. The II cannot be reduced further because of the
loop-carried dependency on s in line 11. Since the if
decision is only made at runtime, the scheduler cannot deter-
mine whether function g and the addition are performed
in a particular iteration. It, therefore, conservatively reserves
their time slots in each iteration, keeping II constant at 5.
This results in empty slots in the second and fourth iter-
ations (shown with dashed outlines in the figure), which
cause the operations in the next iteration to be unnecessarily
delayed.

DS—Large Area But High Performance: The DS hardware
is a dataflow circuit with a distributed control system con-
taining several small components representing instruction-level
operations [5], as shown on the left of Fig. 3(b). Each com-
ponent is connected to its predecessors and successors using
a handshaking interface. This handshaking, together with the
inability to perform resource sharing on operators, causes the
area of the DS hardware to be larger than the corresponding
SS hardware.

The timing diagram of the DS circuit is shown in Fig. 2(c).
It has the property that each operator executes as soon as its
inputs are valid, so the throughput can be higher than that
for SS hardware. For instance, it can be seen that the read
of A[i] in the second iteration starts immediately after the
read in the first iteration completes. Most stalls in a DS circuit
are due to data dependencies. For instance, the execution of

function g and the addition in the second iteration are skipped
as d = -0.1 < 0, leading to s = old_s. The operation
is not carried out immediately after the condition check but
stalled until s+ = t in the first iteration completes, since it
requires the output from the previous operation as input. Then
it is immediately followed by s+ = t in the third iteration.

DASS—Both Small Area and High Performance: The DASS
hardware combines the previous two scheduling techniques. It
is based on the observation that although the overall circuit’s
performance benefits from DS, the function g does not because
it has a fixed latency. Therefore, we replace the dataflow
implementation of g with a functionally equivalent SS imple-
mentation. The SS implementation uses resource sharing to
reduce six adders and five multipliers down to just one of
each. The rest of the circuit outside g is the same as the DS
circuit. Because g represents a substantial fraction of the over-
all hardware, this transformation leads to the area of the DASS
hardware being close to that of the pure SS hardware, as shown
in Fig. 1.

The timing diagram of the DASS circuit is the same as that
of the DS circuit, as shown in Fig. 2(c).1 In the DS circuit,
g’s schedule is determined at runtime, while in the DASS cir-
cuit, it is determined by the static scheduler; in both cases,
the timing diagram is the same. The data-dependent if con-
dition in the loop remains part of the DS circuit to maximize
throughput. Hence, the DASS hardware and the DS hardware
have the same throughput in terms of clock cycles. However,
since the SS implementation of g optimizes the critical path
of the system, the DASS hardware can actually run at a higher
clock frequency. Therefore, in this example, DASS hardware
achieves not merely the “best of both worlds,” but actually
achieves better performance than DS hardware (in terms of
wall clock time), and comparable area to SS hardware, as
shown in Fig. 1.

In the remainder of this article, we give the details of
how to configure the constraints of the static parts for maxi-
mizing resource sharing and preserving performance, and the
methodology for integrating the static parts into the dataflow
circuit.

1Actually, the latency of function g varies slightly between DS and SS for
technical reasons, as explained in Section VI.

CHENG et al.: DASS: COMBINING DYNAMIC & SS IN HLS 631

III. BACKGROUND

In this section, we review the basics of HLS scheduling. We
discuss the related work in SS and DS techniques and contrast
them with the approach we present in this work.

A. Scheduling in HLS

In most HLS tools, such as LegUp [1] and Vivado HLS [3],
the tool flow is divided into two steps: 1) frontend and 2) back-
end. In the frontend, the input source code is compiled into
an intermediate representation (IR) for program analysis and
transformation. In the backend, the IR is transformed into an
RTL description of a circuit, during which SS is carried out,
as well as allocation and binding.

The scheduling process in most HLS tools starts by con-
verting the IR into a control/data flow graph (CDFG) [10]. A
CDFG is a two-level directed graph consisting of a number
of vertices connected by edges. At the top level, the graph is
represented as a control-flow graph (CFG), where each ver-
tex corresponds to a basic block (BB) in the transformed IR,
while edges represent the control flow. At a lower level, a ver-
tex corresponding to a BB is itself a data-flow graph (DFG)
that contains a number of subvertices and subedges. Each sub-
vertex represents an operation in the BB and each subedge
indicates a data dependency.

B. Static Scheduling

In HLS tools, scheduling is the task of translating the CDFG
described in the previous section, with no notion of a clock,
into a timed schedule [11]. The static scheduler determines
the start and end clock cycles of each operation in the CDFG,
under which the control flow, data dependencies, and con-
straints on latency and hardware resources, are all satisfied.
One of the most common SS techniques, used by Vivado
HLS [3] and LegUp [1], expresses a CDFG schedule as a
solution to a system of difference constraints (SDCs) [12].
Specifically, it formulates scheduling as a linear program-
ming (LP) problem, where the data dependencies and resource
constraints are represented as inequalities. By changing these
constraints, various scheduling objectives can be customized
for the user’s timing requirements.

Besides achieving high performance, SS also takes resource
allocation into account, such as modulo scheduling for loop
pipelining [13]. It aims to satisfy the given time constraints
with minimum possible hardware resources or achieve the
best possible performance under the given hardware resource
requirements. If the hardware resource constraints are not
specified, the binder automatically shares some hardware
resources among the operations that are not executed in par-
allel. This maintains the performance but results in smaller
area. In addition, typical HLS tools like Vivado HLS allow
users to specify resource constraints via pragmas. In this case,
the binder statically fits all operations into a given number of
operators or functions based on the given schedule. This may
slow down execution if hardware resource is limited.

In summary, SS results in efficient hardware utilization by
relying on the knowledge of the start times of the operations to
share resources while preserving high performance. However,
when the source code has variable-latency operations or

statically indeterminable data and control dependencies, SS
conservatively schedules the start times of certain operations
to account for the worst case timing scenario, hence limiting
the overall throughput and achievable performance.

C. Dynamic Scheduling

DS is a process that schedules operations at runtime. It over-
comes the conservatism of traditional SS to achieve higher
throughput in irregular and control-dominated applications,
as we saw in Fig. 3. Similarly, DS can handle applications
with memory accesses, which cannot be determined at com-
pile time. For instance, given a statement like x[h1[i]] =
g(x[h2[i]]), the next read of x can begin as soon as it has
been determined that there is no read-after-write dependency
with any pending store from any of the previous loop itera-
tions, i.e., h2 is not equal to any prior/pending store address
h1. A dynamically scheduled circuit will allow the next oper-
ation to begin as soon as this inequality has been determined;
otherwise, it will appropriately stall the conflicting memory
access.

The initial work on dynamically scheduled hardware syn-
thesis from a high-level language proposed a framework
for automatically mapping a program in occam into a syn-
chronous hardware netlist [14]. This work was later extended
to a commercial language named Handel-C [15]. However, it
still required the designer to manually design and implement
hardware optimization such as pipelining and parallelism.
Venkataramani et al. [16] proposed a framework that automat-
ically transforms a C program into an asynchronous circuit.
They implement each node in a DFG of the design in an
IR called Pegasus [17] into a pipeline stage. Each node rep-
resents a hardware component in the netlist, containing its
own controlling trigger. This dataflow design methodology was
then brought into a synchronous design. Recent work [5] pro-
poses a tool flow named Dynamatic that generates synchronous
dataflow circuits from C code. It can take arbitrary input code,
automatically exploiting the parallelism of the hardware and
uses handshaking signals for DS to achieve a high through-
put. In this work, we use Dynamatic to generate dynamically
scheduled HLS hardware.

As formalized by Carloni et al. [18], DS is typically
implemented by dataflow circuits that consist of components
communicating using handshake signals. Apart from the com-
mon datapath operators, a dynamically scheduled dataflow
circuit contains a number of dataflow components, as shown
in Table I, used to control the flow of data.

One difficulty for DS is scheduling the memory accesses. In
SS, all the memory accesses are scheduled at compile-time,
such that there is no memory conflict during the execution.
In DS, the untimed memory accesses may affect the correct-
ness and performance if the memory arbitration or the memory
conflicting accesses are not correctly solved. Hence, dynami-
cally scheduled circuits may use load-store queues (LSQs) [19]
to resolve data dependencies and appropriately schedule the
arbitrary memory accesses at runtime. However, LSQs cost
significant area and add delays to the circuit. To reduce such
overhead, the architecture of the LSQ in Dynamatic is opti-
mized by statically identifying the memory aliasing among all

632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

TABLE I
DATAFLOW COMPONENTS IN DS CIRCUITS

the memory accesses [20]. In our work, the memory architec-
ture may contain partially scheduled memory accesses in the
static part and unscheduled memory accesses in the dynamic
part. We will detail our approach to handle this situation in
Section IV-C.

D. Combining Dynamic and Static Approaches

Several works have explored the integration of certain
aspects of DS into static HLS. Alle et al. [21] and
Liu et al. [22] proposed source-to-source transformations
to enable multiple schedules selected at runtime after all
the required values are known. Tan et al. [23] proposed an
approach named ElasticFlow to optimise pipelining of irreg-
ular loop nests that contain dynamically bound inner loops.
Dai et al. [24], [25] proposed pipeline flushing for high
throughput of the pipeline and dynamic hazard detection cir-
cuitry for speculation in specific applications. These works are
still based on SS and work only under stringent constraints,
which limits the performance improvements for general cases,
such as complex memory accesses. In contrast, our approach
adds existing hardware optimization techniques into dynam-
ically scheduled circuits and supports arbitrary code input
under the same restriction with respect to the synthesis tools
that DASS replies on independently.2 Also, these approaches
cannot solve the problem of the input-dependent behavior in
hardware, while DASS solves it by dynamically scheduling
these parts of code to achieve higher throughput.

Carloni [26] described the theory of how to encapsulate
static modules into a latency-insensitive system, and we use a
similar integration philosophy. We utilize this approach within
our tool, which automates the generation of circuits from high-
level code, resulting in the mix of two HLS paradigms in a
single synthesis tool.

IV. METHODOLOGY

In this section, we show how to partition and synthesize
some functions into SS hardware and the rest of the pro-
gram into a DS circuit. We first discuss which programs

2The synthesized hardware from the arbitrary code may not be efficient,
but still preserves correctness.

are amenable to our approach. We then detail the integra-
tion of the SS hardware into the DS circuit using a dedicated
wrapper, which ensures that the data is correctly propagated
between these two architectures. Finally, we show how to
enable memory sharing among SS and DS circuits correctly.

A. Applicability of Our Approach

Our approach is generally applicable, in the sense that it
can be used wherever SS or DS can be used. The following
conditions indicate the scenarios, where our approach is likely
to yield the most substantial benefits over DS and SS.

1) There is an opportunity to improve the throughput using
information that only appears at runtime.

2) At least one region of the code has a constant (or low
variability) latency.

3) This code region has an opportunity for resource sharing.
The first condition indicates that the design may be

amenable to DS, as explained in Section III-C. The second
and third reflect the fact that SS determines a fixed schedule
and can take advantage of resource sharing. We emphasize
that not all of the conditions above need to hold for an input
program to benefit from our approach; it is simply that each
condition listed above is desirable.

B. Integrating SS Hardware Into DS Hardware

In this section, we show how to implement a wrapper of
SS hardware around the DS surroundings. A wrapper design
of a synchronous circuit around latency-insensitive designs is
explained by Carloni [26]. In the design, the wrapper always
fires as long as inputs are valid and the successor is ready.
In other words, they assume no stall is caused by the internal
architecture of the synchronous circuit, i.e., the II of the syn-
chronous circuit is always 1. However, in most hardware
designs, we want to have efficient hardware architecture as
well as high performance. II greater than 1 allows designers
to perform more hardware optimization, like resource sharing,
while still preserving high performance. In our work, we sup-
port and prefer that II greater than 1, so resource sharing is
possible.

A DS circuit is constructed as a dataflow circuit, contain-
ing a number of small components, while an SS circuit has a
centralized FSM for control. We regard each SS circuit as a
component in the dataflow circuit, as indicated in Fig. 3(b). In
this section, we explain how to make an SS circuit behave like
a DS component so that it can be integrated into the overall
DS hardware. Let us look at function g in Fig. 2(a), for exam-
ple, which is a single-input and single-output function. The
multiple-input and multiple-output cases are discussed shortly.

In the DS circuit part, each component communicates with
its predecessors and successors using a set of handshaking
signals as shown in Fig. 4(a). Each DS component uses the
bundled data protocol [27] for communication, where each
data connection has request and acknowledgement signals. For
instance, the following is the control interface of a component
from Dynamatic [5].

1) pValid: An input signal indicating that the data from the
predecessor is valid.

CHENG et al.: DASS: COMBINING DYNAMIC & SS IN HLS 633

(a) (b)

Fig. 4. Statically scheduled (SS) circuit of function g is wrapped with
additional control circuitry for interfacing to the DS circuit. (a) Handshaking
interface in a DS circuit. (b) SS function g as a DS component.

2) valid: An output signal informing the successor that the
data from the current component are valid.

3) nReady: An input signal indicating that the successor is
ready to take a new input.

4) ready: An output signal informing the predecessor that
the current component is ready to take a new input.

On the other hand, traditional SS hardware has a different
interface to monitor and control the states of the centralized
FSM. An example of an HLS tool that generates SS hardware
is Vivado HLS [3]. For a typical control interface of an SS
function synthesized into SS hardware, its control interface is
as follows.

1) ap_ce: The clock enable signal controls all the sequen-
tial operations driven by the clock.

2) ap_ready: The ready signal from the SS hardware
indicates that it is ready for new inputs.

3) ap_vld: The valid signal indicates the output from SS
hardware at the current clock cycle is valid.

The interface of an SS circuit is not compatible with the
above handshaking signals in a DS circuit. To overcome this
issue, we add a wrapper around each SS circuit, ensuring that
the data propagate correctly between the SS circuit and the
DS circuit. This wrapper is generated in two steps as follows.

1) In an SS circuit, any output is only valid for one clock
cycle. We design a valid signal to correctly send the
data to the successor and preserve the output when
backpressure from the successor occurs.

2) Since there may be a pipeline stall caused by this compo-
nent, we design a ready signal to send the backpressure
to the predecessor, ensuring any valid input is not lost.

We now discuss those two steps in more detail.
Constructing the Valid Signal: In an SS-only circuit, where

the entire schedule is determined at the compile-time, the
arrival time of each input can be predicted. However, this is
not the case in DS as the behavior of the rest of the DS cir-
cuit is unknown. Two choices are available: 1) stalling the SS
function until valid input data are available or 2) letting the
SS function continue to process data actively in its pipeline,
marking and ignoring any invalid outputs. Since the SS func-
tion does not have the knowledge of the rest of the DS circuit,
the first approach may cause unnecessary stalls. Hence, for

performance reasons, we take the second choice with power
overhead from keeping SS functions active.

An invalid input read and processed by the SS hardware
is named a bubble. We use a shift register to tag the validity
of the data and propagate only the valid data to the succes-
sor, as shown in Fig. 4(b). The shifting operation of the shift
register is controlled by the state of the SS hardware to syn-
chronize the data operations in the SS circuit. It shifts to the
right by one bit every time the SS hardware takes a new input,
as indicated by the ap_ready signal. The new bit represents
whether the newly taken input data are valid or not. A zero
represents a bubble and a one represents a valid input. The
length of the shift register is determined by the latency and
the II of function g : �latency/II�, where these time constraints
are obtained from the scheduling report by the static sched-
uler. This ensures that when the output is available from the
SS hardware, as indicated by the ap_vld signal, its validity
is indicated by the oldest bit of the shift register. By check-
ing the oldest bit value, only the valid data are propagated
to the successor with the valid signal high. In summary, we
use the shift register to monitor and control the state of the
SS hardware, such that the data can be synchronized between
the SS and DS hardware, filtering out the bubbles to ensure
the correctness of the function. Similarly, only the memory
operations with valid data are carried out.

Constructing the Ready Signal: The valid signal for the
successor and the shift register allows data to propagate from
the predecessor, through the SS function, to the successor.
However, the component is not able to deal with any backpres-
sure from the function or its successor. Backpressure happens
when a component is unable to read an input even though it
is valid, resulting in its predecessor stalling. In a DS circuit,
this issue is solved using handshake signals—the hardware
stalls when its output is valid but the successor is not ready,
as indicated by its nReady signal or the ready signal from the
successor. We design a control circuit to handle the backpres-
sure between a DS circuit and an SS circuit. Backpressure
can arise between a DS circuit and an SS circuit in two ways,
which we now discuss.

Backpressure From SS Function to Its Predecessor: In this
case, the ready signal indicates whether the SS hardware is
ready to take an input so ap_ready is directly connected to
the ready signal of the wrapper. It sends feedback to the pre-
decessor such that the predecessor can be stalled, holding the
valid input to the SS hardware until the SS hardware is ready.

Backpressure to SS Function From Its Successor: Since the
SS hardware only holds the output for one cycle when run-
ning, we stall the process in the SS hardware to preserve
the output data. This is achieved by disabling the clock sig-
nal, ap_ce = 0, so the SS hardware stops all the sequential
processes, preserving the output. The condition for such a stall
to occur is that the next output from the SS hardware is valid
(valid = 1) but the successor is not ready (nReady = 0).
The SS hardware continues running after the nReady signal
is set to high, indicating that the successor is ready to accept
the output data of the SS hardware. This additional circuitry
ensures that the data exchanged between an SS circuit and a
DS circuit are not lost when any stall occurs.

634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 5. Example of the netlist of all memory accesses for a purely DS
circuit. The analysis in DS reports which memory node may cause memory
conflicts. Each green circle means the minimum unit to be integrated in an
SS hardware.

Handling Multiple Inputs and Multiple Outputs: The exam-
ple above shows the wrapper for a function with a single input
and an output. However, it is also common to have a func-
tion with 0 or more than one input or output. If there is no
input and output, the external DS circuit would have no corre-
sponding data port for the component, hence no corresponding
handshaking signal is needed. Here, we focus on the cases of
multiple inputs and outputs.

For multiple inputs, we construct a set of handshaking sig-
nals as shown in Fig. 4(b) for each input and synchronize
data with the help of join components in Table I, such that
the SS hardware always takes all the input simultaneously. A
join component is used to preserve the valid inputs to the SS
circuit until all the inputs are valid. This is similar to a DS
component with multiple inputs.

For multiple outputs of the SS function, each component has
its own handshaking signals. The output handshaking signals
are implemented in two parts: 1) the valid and 2) nReady sig-
nals. First, each output has its own valid signal. For each out-
put, the SS circuit has a ap_vld signal indicating whether the
corresponding output is valid. Each ap_vld signal is ANDed
with the oldest bit of the shift register (sr(0)) as the corre-
sponding valid signal: validi = ap_vldi∧sr(0), i = 0, 1, 2, . . . ,

Second, any unset nReady signal from the output when the
data is valid can disable the clock in the SS hardware as back
pressure: ce = ¬ ∧ ((¬nReadyi) ∧ validi).

C. Shared Memory Between SS and DS Circuits

The SS hardware has its memory accesses prescheduled at
compile time and can interact with the memory at runtime in a
predictable sequence, while as explained in Section III-C, the
DS hardware requires an LSQ [19] that schedules the memory
accesses at runtime before accessing the data. In DASS hard-
ware, a combination of the two memory architectures needs
to be handled. An LSQ is beneficial for programs that have
irregular memory accesses. It does not bring performance
improvements when implementing regular computation in the
form of an SS circuit. The DS tool uses static analysis, such
as polyhedral analysis, to identify the memory accesses in the
dataflow graph that cannot cause any memory conflict [20].
Then, these memory access nodes are directly connected to
the BRAM through an arbiter, as the memory controller (MC),
instead of being scheduled by an LSQ.

Fig. 5 shows an example of the memory architecture of
purely DS hardware. The gray nodes on the left are the
memory nodes, and the yellow blocks are the memory com-
ponents in the DS hardware. The blocks on the right are
the BRAM blocks on FPGAs. Each block represents an
array in the input program. The dotted edges are handshak-
ing interface, while the solid edges are the block memory
interface. In DS hardware, each memory node performs a sin-
gle load/store operation, and all these nodes are connected
to the memory components through handshaking signals. The
LSQ schedules the memory with dependencies, while the MC
is a simple memory arbiter that issues independent memory
accesses to memory. Then the memory components serialize
the requests from these nodes and perform the corresponding
memory operations with the BRAM through the block memory
interface.

In the figure, the DS hardware has seven memory access
nodes targeting three arrays. Here, we assume load z[k]
cannot have conflicts with other accesses to z, the same as
store z[k]. Since these arrays are separate, there are three
MCs to manage the accesses to the memory. First, the array x
is only accessed by a single load so the node can be directly
connected to the MC. Second, the load and store with the
indices i and j, whose values are determined at runtime,
may depend on each other when accessing the same array y.
Therefore, an LSQ is required to ensure that those memory
accesses are carried out in the correct sequence. Finally, the
memory accesses to array z have both regular and irregu-
lar patterns. The DS analysis proves that the regular memory
accesses do not conflict with the irregular memory accesses.
Hence, these regular memory accesses can be safely con-
nected to the MC, skipping the LSQ. One advantage of such
an approach is to minimize the overhead caused by the LSQ
and maintain the dynamic mechanism of the memory archi-
tecture. The DS compiler analyzes the program and constructs
an efficient memory architecture above for the DS hardware.

In DASS, we use the results of the above analysis to iden-
tify whether the memory accessed by the SS hardware can
be shared safely with the DS hardware. We inline all the SS
functions at the top-level program and send it to the memory
analyzer used by DS. The DS compiler outputs a memory
architecture graph at the top level, such as Fig. 5. The graph
shows the connection of each memory node to the MC if
the whole hardware is dynamically scheduled. Based on that
graph, our tool divides all these memory nodes into several
node sets, shown as green circles. All the nodes of a single set
must belong to the same hardware region. For an SS function
that contains unpredictable memory accesses, the top-level SS
function cannot be pipelined. The reason is that the external
DS surroundings ignore the memory dependencies inside the
SS function. For instance, an SS function in a loop that may
require the maximum loop throughput to be 0.2 in Fig. 2(b),
while the dynamically scheduled loop feeds data at a through-
put of 1 set of data per clock cycle in Fig. 2(c) as it does not
see the interiteration dependency hidden in the SS function.

For instance, in Fig. 5, all the nodes are divided into five sets
indicated by the green circles: 1) any node directly connected
to the MC is a single set and 2) any node sharing the same

CHENG et al.: DASS: COMBINING DYNAMIC & SS IN HLS 635

Fig. 6. Shared memory architecture in the DASS hardware. An arbiter is
used to decide which hardware to access the memory in each clock cycle.

LSQ belongs to the same set. The memory accesses in each
green circle may cause conflicts, so they have to be scheduled
together either dynamically or statically. The reason is that
each SS hardware is treated as a black box by the LSQ,
and the behavior of SS hardware accessing the memory is
unknown for a single input. This is different from purely
DS circuits, in which each memory node only accesses the
memory once every time the single node is triggered. An
SS component may access memory multiple times in one
computation if it contains multiple memory statements or loops.
Therefore, our approach only allows complete sets in the SS
hardware. Such a method ensures that there is no memory
conflict between the SS hardware and the DS surroundings
whenever they access the shared memory. If a set of nodes
using an LSQ is considered to be statically scheduled, the LSQ
is no longer needed. The performance may be affected by the
conservatism in SS, however there is significant area reduction
as the LSQ is no longer needed.

Constructing Shared Memory Interface in DASS: In SS,
the nodes in Fig. 5 are no longer distributed but scheduled
at compile time. The memory interface is the block memory
interface instead of the handshaking signals. Once the access to
a shared memory block occurs, our tool automatically adds the
memory interface to the wrapper. Fig. 6 shows an example of a
shared memory architecture in the DASS hardware. The yellow
block on the left is the wrapper for the SS hardware, as shown
in Fig. 4(b). Apart from that, an additional memory wrapper
is added shown as the circuits on the right. As mentioned
previously, the SS hardware directly accesses the memory
through the BRAM interface shown as the thick arrows. The DS
hardware uses the MCs to transform the handshaking signals
in dotted arrows to the same interface as the SS hardware.
In order to ensure that there is no conflict among these two
systems, our tool adds a memory arbiter in the memory system.
In every clock cycle, the arbiter grants access to either the DS
hardware or an SS circuit, and stalls the others by controlling
the clock enable bits ce of these components. If more than
one hardware, either SS competing with DS or SS competing
with SS, request to access the memory, the memory arbiter
chooses one to grant in a round-robin fashion and stalls the
rest of the hardware for data synchronization. The priority of
the SS hardware is always higher than the DS hardware since
we expect the SS hardware to run at the highest throughput.

(a) (b)

Fig. 7. With user-specified constraints in pragmas, our tool automatically
generates a combined dynamically and statically scheduled circuit. (a) Source.
(b) DASS tool flow.

Summary: We identify the code that is amenable for DASS,
where the design quality of the resulting hardware can be
improved. With our wrapper, the SS hardware can work cor-
rectly in a DS circuit. Finally, we show how to automatically
validate the memory correctness between the SS and DS hard-
ware, and synthesize efficient shared memory architecture in
the DASS hardware. Our experiments have shown that the
proposed shared memory interface allows us to remove all the
LSQs in the benchmarks in Section VI.

V. IMPLEMENTATION

Our approach is generic and can be used with various SS
and DS HLS tools. For our work, we choose Vivado HLS [3]
and Dynamatic [5] to synthesize the SS and DS hardware,
respectively. Our tool flow is shown in Fig. 7. The user-defined
scheduling constraints are configured using pragmas. DASS
takes the input C++ code and splits the functions into two
groups based on the pragmas specified by the user, represent-
ing the SS and the DS functions.3 We synthesize a function
without any scheduling constraints to DS hardware by default.
Our tool supports the integration of multiple SS functions into
a DS function. A front end analysis is carried out to identify
whether there is interiteration dependence or shared memory
between the SS function and the DS function. Then each SS
functions is synthesized by Vivado HLS. If an SS function has
no interiteration dependence, the II of the function is either
an II defined by the user or the optimal II determined by
Vivado HLS. If an SS function has an interiteration depen-
dence, the it is synthesized with a sequential schedule. The
resultant SS hardware is then automatically wrapped up to
ensure compatibility with the DS circuit interface, as described
in Section IV-B. Each input variable or output variable of the
function is constructed as a data port with a set of handshaking
signals. The memory port for exclusive array accesses from
the SS function is directly forwarded to the memory block.
If the array is shared by other hardware, then an arbiter is
generated to serialize the memory accesses.

In the DS function that contains SS functions, each SS func-
tion appears as a single component in the DS hardware netlist.
We access the dataflow graph in Dynamatic that contains the

3The SS region of code is required to be a function, such that it can be
scheduled by Viavdo HLS.

636 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 8. Overall effects of our approach over the eleven benchmarks from Table II. Each benchmark is given three different data distributions: (a) worst case,
(b) average case, and (c) best case. Each arrow shows a change in area and performance by switching from DS to DASS, both relative to SS. Most of the
arrows lie entirely in the second quadrant, which means both DS and DASS are faster but larger than SS. Arrows that point left mean that DASS is faster
than DS; arrows that point down mean that DASS is smaller than DS.

timing constraints of all these DS components and update the
II and latency of each SS function in terms of the correspond-
ing scheduling report from Vivado HLS. This ensures correct
hardware optimization in the backend of Dynamatic. Finally,
the resultant RTL files represent the final DASS hardware of
the top function.

VI. EXPERIMENTS

We evaluate our work on DASS on a set of benchmarks,
comparing with the corresponding SS-only and DS-only
designs. We assess the impact of DASS on both the circuit
area and the wall clock time.

We evaluate our approach on the latency and the area of the
whole hardware compared to existing scheduling approaches.
Specifically, we select a number of benchmarks, where the DS
approach generates hardware with lower latency than the SS
approach, and show how the area overhead can be reduced
while preserving low latency. To ensure fairness, we present
the best SS solution from Vivado HLS and the best DS solu-
tion from Dynamatic for each benchmark as a baseline. In
addition, we assume that the designer has no knowledge of
the input data distribution for the DASS hardware and show
that the area and execution time can still be reduced. This
means we use the conservative II automatically obtained from
Vivado HLS, i.e., the smallest possible II determined by only
the topology of the circuit like loop carried dependency. The
timing results of our work are shown as a range of values that
depends on the input data distribution. We obtain the total
clock cycles from ModelSim 10.6c and the area results from
Post & Synthesis report in Vivado. The FPGA family we used
for result measurements is xc7z020clg484 and the version of
Vivado software is 2018.3. All our designs are functionally
verified in ModelSim on a set of test vectors representing
different input data distributions.

A. Benchmarks

The HLS hardware can benefit from the DS for the high-
est throughputs. We select a number of benchmarks that are
amenable for DS, and evaluate our work, DASS, on further
optimizing the design quality in terms of the performance
and area. The first two benchmarks are made artificially to
demonstrate simple examples. The third and fourth bench-
marks are the sparse form of the corresponding benchmarks
from the paper by Josipović et al. [5]. The two getTanh
benchmarks apply the existing approximation algorithms on
sparse data arrays. These benchmarks are all made publicly
available [7].

We apply our approach to 11 benchmarks and select the SS
parts based on the formulation given in Section IV-A.

1) sparseMatrixPower performs dot product of
two matrices, which skips the operation when the
weight is 0.

2) histogram sums various weights onto the correspond-
ing features but also in a sparse form.

3) filterSum sums a number of polynomial results from
the array elements that meet the given conditions, where
the difference between two elements from the arrays is
non-negative.

4) filterSumIf is similar but the SS function returns
one of two polynomial expressions based on the value
of the difference.

5) getTanh performs the approximated function tanh(x)
onto an array of integers using the CORDIC algo-
rithm [28] and a polynomial function.

6) getTanh (double) is similar but uses an array of
doubles.

7) BNNKernel is a small binarized neural network [29].
8) bubbleSort is a bubble sort algorithm that repeatedly

swaps the elements in the 1-D array until the sequence
is in ascending order.

CHENG et al.: DASS: COMBINING DYNAMIC & SS IN HLS 637

TABLE II
EVALUATION OF DESIGN QUALITY OF DASS OVER ELEVEN BENCHMARKS. ASSUMING THE DATA DISTRIBUTION IS UNKNOWN,

THE II OF THE STATIC FUNCTION IN DASS IS SELECTED AS THE II IN THE WORST CASE. THE AVERAGE

VALUES ARE TAKEN EXCEPT bubbleSort AS IT IS NOT AMENABLE FOR DASS

9) LFK7 is one of the seventh kernel, equation of state
fragment, in the Livermore loops [30], a well-known
benchmark set for loop kernels.

10) distSum evaluates the probability of three events in a
specific domain by accumulating the three probability
density functions (pdfs).

11) getIntersection measures the intersection of poly-
hedrons, used for modeling tumors in biophotonic cancer
treatments [31].

B. Overall Experimental Results

In most benchmarks, our approach has less area and execu-
tion time than the corresponding DS hardware. Fig. 8 shows
the overall design quality of our approach compared to the
SS and DS solutions, complementing the detailed results in
Table II. In the figure, we show three arrows for each bench-
mark: 1) the best case (all inputs take the short path); 2) the
worst case (all long); and 3) a middle case (half short, half
long). The axes are normalized to the corresponding SS solu-
tions at (1, 1). The starting point of an arrow represents the
LUT usage and execution time of the DS hardware, while the
corresponding result of the DASS hardware is at the end of
the arrow. The II of the SS function in the DASS hardware is
chosen only considering the worst case of the execution pat-
terns, where all the iterations are long, that is η = 1, assuming
the user does not know the input data distribution. With the
fixed hardware architecture, we show the results of all seven
benchmarks with different input data distributions. Generally,
our DASS designs sit at the top left of the corresponding SS
hardware. In addition, for the same benchmark, most DASS
hardware designs are on the bottom left of the DS hardware.
It shows that the DASS hardware can be smaller than the DS
hardware and have better performance. The arrows point to
the top right indicate that the benchmark is not suitable for
DASS and will be explained in the later section.

The results of those arrows in the figure show different
patterns over the performance, attributing to the variety of
code patterns in the benchmarks. For instance, some arrows
for the same benchmark position at a noticeable distance
from each other, like groups of 3, 4, 5, 8, 11. The reason
is that the performance of the benchmark depends on the dis-
tribution of the input data. In contrast, some arrows for the

same benchmarks overlap completely, like groups of 7, 9, 10.
These arrows indicate that the input data does not affect the
performance of the circuit. Similarly, the benchmarks between
these two categories result in the partially overlapping or
closely positioned arrows, like groups of 1, 2, 6. Besides, from
the area point of view, the arrows for the same benchmark have
the same area reduction as the hardware architecture is fixed.

Detailed results of these benchmarks are shown in Table II,
considering all the cases of possible input distribution (from
all long to all short). In general, some values in the “Total
Cycles” column is a range because the control decisions taken
in the code depend on input values. For the SS case, the
number of total cycles is often independent of the input due
to pipelining worst-case assumptions made by the SS sched-
uler. However, in the case of 1) sparseMatrixPower and
11) getIntersection, the SS scheduler decides to imple-
ment the outer loop of the circuit without pipelining, resulting
in sequential execution of the iteration and, hence, also vari-
able execution time. There is also a small difference between
the total clock cycles of the DS hardware and the DASS hard-
ware. One of the reasons is that the existence of bubbles causes
pipeline stalls at startup and then the throughput is stabilized.
The cycle count of the SS hardware in the DASS hardware
may also be different from the corresponding DS hardware due
to different retiming approach, which also affects the critical
path (like function g in Section II).

In some of the benchmarks like 3) filterSum, the II of
the top function is highly limited by the topology of the circuit,
leading to more area saving. For the benchmarks that con-
tain sparse data operations like 1) sparseMatrixPower,
although the memory is shared, it can be proved that there is
no memory conflict between the SS part and the DS part.
Therefore, the design quality of the hardware can still be
improved by DASS. The DS pipelining capabilities are not
always as powerful as those of SS when pipelining more com-
plex loops (i.e., the DS hardware sometimes contains more
restrictive synchronization logic which may prevent complete
loop pipelining). Hence, in 5) getTanh, the DASS design
benefits in cycle count by introducing the fully pipelined SS
function. The benchmark 7) BNNKernel shows that multiple
SS functions can be synthesized using our tool. Ideally, all
the regular operations in the input code can be synthesized as

638 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 9. LUT usage of different scheduling approaches over the performance
for the example from Fig. 2. Each data point on DASS is labeled with the II
of function g. Each data point on SS is labeled with the loop II. η indicates
the fractions of long latency operations.

SS hardware to maximize area efficiency and performance.
Besides, 11) getIntersection has both an unbounded
loop and the data dependent if conditions that cannot be fully
pipelined by SS. However, the program contains several oper-
ations that can be shared as the performance bottleneck is at
the memory bandwidth. We identify the SS functions based on
the conditions given in Section IV-A, and the tool synthesizes
these functions from the original program into SS hardware
that both access the same array. The DS analysis shows that
these two functions have no memory conflict, as they never
compute in parallel. The average results include an unsuit-
able benchmark 8) bubbleSort causing large bias on the
average. Over the 10 benchmarks amenable for DASS, DS
achieves 0.51×−0.85× of the execution time and 3.03× area,
while DASS achieves 0.38×−0.63× of the execution time and
1.68× area. If the input data distribution is known, the design
quality of the DASS hardware for all these benchmarks can
be further improved (as in the case study 1).

C. Case Study 1: II Exploration

Now, let us take the motivating example in Section II for a
case study. We discuss how the variation of II affects the hard-
ware performance and some principles that guide the selection
of an appropriate II for the SS portion of a DASS circuit.

Effects of II Selection: Let us first consider the case when
the entire circuit is generated using SS. As an example, in
Fig. 2, the minimum II of the loop in function filterSum
is 5, because of a loop-carried dependency on s that takes
five cycles. However, a user can also choose a larger II. This
can lead to smaller area (because of more opportunities for
resource sharing) but higher latency, as shown in Fig. 9 (blue
circles). In this case, if the II is increased from 5 to 7, the
LUT count is reduced by 28%, at the cost of increasing the
latency by 39%.

Now, let us consider the DASS case. For the example in
Fig. 2, there are various choices of II for function g. The
most aggressive solution is to set II = 1 for the highest possible
throughput. However, due to the aforementioned loop-carried
dependency on s, there is actually no performance benefit if

the II is set to anything below 5—the loop-carried dependency
dictates that the time between two calls to g is at least five
cycles (when g is called from two consecutive loop iterations).
The time between calls to g will only increase if the itera-
tions that call it are further apart. Hence, if the user’s primary
objective is to maximize performance, an II of five cycles is
sensible.

However, if the user knows more about the expected data
distribution of the input, they can choose an even better II for
g. Let us explore these effects on the motivating example. We
denote the fraction of the loop iterations, WHERE d >= 0 as
η, since these have long latency through function g and the
accumulation in s. The fraction of the iterations where d < 0
is then 1 - η. The input data distribution affects η over all the
loop iterations. Fig. 9 shows the LUT usage and wall clock
time of the hardware by three scheduling approaches over sev-
eral values of η, the fractions of long latency operations. The
circuit is buffered for throughput by Dynamatic [32], and we
assume the decision of the if condition is uniformly dis-
tributed over the iterations. Unbalanced structures are usually
handled by the buffers, so here we only consider the average
case. In the figure, it can be seen that the best II for function
g varies in terms of the input data distribution. For example,
if only the odd loop iterations are long and the rest are short,
η is 0.5 and the optimal II for function g is 6.

More generally, a suitable II can be selected for a function f,
where 1/II of a component can be considered as its maximum
rate of processing data (also known as maximum throughput).
The maximum II of function f that does not affect the over-
all program execution time is defined as its DASS optimal II
(IIopt). It depends on two constraints, the maximum produc-
tion rate allowed by its predecessors, 1/IIp, and the maximum
consumption rate allowed by its successors, 1/IIs.

II Selection for the Motivating Example: Now, let us show
how to select the DASS optimal II (IIopt) for the motivating
example. Other works have investigated these effects [32]–[34]
in related problems. Here is an example of how it works. To
analyze the circuit, we first show how to formalize the input
rates and output rates for each component. Then, we show
how to use the formulation to find the DASS optimal II (IIopt)
for the example.

There are two types of components in the DS circuit:
1) noncontrol-flow components and 2) control-flow compo-
nents. The noncontrol-flow components only perform pre-
dictable operations, such as addition and multiplication. The
control-flow components perform unpredictable operations,
such as merge and branch.

For a noncontrol-flow component g that has N predecessors
and M successors, let the actual data rate of its ith predecessor
be rpi, the actual data rate of its ith successor be rsi. Then we
can see that all these rates are equal, where we introduce r to
represent the value that these rates are all equal to

∀i, j ∈ [1, N], rpi = rsj = r.

The reason is that the handshaking interface of the compo-
nent stalls the inputs until all the inputs are valid and all the
predecessors are ready. This balances the rates at the inputs
and outputs. Also, the data rate is limited by the physical IIs

CHENG et al.: DASS: COMBINING DYNAMIC & SS IN HLS 639

Fig. 10. Rate analysis for the motivating example.

of the component and all the surrounding hardware

r ≤ min
(
1/IIg, 1/IIp1, . . . , 1/IIpN, 1/IIs1, . . . , 1/IIsM

)
.

On the other hand, the processing rates of control flow com-
ponents depend on the topology of the circuit and the input
data distribution. The rate changes when the data go through
these components, as detailed below

Merge : rout = rin1 + rin2

Branch : rin1 = rin2 = rout1 + rout2.

The rate analysis of a portion of the dataflow circuit from
Fig. 3(b) is shown in Fig. 10. The green labels show the II
constraints of each component and the blue labels represent
the actual rate along each edge between two components. Due
to the loop-carried dependency on the adder, where the output
s is sent back to the input, the II of the circuit is limited by
the latency of the feedback loop containing an adder and a
buffer. That latency is five cycles, hence, any value of the II
of that adder smaller than 5 does not cause a performance
bottleneck. In this case, the input and output rate of the adder
is limited: II6 ≥ 5. Since there is no dataflow component in
the path, II2 = II6 ≥ 5. The top component consuming d
is a branch component, which sends data to one of the two
outputs according to the if condition. The rate of a branch
component with the loop-carried dependency has an additional
constraint that

1/rbranch, in1 ≥ max(IIin, IIout1 × p1 + IIout2 × (1 − p1)) (1)

where IIin is the II of its predecessor, IIout1 is the II of its
first successor, p1 is the fraction of the data going into its first
successor, and IIout2 is the II of its second successor. In the
figure, the predecessor is known not to be the bottleneck as
the upper loop in Fig. 3(b) can feed d every clock cycle. In
addition, one of the successors, sink, has II1 ≥ 1 as it can
take data every clock cycle, and the other is function g with
II2 ≥ 5. With half of the iterations being long, that is p1 = 0.5,
we have II0 ≥ 0.5×1+0.5×5 = 3. This means that the highest
overall rate is r0 = 1/3, where the component consumes 1 set
of data every three cycles on average. This agrees with the
schedule in Fig. 2(c) that the hardware consumes two sets

of data every six cycles and repeats. At the highest rate, the
rate of the input is split into two edges through the branch
component in terms of the fraction of the data going into the
corresponding successor

rout1 = p1 × rin (2)

rout2 = (1 − p1) × rin. (3)

In this case, r2 = r0/2 = 1/6. Similar analysis can be
performed on other branch components in the circuit, resulting
in the rate of each edge shown in Fig. 10. In conclusion, the
rate to function g is 1/6 at the highest overall rate, and the
DASS optimal II of function g is IIopt = 6. Smaller IIs may
cause less area saving and larger IIs may cause performance
degrading.

For all input data distributions in Fig. 9, the SS approach
appears as a single line. The DS solution is always the same
hardware architecture (i.e., constant LUT count) but with
performance varying with the changing input data distribu-
tion. Our approach is shown as multiple green lines, one for
each input data distribution. The design with DASS optimal II,
shown as the elbows in the DASS lines, can have better
performance than the DS hardware by improving the maxi-
mum clock frequency with SS implementation. In addition,
the DASS hardware can also have comparable area efficiency
compared to the SS hardware in terms of LUT and DSP usage.

By performing the rate analysis above, we have the DASS
optimal II of function g equal to IIopt2 = 1/η + 4. This can
be justified as follows. Knowing IId = 1, we have II0 =
(1 − η) × II1 + η × II2. Then, knowing II1 ≥ 1 and II2 ≥ 5,
we have II0 ≥ 1 + 4L. For best performance, II0 = 1 + 4η.
Ultimately, knowing r0 = 1/II0, r2 = r0×η, and r2 = 1/IIopt2,
we have IIopt2 = 1/η + 4, as required.

For instance, at η = 1, the DASS optimal II is 5, the same as
the minimum loop II from SS. When η = 0, function g and
the adder for + = are never used, so the II of the function
does not affect the latency of the whole program. In this case,
the DASS optimal II is infinity, i.e., function g is no longer
needed.

In this work, we let users manually determine the optimal II
for the SS function in the DASS hardware. In general, finding
the optimal II for an SS function can be difficult as it depends
on both the topology of the circuit and the input data distribu-
tion. However, even if users have only some information on the
circuit, such as the minimum II achievable due to loop-carried
dependencies, the hardware optimization is still promising. In
the figure, the DASS hardware with II = 5 for the SS function
does not have minimum area but still achieves significant area
reduction compared to the DS hardware. Although the hard-
ware is underperforming, the difference in area reduction by
switching from II = 5 to II = 6 is significantly smaller than
that by switching from II = 1 to II = 2.

D. Case Study 2: BubbleSort

There are two throughput overheads caused by DASS. These
overheads are usually minor but can still affect the design
quality with a bad choice of source for SS functions. Here,
we take bubbleSort for example, as illustrated in Fig. 11.

640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 11. Design quality of different scheduling approaches for bubbleSort
benchmark. Bad choice may result in the worse performance and larger area.

The swapping process is chosen to be an SS function, named
swap_ss. The first overhead is caused by the interitera-
tion dependence inside swap_ss. A load from A[j] in an
iteration depends on the conditional store to A[j+1] in the
last iteration. This memory dependence forces the schedule
swap_ss to be sequential to preserve correctness. Second, the
fictionalisation of SS hardware instead of inlining causes one
cycle of additional latency. This additional latency is usually
hidden in a pipeline. In bubbleSort, the sequential sched-
ule of swap_ss causes throughput of the loop depending on
the latency of swap_ss, slowing down the computation.

The bottom of Fig. 11 shows how these overheads affect
the performance. Both axes are in the log scale. In the figure,
it can be seen that the optimal choice for bubbleSort is
to statically schedule the whole program. Compared to the SS
hardware, the DASS hardware has lower throughput due to the
additional latency caused by the wrapper. It also loses in the
circuit area due to the handshaking interface in the DS circuit.
In addition, although the DS hardware can solve the memory
dependence using an LSQ. However, the LSQ has a large area
and a long memory latency. The memory latency is usually
hidden in the pipeline but not for bubbleSort as explained
before. Such a long latency results in a low throughput in
the DS hardware. Compared to the DS hardware, the DASS
hardware does not have an LSQ and has a smaller memory
latency since all the memory accesses are statically scheduled.

VII. CONCLUSION

In HLS, DS is useful for handling irregular and control-
dominated applications. On the other hand, SS can benefit
from powerful optimizations to minimize the critical path and
resource requirements of the resulting circuit. In this work, we
combined the existing dynamic and static HLS approaches to
strategically replace regions of a dynamically scheduled circuit
with their statically scheduled equivalents: we benefit from
the flexibility of DS to achieve a high throughput, as well as
the frequency and resource optimization capabilities of SS to
achieve fast and area-efficient designs.

Across a range of benchmark programs that are amenable to
DASS, our approach on average saves 45% of area in compar-
ison to the corresponding dynamically scheduled design, and
results in 1.98× execution time speedup over the correspond-
ing statically scheduled design. In certain cases, the knowledge
of the input data distribution allows us to further increase the
design quality and may result in additional performance and
area improvements. Our current approach relies on the user to
annotate via pragmas parts of the code, which do not benefit
from DS and can, therefore, be replaced with static functions.
The current version of DASS only support pipeline-related
pragmas. Our future work will support more pragmas and
explore the automated recognition of such a code and these
pragmas.

REFERENCES

[1] A. Canis et al., “LegUp: High-level synthesis for FPGA-based proces-
sor/accelerator systems,” in Proc. 19th ACM/SIGDA Int. Symp. Field
Programmable Gate Arrays, 2011, pp. 33–36.

[2] V. G. Castellana, A. Tumeo, and F. Ferrandi, “High-level synthesis of
memory bound and irregular parallel applications with bambu,” in Proc.
IEEE Hot Chips 26 Symp. (HCS). Aug. 2014, p. 1.

[3] (2017). Xilinx Vivado HLS. [Online]. Available: https:
//www.xilinx.com/

[4] (2017). Intel HLS Compiler. [Online]. Available: https:
//www.altera.com/

[5] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-
level synthesis,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable
Gate Arrays, 2018, pp. 127–136.

[6] J. Cheng, L. Josipović, P. Ienne, G. Constantinides, and J. Wickerson,
“Combining dynamic & static scheduling in high-level synthesis,” in
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2020,
pp. 288–298.

[7] J. Cheng. (2019). HLS-Benchmarks. [Online]. Available:
https://doi.org/10.5281/zenodo.3561115

[8] (2019). Datasets for Combining Dynamic & Static Scheduling
in High-level Synthesis. [Online]. Available: http://doi.org/10.5281
/zenodo.3406553

[9] (2019). DSS: Combining Dynamic & Static Scheduling in High-Level
Synthesis. [Online]. Available: https://github.com/JianyiCheng/DSS

[10] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduc-
tion to high-level synthesis,” IEEE Design Test Comput., vol. 26, no. 4,
pp. 8–17, Jul./Aug. 2009.

[11] V. J. Mooney, III and G. D. Micheli, “Hardware/software co-design of
run-time schedulers for real-time systems,” Design Autom. Embedded
Syst., vol. 6, no. 1, pp. 89–144, Sep. 2000.

[12] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in Proc. 43rd ACM/IEEE Design Autom.
Conf., 2006, pp. 433–438.

[13] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline syn-
thesis,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
2013, pp. 211–218.

[14] I. Page and W. Luk, “Compiling occam into Field-Programmable Gate
Arrays,” in FPGAs, W. Moore and W. Luk, Eds. Abingdon, U.K.:
Abingdon EE&CS Books, 1991.

[15] Celoxica. (2005). Handel-C. [Online]. Available:
http://www.celoxica.com

[16] G. Venkataramani, M. Budiu, T. Chelcea, and S. C. Goldstein, “C to
asynchronous dataflow circuits: An end-to-end toolflow,” in Proc. IEEE
13th Int. Workshop Logic Synth. (IWLS), Jun. 2004, pp. 501–508.

[17] M. Budiu and S. C. Goldstein, “Pegasus: An efficient intermediate rep-
resentation,” Sch. Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA,
USA, Rep. CMU-CS-02–107, May 2002.

[18] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli,
“Theory of latency-insensitive design,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[19] L. Josipović, P. Brisk, and P. Ienne, “An out-of-order load-store queue
for spatial computing,” ACM Trans. Embedded Comput. Syst., vol. 16,
no. 5s, p. 125, Sep. 2017.

CHENG et al.: DASS: COMBINING DYNAMIC & SS IN HLS 641

[20] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne, “Shrink it or
shed it! Minimize the use of LSQs in dataflow designs,” in Proc. Int.
Conf. Field-Programmable Technol. (ICFPT), 2019, pp. 197–205.

[21] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis for
loop pipelining in High-level synthesis,” in Proc. 50th ACM/EDAC/IEEE
Design Autom. Conf. (DAC). Austin, TX, USA, May 2013, p. 51.

[22] J. Liu, S. Bayliss, and G. A. Constantinides, “Offline synthesis of online
dependence testing: Parametric loop pipelining for HLS,” in Proc. IEEE
23rd Annu. Int. Symp. Field-Programmable Custom Comput. Mach.,
May 2015, pp. 159–162.

[23] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “ElasticFlow: A
complexity-effective approach for pipelining irregular loop nests,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD). Austin,
TX, USA, Nov. 2015, pp. 78–85.

[24] S. Dai, M. Tan, K. Hao, and Z. Zhang, “Flushing-enabled loop pipelining
for high-level synthesis,” in Proc. 51st ACM/EDAC/IEEE Design Autom.
Conf. (DAC). San Francisco, CA, USA, Jun. 2014, pp. 1–6.

[25] S. Dai et al., “Dynamic hazard resolution for pipelining irregular
loops in high-level synthesis,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2017, pp. 189–194.

[26] L. P. Carloni, “From latency-insensitive design to communication-based
system-level design,” Proc. IEEE, vol. 103, no. 11, pp. 2133–2151,
Nov. 2015.

[27] C. Seitz, System Timing, MathWorks, Natick, MA, USA, 1980.
[28] J. Duprat and J.-M. Muller, “The CORDIC algorithm: New results

for fast VLSI implementation,” IEEE Trans. Comput., vol. 42, no. 2,
pp. 168–178, Feb. 1993.

[29] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides,
“LUTNet: Rethinking inference in FPGA soft logic,” in Proc. IEEE 27th
Annu. Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM),
2019, pp. 26–34.

[30] F. H. McMahon, “The Livermore Fortran kernels: A computer test
of the numerical performance range,” Lawrence Livermore Nat. Lab.,
Livermore, CA, USA, Rep. UCRL-53745, Dec. 1986.

[31] T. Young-Schultz, L. Lilge, S. Brown, and V. Betz, “Using OpenCL
to enable software-like development of an FPGA-accelerated biopho-
tonic cancer treatment simulator,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2020, pp. 86–96. [Online]. Available:
https://doi.org/10.1145/3373087.3375300

[32] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and
J. Cortadella, “Buffer placement and sizing for high-performance
dataflow circuits,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2020, pp. 186–196. [Online]. Available:
https://doi.org/10.1145/3373087.3375314

[33] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic appli-
cations,” in Proc. Int. Conf. Embedded Comput. Syst. Archit. Model.
Simulat., Samos, Greece, Jul. 2011, pp. 404–411.

[34] A. H. Ghamarian et al., “Throughput analysis of synchronous data flow
graphs,” in Proc. 6th Int. Conf. Appl. Concurrency Syst. Design (ACSD).
Turku, Finland, Jun. 2006, pp. 25–36.

Jianyi Cheng (Student Member, IEEE) received the
B.Eng. degree in electrical and electronic engineer-
ing from the University of Nottingham, Nottingham,
U.K., in 2017, and the M.Sc. degree in analogue
and digital integrated circuit design from Imperial
College London, London, U.K. in 2018, where he is
currently pursuing the Ph.D. degree in electrical and
electronic engineering.

His research interests include reconfigurable com-
puting, high-level synthesis, program analysis, and
formal verification.

Mr. Cheng is a Student Member of the ACM.

Lana Josipović (Student Member, IEEE) received
the B.Sc. and M.Sc. degrees in electrical engineer-
ing and information technology from the University
of Zagreb, Zagreb, Croatia, in 2013 and 2015,
respectively. She is currently pursuing the Ph.D.
degree in computer and communication sciences
with École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland.

Her research interests include high-level synthe-
sis, compilers, and reconfigurable computing.

Ms. Josipović is a recipient of the Google Ph.D.
Fellowship for Systems and Networking and the Best Paper Award at
FPGA 2020.

George A. Constantinides (Senior Member, IEEE)
received the Ph.D. degree from Imperial College
London, London, U.K., in 2001.

Since 2002, he has been with the Faculty
of Imperial College London, where he is cur-
rently Royal Academy of Engineering/Imagination
Technologies Research Chair, a Professor of Digital
Computation, and the Head of the Circuits and
Systems Research Group. He has published over 150
research papers in peer-refereed journals and inter-
national conferences.

Prof. Constantinides has served as the Chair of the FPGA, FPL, and FPT
conferences. He currently serves on several program committees. He is a
Fellow of the British Computer Society.

Paolo Ienne (Senior Member, IEEE) received
the Laurea degree in electrical engineering from
Politecnico di Milano, Milan, Italy, in 1991, and
the Ph.D. degree in computer science from École
Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland, in 1996.

Since 2000, he has been a Professor with the
School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne. He has
published over 200 articles in peer-reviewed journals
and international conferences, some of which have

received the best paper awards at prestigious venues, including the FPGA,
FPL, CASES, and DAC conferences.

Prof. Ienne serves on the steering committee of the ARITH, FPL, and
FPGA conferences, and an Associate Editor of ACM Computing Surveys and
ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION. He
is a Member of the ACM.

John Wickerson (Senior Member, IEEE) received
the Ph.D. degree in computer science from the
University of Cambridge, Cambridge, U.K., in
2013.

He is a Lecturer with the Department of
Electrical and Electronic Engineering, Imperial
College London, London, U.K. His research interests
include high-level synthesis, the design and imple-
mentation of programming languages, and software
verification.

Dr. Wickerson is a Member of the ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

